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the external actions are generally affected by uncer-
tainties that must be taken into account in the analy-
sis. These input parameters are thus represented by 
random variables, which are defined on an appropri-
ate probability space and whose law is supposed to be 
known. A stochastic process is thus obtained which is 
parameterized over time and has the Euclidean space 
as state space.

In many applications, it is necessary to determine 
the probability distribution of some output quantities. 
It is a question of determining the evolution over time 
of the law of some random process which is defined 
in terms of the solution of the dynamic system. This 
objective is generally achieved using the Monte Carlo 
method which, at least in principle, gives the pos-
sibility to consider complicated models and geom-
etries without having to resort to unrealistic simplify-
ing hypotheses. On the other hand, this method can 
require long computation times which may not be 
compatible with the required precision [1].

A different way to deal with the problem is to use 
the generalized density evolution equation, which is a 
consequence of the "principle of preservation of prob-
ability" [2]. This method leads to writing a linear PDE 
whose solution gives the probability density function 
for the quantities of interest. The coefficients of this 
equation at each instant depend on the value of the state 
variables and then can be obtained from the (deter-
ministic) solution of the dynamic system. The method 
of the generalized density evolution equation has been 
implemented into the MADY code, which has already 
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1  Introduction

The analysis of structures subjected to dynamic loads 
is now generally conducted using refined mechanical 
models and adequate numerical techniques. However, 
even when the problem is well-posed so that both the 
existence and the uniqueness of the solution are guar-
anteed, some parameters used to describe the geomet-
ric and mechanical characteristics of the structure and 
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the routines for dynamic analysis of plane, three-dimen-
sional, or beam and shell-based structures [3], and has 
been applied to the study of some masonry construc-
tions [4, 5]. For these structures, the uncertainties have 
particular relevance, due to the constitutive characteris-
tics of the material and the geometry.

In this paper, we deduce an equation similar to the 
one proposed in [2] but which allows calculating the 
cumulative distribution function directly, instead of 
the density function, of the chosen random variable. 
Indeed, while the former is always a locally integrable 
function, it may happen that the latter is defined only 
in a distributional sense. The deduction is made using 
classical theorems of the measure theory; although 
most notions discussed below can be presented in their 
intuitive sense, we prefer to give explicit definitions 
and proofs to avoid misunderstandings. Thus, both the 
approach proposed in this paper and the one proposed 
in [2] are rigorously justified. Moreover, with the help 
of the differential forms and the coarea formula, rela-
tions are deduced for the explicit computation of both 
the probability density function and the cumulative 
distribution function; these are especially useful if the 
number of random input parameters is greater than one.

Finally, two examples are presented in which the 
evolution of the probability distribution of a chosen 
output parameter is explicitly calculated. The solution 
is then compared with the numerical one obtained with 
the MADY code, which has meanwhile been updated 
with the new numerical procedures presented in this 
paper.

2 � Background and notations

Let (Ω,A,ℙ) be a probability space. Here Ω is the set 
of the outcomes, A is the �-algebra on Ω made of all 
the events and ℙ ∶ A → [0, 1] is a probability measure, 
i.e. a positive measure on (Ω,A) such that ℙ(Ω) = 1. 
Moreover, let ℝn and B(ℝn) be the n-dimensional 
Euclidean space and its corresponding Borel �-algebra, 
respectively.

A map � ∶ Ω → ℝ
n is said to be a (vector) random 

variable if it is B(ℝn)-measurable, i.e. if

where, as usual, {� ∈ B} denotes �−1(B) . The meas-
ure �X denotes the law of � or the image of measure 

{� ∈ B} ∈ A, for each B ∈ B(ℝn),

ℙ under � [6], i.e. the measure defined on (ℝn,B(ℝn)) 
by

and the function FX ∶ ℝ
n
→ [0, 1] , defined by

is called cumulative distribution function of X.
Let Ln be the Lebesgue measure on (ℝn,B(ℝn)) . 

