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1 Introduction

Contact mechanics as a branch of natural sciences 
started with the work of Hertz [1] on the elastic nor-
mal contact of parabolically ellipsoidal bodies. As 
any smooth curved surface in the vicinity of the con-
tact “point” can be approximated as a second order 
polynomial in cartesian coordinates x and y, that has 
been and still is a fairly general solution for the elastic 
normal contact problem.

Nonetheless, ending the Taylor series of the con-
tacting surfaces at the second order remains an 
approximation, and ellipsoidal contact profiles, which 
do not fall into the Hertzian description, can be eas-
ily thought of. On the other hand, while for the lim-
iting cases of axisymmetric and plane contacts gen-
eral solutions to the respective elastic normal contact 
problems were published by Schubert [2], a cor-
responding general solution for ellipsoidal contact 
partners is, yet, absent, because it is not as easy as in 
these limiting cases to make ad hoc statements about 
the geometrical structure of the contact area.

However, some special cases have been solved in 
the literature in exact or, at least, approximate, ana-
lytic fashion: Vorob’ev [3] gave an exact contact solu-
tion for the indentation by an elliptical cone; Argatov 
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[4] published an asymptotic solution for a superposi-
tion of the Hertzian profile with a 4-th order pertur-
bance, and, very recently, Popov [5], based on Fabri-
kant’s [6] approximation for the pressure distribution 
under a rigid flat punch of arbitrary planform and the 
approximate procedure of Barber & Billings [7] for 
general single normal contact problems of smooth 
indenters, gave an approximate general solution 
for profiles slightly deviating from axial symmetry, 
which also can be applied for the (slightly eccentric) 
elliptical case.

In the present manuscript, a general exact elastic 
normal contact solution will be presented for ellipsoi-
dal contact profiles in the form of a power-law (while 
the elliptical eccentricity of different horizontal cross-
sections of the indenters remains constant). As, under 
some simplifying assumptions, the solution to the 
tangential contact problem can be reduced to the nor-
mal contact solution, this will also provide an analytic 
(but approximate) solution for the respective contacts 
under tangential loading.

The remainder of the present manuscript is struc-
tured as follows: First, the contact problem of inter-
est will be stated in physically rigorous fashion. After 
that, the analytic solutions to the normal and tan-
gential contact problems will be deduced and illus-
trated by some examples. Finally, several conclusive 
remarks finish the manuscript.

2  Problem statement

Let us consider single contacts of linearly elastic, 
homogeneous, isotropic bodies with the shear moduli 
G1 and G2 and Poisson’s ratios ν1 and ν2 under nor-
mal and tangential loading. To ensure elastic decou-
pling of the normal and tangential contact problems, 
the materials are assumed to be elastically similar,

The contacting bodies shall obey the restrictions 
of the half-space approximation. Moreover, effects 
of surface roughness, adhesion, or surface tension 
are neglected and friction is considered within the 
framework of a local Amontons-Coulomb law with 

(1)
1 − 2�1

G1

−
1 − 2�2

G2

= 0.

a constant coefficient of friction µ. Within this set 
of assumptions, the contact is equivalent to the one 
between an elastic half-space with the shear modulus 
and Poisson’s ratio

and a rigid indenter. We can also introduce the effec-
tive elastic modulus

The indenter shall be under a constant normal 
load (Boussinesq’s [8] problem) and a subsequently 
applied increasing tangential load (Cattaneo’s [9] 
problem). The indenter’s horizontal cross sections 
shall be ellipses with constant eccentricity ε. Intro-
ducing cartesian coordinates {x,y,z}—z being the 
contact normal direction, and x and y pointing along 
the ellipses’ half-axes—we can write that condition 
as follows:

Note that the choice A(z) > B(z) does not constitute 
any loss of generality, as the x- and y-directions can 
always be chosen accordingly. Hence, the indenter 
profile, i.e., the gap between the contacting bodies at 
the moment of first contact, reads

with some arbitrary monotonous function h. We will 
restrict our attention to power functions for h, i.e.,

The case n = 1 corresponds to the elliptical Hertz-
ian contact problem.

3  Normal contact solution

According to Galin’s theorem [10, p. 120], an 
indenter with the profile (6) will produce a pressure 
distribution
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where Sn (x2, y2) is a polynomial of the order n in x2 
and y2. Note that Galin’s theorem is formulated specif-
ically in that direction (although it is sometimes cited 
the other way around): If the shape of the indenter is 
a polynomial in x and y, then the pressure distribution 
will be of the given form (uneven terms in x and y 
have been disregarded above due to symmetry). On 
the other hand, for general elliptical punches, whose 
shape isn’t a polynomial, the following procedure 
would not be exact, but a Rayleigh–Ritz type approxi-
mation, because the contact region might deviate 
from the elliptical shape.