Measure �X is said to be absolutely continu-
ous (with respect to Ln ) if �X(B) = 0 for every set 
B ∈ B(ℝn)) with Ln(B) = 0 . In this case, the Radon-
Nikodym theorem [6] guarantees the existence of a 
positive integrable function pX such that

for every B ∈ B(ℝn)) . Function pX is called the (joint) 
probability density function of the vector random var-
iable X and it holds

or

If �X is not absolutely continuous, then its probabil-
ity density function does not exist as an integrable 
function. However, it can be defined as a generalized 
function by interpreting (2) as a distributional deriva-
tive [7].

Let � be a vector random variable and 
f ∶ ℝ

n
→ ℝ

m a Borel function; then � = f◦� 
is again a vector random variable and, for each 
B ∈ B(ℝn),

If � has a probability density function pX , then

by (1) and (3). Moreover, if f is such that [8]

�X(B) = ℙ({� ∈ B}), for each B ∈ B(ℝn)

F
X
(a1, a2,… , a

n
) =𝜇

X
({� ∈ ℝ

n ∶ −∞ < x
i
≤ a

i
,

i = 1, 2,… , n}),

(1)�X(B) =
∫B

pX(�)d�

FX(x1, x2,… , xn) =
∫

x1

−∞

…
∫

xn

−∞

pX(�1, �2,… , �n)d

�1, d�2,… , d�n

(2)pX(x1, x2,… , xn) =
�FX(x1, x2,… , xn)

�x1�x2 … �xn
.

(3)�Y (B) = �X

(

f −1(B)
)

.

(4)�Y (B) = �X

(

f −1(B)
)

=
∫f−1(B)

pX(�)d�
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for every Borel subset B of ℝn , then, in view of (4), 
�Y is (finite and) absolutely continuous with respect 
to Lm and thus it admits a probability density func-
tion pY . In the particular case when n = m and f is a 
diffeomorphism, i.e. a bijective application such that 
both f and f −1 are continuously differentiable, then

where Jf −1 denotes the Jacobian of f −1.
More generally, suppose that there exists a counta-

ble family (Bi)i∈I of pairwise disjoint open sets of ℝn , 
such that (i) the event

has probability ℙ(B) equal to 1; (ii) for each i ∈ I , the 
restriction fi of f to Bi is a diffeomorphism of Bi onto 
an open set Ci ⊂ ℝ

n . Under this assumption, define

where

is the indicator function of Ci . Then

A stochastic process {�t, t ∈ D} , with D = [0, t̄] 
a real interval, is a family of vector random vari-
ables indexed by a parameter t, defined on a com-
mon probability space (Ω,A,ℙ) and all with 
their values in (ℝn,B(ℝn)) , which is called the 
state space. By definition, for each t ∈ D , �t is 
an A-misurable function and, for each � ∈ Ω , 
{�t(�), t ∈ D} is a function defined in D that is called 
sample function, realizzation or trajectory of the 
process.

Let be z ∈ ℝ and f ∶ ℝ
m
→ ℝ a smooth function. 

Then, the set

L
m(B) = 0 ⇒ L

n
(

f −1(B)
)

= 0

pY (�) = pX
(

f −1(�)
)

|

|

|

Jf −1(�)
|

|

|

B =
⋃

i∈I

{� ∈ Bi}

(pY )i(�) = pX
(

f −1
i

(�)
)

|

|

|

Jf −1
i

(�)
|

|

|

�Ci
(�)

�Ci
(�) =

{

1 if � ∈ Ci

0 otherwise

p� =
∑

i∈I

(p�)i.

{z = f } =
{{

� ∈ ℝ
m ∶ z − f (�) = 0 and |∇f (�)| > 0},

if it is not empty, is a regular hypersurface of ℝm 
whose orientation is determined by the unit normal 
vector � = ∇f∕|∇f | . Let us put

and denote by �S the volume form on {z = f } [9], i.e. 
the differential form

(where dx̂j means “omit the factor dxj”). Recalling 
that on the hypersurface {z = f } we have

it is easy to verify that, for each j = 1,… , n it turns 
out that [7]

everywhere fxj ≠ 0 holds.
For each � ≤ n , let H� be the Hausdorff measure 

in ℝn [10], defined in such a way that Hn = L
n . Then 

for every function g which is integrable on {z = f } we 
have

The following useful result is a consequence of the 
coarea formula. Let f ∶ ℝ

m
→ ℝ be a smooth func-

tion such that |∇f (�)| > 0 , and g ∶ ℝ
m
→ ℝ be an 

integrable function. Moreover, let us put

Then

and, in particular,

fxj =
�f

�xj

𝜇S =

n
∑

j=1

(−1)j−1

|∇f |
fxjdx1 ∧… ∧ dx̂j ∧… ∧ dxn,

df =

n
∑

j=1

fxjdxj = 0,

(5)𝜇S =
(−1)j−1|∇f |

fxj

dx1 ∧… ∧ dx̂j ∧… ∧ dxn,

(6)
∫{z=f }

gdHn−1 =
∫{z=f }

g�S.

{z > f } = {� ∈ ℝ
m ∶ z − f (�) > 0}.

(7)
∫{z>f }

gd� =
∫

z

−∞

d𝜁
∫{𝜁=f }

g

|∇f |
dHm−1

(8)
d

dz ∫{z>f }

gd� =
∫{z=f }

g

|∇f |
dHm−1

.
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3 � Stochastic dynamic system

The equation of motion of a body, discretized by 
the finite element method with respect to the space 
variable is reduced to a system of ODEs

where t ∈ D is the time and �, �̇ and �̈ are the dis-
placement, velocity and acceleration vector, respec-
tively, which are defined on D and take their values in 
ℝ

n . M is the mass matrix, � is the internal force vec-
tor (including damping and restoring force), B is the 
input force influence matrix, � is the external excita-
tion vector and �0 and �̇0 are the initial displacement 
and velocity vector, respectively. By introducing the 
state vector

Equation (9) can be rewritten as

where

If randomness is present, coming from the initial con-
ditions, the excitations, or the properties of the sys-
tem, a random state equation can be written as [2]

where � = (𝜃1, 𝜃2,… 𝜃m) ∈ Λ ⊂ ℝ
m is the vector of 

all random parameters, i.e. the values assumed by 
the vector random variable � ∶ Ω → ℝ

m , that is sup-
posed to be time-independent and to have a (joint) 
probability density function p�.

If the (deterministic) problem (10) is well posed, 
then for each choice of � and �0 , Eq.  (11) has one 
and only one solution

with � ∶ Λ ×ℝ
2n × D → ℝ

2n a suitable smooth 
function.

Below, for sake of simplicity, we omit to explic-
itly indicate the dependence on �0 and write

(9)
��̈ + � (�̇, �) = �(�, t)�(t), �(t0) = �0, �̇(t0) = �̇0,

� =

{

�̇

�

}

,

(10)�̇ = �(�, t) + �(�, t)�(t), �(t0) = �0

�(�, t) =

(

−�−1� (�)

�̇

)

, �(�, t) =

(

�−1�(�, t)

�

)

.

(11)�̇ = �(�, �0, t)

� = �(�, �0, t), �(�, �0, 0) = �0

to denote the solution of (11).
In applications, we are interested in considering 

stochastic processes of the type

with

and in determining the evolution of the law of Zt . 
Here � ∶ ℝ

2n
→ ℝ is a deterministic smooth func-

tion. To this aim, for each t ∈ D , let us consider the 
family of measures {��

t
∶ � ∈ Λ} which are defined 

on ℝ by

for every Borel subset B of ℝ , with �B the indicator 
function of B. Measure ��

t
 is the law of the condi-

tional probability of Zt , given � , and sometimes it is 
denoted by pZ�(z|� = �, t) . Indeed, once � and t are 
fixed, ��

t
 is the Dirac measure on ℝ , concentrated in 

the point Zt(�) . The cumulative distribution function 
of ��

t
 is the real function

Let C0 be the space of the continuous real functions 
that are compactly supported in ℝ , with the maximum 
norm | ⋅ |C0 . For every function f ∈ C0 we have

(this is true for the indicator functions of measurable 
sets by (13) and then for simple functions so that the 
general case follows from an approximation argu-
ment). Therefore, the map � → ∫

ℝ
f (z)��

t
(dz) is meas-

urable on Λ.