Moreover, the indenter profile is smooth and there-
fore the contact pressure must be bound at the edge of 
contact. Therefore, the pressure distribution will take 
the form

Hence, for the exact solution to the normal contact 
problem, we only require to determine the polynomial 
Sn−1 and the half-axes a and b of the contact ellipse, 
as functions of the indentation depth δ (or the total 
normal force FN).

3.1  The normal force integral

Based on Betti’s reciprocal theorem, the elastic nor-
mal displacements in the contact area, δ − f(x,y), and 
the pressure distribution are connected via the inte-
gral relation [11, p. 52]

where Ω is the (elliptical) contact area, and p*(x,y) is 
the pressure distribution, which produces a unit nor-
mal displacement of Ω [12, p. 64],

(7)
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 with the complete elliptic integral of the first kind, 
K. The right-hand side of Eq. (9) is simply the total 
normal force. Hence, switching to polar coordinates 
{r,φ}, and using the indenter profile (6), Eq. (9) reads

with the contour of the contact ellipse in polar 
coordinates,

Evaluating the normal force integral (11), we 
arrive at

 with the gamma function Γ, and Pn (e2, ε2) being a 
polynomial of the order n in e2 and ε2, defined as

The first of these polynomials are given by

3.2  Maximizing the Normal Force Integral

According to Barber’s theorem [13] (for circular con-
tact areas this idea was first published by Shield [14]), 
the correct contact area, characterized by the smaller 
half-axis b and the eccentricity e, will maximize the 
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expression (13) for a given indentation depth. Thus, 
maximizing first with respect to b, we obtain

 Hence,

 which in the axisymmetric case, ε = e = 0, of course, 
coincides with the known axisymmetric solution [15, 
p. 27]. Maximizing the force in Eq. (17) with respect 
to e results in

with the complete elliptic integral of the second kind, 
E.

Note that the trivial solution of Eq. (18), e = 0, cor-
responds to a local minimum of the normal force. As 
one might expect, Eq. (18) does not depend on the 
indentation depth, i.e., the contact area eccentricity 
is constant during the indentation process. Eqs. (16), 
(17) and (18), together with the definition (14) exactly 
solve the normal contact problem. For n = 1, it can be 
shown easily that the known solution for the elliptical 
Hertzian contact [11, pp. 33 ff.] is recovered.

The normal contact stiffness is given by

As the indentation can be understood as a series of 
incremental flat punch indentations (see below), this, 
unsurprisingly, exactly coincides with the normal 
stiffness of the contact between a rigid elliptical flat 
punch (with larger half-axis a and eccentricity e) and 
an elastic half-space.

4  The pressure distribution

As was first pointed out by Mossakovskii [16] 
and later Jäger [17] for the axisymmetric case, the 
indentation process can be understood as a series of 
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.

incremental indentations dδ by rigid flat punches, 
whose planforms are given by the contact regions at 
different indentation depths. During the indentation 
procedure the indentation depth changes from 𝛿 = 0 to 
𝛿 = δ (note that the contact area eccentricity remains 
constant, as was shown above). Accordingly, the pres-
sure distribution at the end of the indentation is given 
by the integral of pressure distributions resulting from 
the incremental flat punch indentations.

Hence, due to Eq. (10) (the variable quantities dur-
ing the indentation process are characterized by the 
tilde),

where δc (x, y) is the indentation depth, for which the 
point {x, y} first comes into contact. Switching once 
again to polar coordinates, and changing the para-
metrization of the integral, we obtain

Using Eqs. (12) and (16), Eq. (21) simplifies to

which, except for the constant factor before the inte-
gral, is the same as in the axisymmetric case. In other 
words, the pressure distribution for the power-law 
ellipsoidal indenter is given by the axisymmetric 
distribution, scaled to the elliptical contact area. A 
similar effect was recently discovered by Popov [5] in 
the framework of an approximate analytical solution 
for power-law indenters with an arbitrary planform, 
which is slightly deviating from the axisymmetric 
one.

The remaining integral in Eq. (22) can be evalu-
ated in closed analytical fashion as
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with the incomplete beta function B expressed in 
terms of the hypergeometric function 2F1,

Alternatively, the following recursion scheme can 
be used,

from which it is also clearer that the pressure distribu-
tion can always be written in the form of Eq. (8).

Similarly, i.e., based on the appropriate superposi-
tion of incremental flat punch indentations, the elas-
tic normal displacements outside the contact area can 
be determined from the respective flat punch solution 
[11, p. 22]. However, the resulting integral cannot be 
evaluated in any “useful” way and shall therefore not 
be detailed here.