Proposition  (i) For fixed t ∈ D , there is one and one 
measure �t on ℝ such that

for each f ∈ C0.

�t = �(�, t)

Zt(�) = Z(�, t) = �◦�(�, t),

(12)Z(�, 0) = �(�0) = z0,

(13)��
t
(B) = �B◦Zt =

{

1 if Zt(�) ∈ B,

0 otherwise ,

(14)F�
t
(z) = ��

t
((−∞, z]) =

{

1 if z ≥ Zt(�),

0 otherwise .

(15)
∫
ℝ

f (z)��
t
(dz) = f (Zt(�))

(16)
∫
ℝ

f (z)�t(dz) =
∫Λ

p�(�)d�
∫
ℝ

f (z)��
t
(dz)
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(ii) �t is the law of Zt , i.e., for every Borel subset B 
of ℝ,

Proof  (i) Let be

Then, noting that

we obtain

Thus, Φ is a linear and continuous functional on C0 
and (i) follows from the Riesz representation theorem 
[11].

(ii) For every Borel subset B of ℝ we have

where the second identity follows from (16), the third 
follows from (15) and the fourth follows from the 
relation �B◦Zt = �Z−1

t
(B) . 	�  ◻

If we denote by FZ(z, t) the cumulative distribution 
function of �t , with the help of (16) and (14) we can 
write

�t(B) = ℙ
(

Z−1
t
(B)

)

.

Φ(f ) =
∫Λ

p�(�)d�
∫
ℝ

f (z)��
t
(dz).

∫
ℝ

��
t
(dz) = ��

t
(ℝ) = 1 and

∫Λ

p�(�)d� = ℙ(Ω) = 1

|Φ(f )| ≤ ∫Λ
p�(�)d�∫ℝ

|f (z)|��
t (dz)

≤ |f |0 ∫Λ
p�(�)d�∫ℝ

��
t (dz) = |f |0 .

(17)

�t(B) = ∫ℝ
�Bd�t(dz) = ∫Λ

p�(�)d�∫ℝ
�B(z)��

t (dz)

= ∫Λ
�B(Zt)(�))p�(�)d�

= ∫Λ
p�(�)�Z−1t (B)(�)d�)

= ∫Z−1t (B)
p�(�)d� = ℙ(Z−1t (B)),

FZ(z, t) = �t((−∞, z]) = ∫ℝ
�(−∞,z]�t(z)(dz)

= ∫Λ
p�(�)d�∫ℝ

�(−∞,z]�
�
t (dz) =

where

Moreover, under the hypothesis that, for each t ∈ D , 
Zt is a smooth function with

from (18) to (7) it follows

where

In many applications of interest, for each t ∈ D and 
B ∈ B(ℝ) , Zt is such that

so that in view of (17), it also results �t(B) = 0 and 
therefore �t is absolutely continuous with respect to 
L [and FZ(⋅, t) is an absolutely continuous real func-
tion] [6]. Then, by the Radon-Nikodym theorem there 
exists a probability density function pZ(z, t) of �t , i.e. 
for every integrable function f it holds

Thus, in this case from (21) to (8), we deduce

For all z and t, {Zt = z} is a regular hypersurface of Λ 
by (20). Moreover, in view of (5) and (6), we have

(18)

∫Λ
p�(�)��

t ((−∞, z])d� = ∫Λ
p�(�)�{Zt≤z}d�

= ∫{Zt≤z}
p�(�)d�,

(19){Zt ≤ z} = {� ∈ Λ ∶ z − Zt(�) ≥ 0}.

(20)inf
�∈Λ

|∇Zt(�)| > 0,

(21)FZ(z, t) =
∫

z

−∞

d�
∫{Zt=�}

p�(�)

|∇Zt(�)|
dHm−1(�),

{Zt = �} = {� ∈ Λ ∶ � − Zt(�) = 0}.

L(B) = 0 ⇒ L
m(Z−1

t
(B)) = 0,

∫
ℝ

f (z)�t(dz) =
∫
ℝ

f (z)pZ(z)dz.

(22)

pZ(z, t) =
dFZ(z, t)

dz
=
∫{Zt=z}

p�(�)

|∇Zt(�)|
dHm−1(�).

(23)

∫{Zt=z}

p�(�)
|∇Zt(�)|

dm−1(�)

= ∫{Zt=z}
(−1)j−1

p�(�)
�Zt
��j

d�1 ∧… ∧ d�̂j ∧… ∧ d�m



2558	 Meccanica (2022) 57:2553–2565

1 3
Vol:. (1234567890)

if on the hypersurface {Zt = z} the inequality �Zt
��j

≠ 0 

holds.
As will be shown later in the examples, Eqs. (18), 

(21) and (22), (23) can be used for the explicit cal-
culation of the cumulative distribution function and 
the probability density function, respectively, even 
if the dimension of Λ is greater than one.

4 � The evolution of the law of Z
t

In [2] the authors obtain a linear PDE in the 
unknown

which once solved allows to determine the probabil-
ity density function pZ(z, t) of Zt , by integrating pZΘ 
over Λ , with respect to � . Below we propose a simi-
lar method to directly determine the cumulative dis-
tribution function FZ(z, t) of Zt . Let’s start with some 
notation.

Let be N = ℝ × Λ × D ⊂ ℝ
m+2 , G(z,�, t) = z − Z

(�, t) and �K be the indicator function of the region

that is

(note that, for each pair z and t, region {Zt ≤ z} that 
has been defined in (19) is a subset of K). Let us 
denote by D the space of infinitely differentiable real 
functions with compact support in N.

Consider the two distributions [7] which, for every 
� ∈ D , are defined in N by

with �=(z,�, t) , and

where

pZΘ(z,�, t) = pZΘ(z|Θ = �, t)pΘ(�)

K = {(z,�, t) ∈ N ∶ G ≥ 0}

(24)�K(z,�, t) =

{

1 if z − Z(�, t) ≥ 0

0 otherwise

< 𝜒K ,𝜙 >=
∫N

𝜒K(�)𝜙((�)d� =
∫K

𝜙(�)d�,

< 𝛿(G),𝜙 >=
∫N

𝛿(G(�))𝜙(�)d� =
∫
I

𝜙

|∇G|
dHm+1

,

I = {(z,�, t) ∈ N ∶ G(z,�, t) = 0},

is a regular hypersurface, because in N we have 
�∇G� =

√

1 + �∇Z�2 ≥ 1 . Note that while the first 
distribution is regular, the second is concentrated on 
a set that is negligible with respect to the Lebesgue 
measure.

It can be proved [7] that �(G) is the distributional 
derivative of �K , i.e. the distribution such that

or also

From (25)1 to (25)3 we deduce the PDE

with the initial conditions

which follows from (24) to (12).
Once �K has been calculated, FZ is obtained from 

the relation

In a similar way, [7] it is defined the distributional 
derivative �′ of � and it is shown that it results

from which the PDE that has been proposed in [2] 
can be obtained, i.e.

The corresponding initial condition is

(25)

��K

�z
= �(G)

��K

��j
= −

�Z

��j
�(G)

��K

�t
= −

�Z

�t
�(G)

∇�K = �(G)∇G.

(26)
��K(z,�, t)

�t
+

�Z(�, t)

�t

��K(z,�, t)

�z
= 0

�K(z,�, 0) =

{

1 if z ≥ z0
0 otherwise

(27)FZ(z, t) =
∫Λ

�K(z,�, t)p�(�)d�.

��(G)
�z

= �′(G), ��(G)
��j

= − �Z
��j

�′(G), ��(G)
�t

= − �Z
�t

�′(G)

(28)
�pZ�(z,�, t)

�t
+

�Z(�, t)

�t

�pZ�(z, �, t)

�z
= 0.

pZ�(z,�, 0) = �(z − z0)p�(�)
or pZ�(z, �, 0) = pZ0(z)p�(�),
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depending on whether z0 is deterministic or not. Once 
pZ� has been calculated, pZ is obtained from the 
relation

Thus �K and pZ� satisfy the same distributional PDE 
but with different initial conditions.