5  The subsurface stress state

As will be shown below, the complete subsurface 
stress state �ij(x, y, z) can be given in terms of simple 
one-dimensional integrals of the subsurface stresses 
in an elliptical Hertzian contact, which are known 
analytically. For that purpose, we first recall again 
that, according to Eq. (18), the eccentricity of the 
contact ellipse is a function only of the eccentricity of 
the indenter profile, and does not depend on the con-
tact configuration. Hence, similarly to Eq. (20) for the 
contact pressure distribution, we can write the sub-
surface stress state as a superposition of states aris-
ing from the incremental indentations by elliptical flat 
punches with increasing semiaxes (but with constant 
eccentricity),

Here, 𝜎∗
ij

(
x, y, z;b̃;e

)
 is the subsurface stress state 

arising from the unit indentation by an elliptical 
flat punch, i.e., due to the contact pressure 
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)d𝛿
db̃
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distribution (10). Comparing that to the pressure 
distribution under an elliptical Hertzian contact (R1 
being the radius of curvature along the x-axis) [11, 
pp. 33 f.],

we immediately recognize that

Due to linearity, this superposition by differentia-
tion will also be correct for the full subsurface stress 
state. Hence,

which, after introducing the coordinate transform

and partial integration results in

Thus, the problem of determining the subsurface 
stresses has been reduced to the evaluation of an ele-
mentary integral of the subsurface stresses 
�̂�H

ij

(
x, y, z;B̃;e

)
 under an elliptical Hertzian contact, 

which were given by Sackfield & Hills [18] and 
recently, using Carlson elliptical integrals, Green-
wood [19].

6  Example: 4‑th power ellipsoidal indenter

As was mentioned, for n = 1, the long-known Hertz-
ian solution is easily recovered from the general solu-
tion shown above. Therefore, as an example, in the 
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following, the case n = 2, i.e., the 4-th power ellipsoi-
dal indenter, is discussed in little more detail.

The relation between the indenter and contact 
eccentricities follows from Eq. (18):

with the asymptotic solution

For the pressure distribution one obtains from Eq. 
(22):

In Fig. 1 the normalized pressure distribution pb0/
(E*δ) with b0 = [3δ/(8C2)]1/4 is shown in a contour 
line diagram as a function of the normalized cartesian 
coordinates x/b0 and y/b0 for a contact profile eccen-
tricity of ε = 0.5. The same results were also obtained 
with a numerical solution of the contact problem, 
based on the boundary element method [20].

(32)

1 −
E(e)

K(e)
(
1 − e2

) =
3e4 + e2

(
�2 − 4

)

8 − 8
(
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+ 3
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)
+ 2e2�2

,

(33)e ≈

√
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5
�.

(34)
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−
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(

1 + 2x2
a2

+
2y2

b2

)

,

x2
a2

+
y2

b2
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As the limit for n → ∞ corresponds to the con-
tact with a rigid elliptical flat punch, for which obvi-
ously e = ε, one might expect that the difference 
between the eccentricities of the contact ellipse and 
the indenter profile decreases for increasing n. That 
is the case, as can be seen in Fig.  2, where the dif-
ference between e and ε is shown as a function of ε 
for different values of the exponent n. The thin lines 
correspond to the respective asymptotic solutions for 
small eccentricities

The latter relation seems to be generally correct, 
although no attempt has been made to rigorously 
prove it for arbitrary n, because it is sufficiently sim-
ple to just use the exact solution by solving Eq. (18).

7  Tangential contact solution

In elastic single contacts under tangential loading, 
the contact area generally consists of an inner stick 
region and an outer area of local slip. The statement 
of the tangential contact solution comprises the rela-
tions between the tangential force, the extent of the 
stick zone, and the macroscopic relative tangential 
displacement (i.e., between two distant points of the 

(35)e ≈

√
2n + 2

2n + 1
�.

Fig. 1  Contour line diagram of the normalized contact pres-
sure pb0/(E*δ) as a function of the normalized cartesian coor-
dinates x and y for the indentation of an elastic half-space by a 
4-th power ellipsoidal indenter with ε = 0.5

Fig. 2  Difference between the contact area and profile eccen-
tricities as a function of the profile eccentricity for different 
exponents of the profile power-law. The thin lines correspond 
to the asymptotic solution (35)
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contacting bodies), as well as the determination of the 
frictional shear tractions.