In applications, system (11) and Eqs.  (26) [or (28)] 
are both solved numerically, after which FZ(z, t) is deter-
mined by the relation (27) [or pZ(z, t) is determined by 
(29)]. Two examples are presented below where the 
whole procedure can be followed explicitly. Let’s briefly 
mention the solution technique for Eq.  (26). The ana-
logue for Eq. (28) is dealt with in detail in [2].

Using the method of characteristics [12] for this 
purpose, we can write the following system of ODEs, 
with the corresponding initial conditions

From (30)2 we obtain t = s , which in view of (30)1 
provides the following two implications

From (30)3 to (31), taking into account that 
Z(�, 0) = z0 by (12), we deduce

Finally, from (27) we obtain

which coincides with (18).

(29)pZ(z, t) =
∫Λ

pZ�(z,�, t)d�.

(30)

dz

ds
=

�Z(�,t)

�t
z(0) = �,

dt

ds
= 1 t(0) = 0,

d�K

ds
= 0 �K(�,�, 0) =

{

1 if � ≥ z0,

0 otherwise .

(31)

dz

dt
=

�Z(�,t)

�t
⇒

z(s, �) = Z(�, s) + � − Z(�, 0) ⇒

� = z − Z(�, t) + Z(�, 0).

�
K
(z,�, t) = �

K
(�,�, 0) =

{

1 if � ≥ Z(�, 0),

0 otherwise

=

{

1 if z − Z(�, t) ≥ 0,

0 otherwise.

(32)

FZ(z, t) =
�Λ

�K(z,�, t)p�(�)d� =
�{Zt≤z}

p�(�)d�

5 � Examples

5.1 � The motion of a material point

Let us consider the rectilinear motion of a material 
point whose velocity is proportional to the traveled 
distance. The proportionality coefficient and the ini-
tial position are expressed by the two independent 
positive-valued random variables Θ1 and Θ2 , respec-
tively. Distance x is measured in meters and time t in 
seconds, and a superimposed dot indicates derivation 
with respect to time. We can write

and

By separating the variables we obtain

from which, assuming that � is the identity function,

follow. As

from (21) we obtain the cumulative distribution func-
tion of Zt

where p� is the joint probability density function of 
the random variables Θ1 and Θ2.

Alternatively, relation (18) can be used,

Particularly, we assume that Θ1 and Θ2 are two inde-
pendent variables, each uniformly distributed on the 
interval [0, 1], so that p� is the indicator function of 
the square Q = [0, 1] × [0, 1] . Then, we obtain (Fig. 1)

ẋ = 𝜃1x, x(0) = 𝜃2

� = (�1, �2) ∈ Λ = ℝ
+ ×ℝ

+, t ∈ D = [0,∞).

ln

(

x

�2

)

= �1t,

Z(�, t) = x(�, t) = �2e
�1t and

�Z

�t
= �1�2e

�1t

∇Z(�, t) =
(

�Z

��1
,
�Z

��2

)

= e�1t(�2t, 1),

FZ(z, t) =
∫

z

−∞

d�
∫{Zt=�}

p�

e�1t
√

1 + �2
2
t2
dH1(�),

FZ(z, t) =
�{Zt≤z}

p�(�)d�.
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from which, deriving with respect to z, we deduce the 
probability density function

Obviously, the same result is obtained by directly 
using the relations (22) and (23). Thus for example, 
for 0 < z ≤ 1 , we have (Fig. 1)

FZ(z, t) =
�{Zt≤z}∩Q

p�(�)d�

=

⎧

⎪

⎨

⎪

⎩

∫
1

0
ze−𝜃1td𝜃1 =

z

t
(1 − e−t) if 0 < z ≤ 1,

ln z∕t + ∫
1
ln z

t

ze−𝜃1td𝜃1 =
1

t
(ln z + 1 − ze−t) if 1 < z ≤ et,

1 if z > et,

(33)pZ(z, t) =

⎧

⎪

⎨

⎪

⎩

1

t
(1 − e−t) if 0 < z ≤ 1,

1

t
(
1

z
− e−t) if 1 < z ≤ et,

0 if z > et.

pZ(z, t) =∫{Zt=z}

p�(�)
∇Zt(�)

d1(�) = ∫{Zt=z}

d�2
�Zt
��1

=∫

z

ze−t

d�2
tz

= 1
t
(1 − e−t),

according to (33)1.
Equation (26) and the corresponding initial condi-

tions take the form

and

respectively.
The numerical solution can be accomplished by 

means of the following steps.
Step 1 Construct a partition of Λ = [0, 1] × [0, 1] , 

in a finite number N of squares Λi with center 
�i = (�i

1
, �i

2
) (i = 1,… ,N) , and assign to each �i the 

corresponding value p�(�
i) =

1

N
.

��K(z,�, t)

�t
+ �1�2e

�1t
��K(z,�, t)

�z
= 0

�K(z,�, 0) =

{

1 if z ≥ �2,

0 otherwise ,

Fig. 1   Graph of z = Z
t
 , for a 0 ≤ z ≤ 1 , b 1 ≤ z ≤ e

t and c z = e
t . (Example 1)
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Step 2 Discretize the first quadrant of the z,  t 
plane by choosing a mesh width Δz and a time step 
Δt , and defining the discrete mesh points (zj, tn) by

Then, for each representative point �i , solve the 
equation

with the help of the initial condition

by using the total variation diminishing (TVD) 
method [2, 13].

Step 3 Finally, determine the cumulative distri-
bution function by means of the discretized version 
of the relation (32), i.e. for each mesh point (zj, tn) 
compute

Figs. 2 and 3 show the numerical results that have been 
obtained with Δz = 6.25 ⋅ 10−3m,Δt = 6.25 ⋅ 10−4s . 
Each side of Λ has been divided into 40 equal sub-
intervals, so that N = 1600.

zj = jΔz, tn = nΔt.

��K(z,�
i
, t)

�t
+ �i

1
�i
2
e�1t

��K(z,�
i
, t)

�z
= 0,

�K(z,�
i
, 0) =

{

1 if z ≥ �i
2
,

0 otherwise ,

FZ(zj, tn) =

N
∑

i=1

�K(zj,�
i
, tn)

N
.

In addition to the cumulative function, the prob-
ability density function p(z,  t) was also numerically 
calculated by means of Eqs.  (28) and (29), at the 
same four instants previously considered. The calcu-
lations have been made for N = 40 × 40 , N = 80 × 80 
and N = 160 × 160 . We used Δz = 6.25 ⋅ 10−3m 
and Δt = 6.25 ⋅ 10−4s in the first two cases, and 
Δz = 3.125 ⋅ 10−3m and Δt = 3.125 ⋅ 10−4s in the 
third case. The obtained results are shown in Fig.  4 
for t = t1 and t = t4 ; the other cases are similar.

At each instant t a possible estimate of the relative 
error is given by the formula

where the values of f (zi, t) and g(zi, t) are obtained 
explicitly and numerically, respectively.

The error was calculated, for 0 ≤ z ≤ 4 , and in 
all the examined cases its order of magnitude turned 
out to be practically constant over time. In the case 
of the cumulative function, the maximum error was 
less than 1.7 ⋅ 10−3 . In the case of the density func-
tion, it was less than 1.9 ⋅ 10−1 for N = 40 × 40 , less 
than 1.4 ⋅ 10−1 for N = 80 × 80 and less than .9 ⋅ 10−1 
for N = 160 × 160.