Within the framework of assumptions stated in 
Sect. 2, the tangential contact problem can be reduced 
to the normal contact problem via the principle of 
Jäger [21] and Ciavarella [22, 23]. While that prin-
ciple is exactly correct for plane contact problems 
of elastically similar materials, in the general three-
dimensional case—as the lateral displacements due 
to the tangential tractions are neglected and therefore 
the isotropy of the friction law is slightly violated in 
the region of local slip—it is associated with a small 
error (unless the materials do not exhibit the Poisson 
effect), even for elastically similar materials, which, 
however, is usually small [24].

With the standard Ciavarella–Jäger procedure, we 
obtain for the shear stress distribution

The (fictious) indentation depth δ1—i.e., the inden-
tation depth that induces a contact area which coin-
cides with the stick area in the actual tangentially 
loaded contact—can be determined from the total 
tangential force,

or the macroscopic tangential displacement for load-
ing along the larger half-axis,

Hence, the corresponding tangential contact stiff-
ness is

where a1 is the larger half-axis of the sticking ellipse. 
As the final form of Eq. (39) does not contain any 
explicit dependence on n, it, of course, coincides with 
Mindlin’s [25] respective result for the Hertzian case. 
Similarly, for tangential loading along the smaller 
half-axis,
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fx(e)
K(e)

(

� − �1
)

,

fx(e): = K(e) + �
e2

[(

1 − e2
)

K(e) − E(e)
]

.

(39)

kx ∶=
�Fx

�u
(0)
x

=
�Fx

��1

��1

�u
(0)
x

= kz

(
�1

�

) 1

2n (1 − �)K(e)

fx(e)
=

2�Ga1

fx(e)
,

while Eqs. (36) and (37) remain unchanged (using y 
instead of x).

While the maximum values of the relative tangen-
tial displacement at the onset of gross slip,

for a given indentation depth, do not exhibit explicit 
dependencies on the profile geometry, they, in con-
trast to the axisymmetric case, do implicitly depend 
on the indenter via the contact area eccentricity e 
(except for materials without Poisson effect, i.e., with 
ν = 0). This, however, is only noticeable for large val-
ues of Poisson’s ratio and large contact area eccen-
tricities. Also, bearing in mind, that the error of the 
Ciavarella–Jäger procedure for three-dimensional 
contacts itself is of the order of ν, this result might be 
“academic”.

8  Discussion and conclusions

Based on Galin’s theorem for the indentation of an 
elastic half-space by a polynomial punch and Bar-
ber’s theorem for the determination of the contact 
area in elastic normal contact problems, an exact con-
tact solution has been developed for the frictionless 
indentation of an elastic half-space by an ellipsoidal 
power-law punch. Within the Cattaneo–Mindlin-
approximation of tangential contacts, the tangential 
contact problem with friction can be reduced to the 
frictionless normal contact via the Ciavarella–Jäger 
principle, based on which also the tangential contact 
solution for the ellipsoidal power-law indenter has 
been given. The most interesting result is, that the 
pressure distribution for the power-law ellipsoidal 
indenter is given by the axisymmetric distribution, 
scaled to the elliptical contact area.

As is true for many analytical solutions of contact 
problems, the framework of set assumptions, made to 
allow for an analytical treatment, may pose restric-
tions of varying severity for the application of the 

(40)

u(0)
y

=
�

1 − �

fy(e)

K(e)

(
� − �1

)
,

fy(e) ∶ = K(e) −
�

e2
[K(e) − E(e)], ky =

2�Ga1

fy(e)
,

(41)u(0)
x,max

=
�

1 − �

fx(e)

K(e)
�, u(0)

y,max
=

�

1 − �

fy(e)

K(e)
�,
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obtained results to real engineering contacts. With 
regard to the present manuscript, the strongest model 
simplifications stem from the assumptions of linear 
elasticity and of a local Amontons-Coulomb friction 
law with a constant coefficient of friction. Also, elas-
tic coupling (which severely complicates the rigorous 
analysis) can be an issue for the contact of dissimilar 
materials. On the other hand, the advantage of ana-
lytic solutions is their exactness, which is not com-
promised by (spatial) discretization or other numeri-
cal procedures; they therefore can serve as benchmark 
solutions for numerical models, which, in turn, are 
more flexible with respect to the physical modelling.

Moreover, several extensions of the proposed 
method are possible. As Galin’s theorem is valid for 
any polynomial indenter shape, the solution proce-
dure can be used exactly for an arbitrary finite super-
position of ellipsoidal power-law profiles; at least in 
an approximate sense, it is also applicable for arbi-
trary monotonous ellipsoidal profiles. Moreover, like 
in the viscoelastic contact theories of Lee and Radok 
[26], Ting [27] and Graham [28], the obtained exact 
elastic normal contact solution can be used to deter-
mine the respective solution for linearly viscoelastic 
materials via the elastic–viscoelastic correspondence 
principle.
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