(34)�(t) =

�

∑N

i=1
(f ((zi, t)) − g(zi, t))

2

�

∑N

i=1
(f (zi, t))

2

Fig. 2   Cumulative 
distribution functions at 
t1 = 0.25s, t2 = 0.75s,

t3 = 1.25s and t4 = 1.75s ; 
comparison between the 
explicit and numerical solu-
tions. (Example 1)
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5.2 � The Klein–Gordon equation

Let � = {x ∈ ℝ ∶ 0 ≤ x ≤ l} be the reference con-
figuration of a string which is made of elastic material 
having a mass density � per unit length. The string is 
fixed at its ends and is subjected to a constant tension 
� and an additional force proportional to the displace-
ment u. The equation of motion for oscillations of 
small amplitude is

where

and �2u is the additional force per unit mass. This is 
also the Klein–Gordon equation of quantum field the-
ory [12, 14].

The function

solves Eq. (35) for

(35)�2u

�t2
− c2

�2u

�x2
+ �2u = 0,

(36)c =

√

�

�

(37)u(x, t) = Asin
(

�x

l

)

cos(�t)

The boundary conditions

and the initial conditions

We assume that �c∕l and � are independent random 
variables, which will be indicated with Θ1 and Θ2 
respectively, and that they are uniformly distributed 
over Λ = [�i, �f ] × [�i, �f ].

We choose Z as the (dimensionless) displacement 
u
(

l

2
, t
)

∕A of the middle point of the string, so that it 
results

Equation (26) becomes

(38)� =

√

(

�c

l

)2

+ �2,

u(0, t) = u(l, t) = 0

u(x, 0) = Asin
(

�x

l

)

and
�u(x, 0)

�t
= 0.

Z(�, t) = cos

(

t

√

�2
1
+ �2

2

)

.

(39)

��tK(z,�, t)

�t
−

(

√

�2
1
+ �2

2
sin

(

t

√

�2
1
+ �2

2

))

��K(z,�, t)

�z
= 0,

Fig. 3   Graph of the function F(z, t) in the region [0.4m] × [0.4s] ; each time interval corresponds to 0.025s. (Example 1)
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with the initial condition

The calculations were made for t = .025s , t = .05s , 
and t = .075s ; we limit ourselves to describe the first 
case because the other two are similar. Let us denote 
by � = �f (�f − �i) the area of Λ , and by

�K(z,�, 0) =

{

1 if z ≥ 1,

0 otherwise .

The values of z for which the circumference with 
center at the origin of the plane (�1, �2) and radius 
cos−1(z)∕t passes through the corresponding vertices 
of Λ (Fig. 5). Then, with the help of (18), we obtain

(i) For z ≤ z1,

(ii) For z1 ≤ z ≤ z2,

where �a =
√

1

t2

(

cos−1(z)2 − �2

f
;

(iii) For z2 ≤ z ≤ z3,

where �b =
1

t
cos−1(z) and �c has the same expression 

as �a;
(iv) For z3 ≤ z ≤ z4,

(v) For z ≥ z4

z1 = cos

(

t

√

�2

f
+ �2

f

)

, z2 = cos

(

t�2

f

)

,

z3 = cos

(

t

√

�2

i
+ �2

f

)

and z4 = cos(t�
i
)

F(z, t) = 0;

F(z, t) =
1

�

(

(�f (�f − �a) −
∫

�f

�a

√

1

t2

(

cos−1(z)2 − �2
1

)

d�1

)

F(z, t) =
1

�

(

(�f (�f − �a) −
∫

�b

�c

√

1

t2

(

cos−1(z)2 − �2
1

)

d�1

)

F(z, t) = 1 −
1

� ∫

�b

�i

√

1

t2
(cos−1(z)2 − �2

1
)d�1;

F(z, t) = 1.

Fig. 4   Probability density function p(z,  t) at time t = t1 and 
t = t4 , for N = 40 × 40 , N = 80 × 80 and N = 160 × 160 ; com-
parison between the explicit and numerical solutions (Example 
1)

Fig. 5   Circumferences with center at the origin and radius 
cos

−1(z)∕t , for z1 ≤ z ≤ z2 , z2 < z ≤ z3 and z3 < z ≤ z4 . (Exam-
ple 2)
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The following parameter values have been used: 
�i = 80 , �f = 100 , �i = 0 and �f = 10s−1 , and then 
� = 200s−2 . The intervals [�i, �f ] and [�i, �f ] have 
been divided respectively into 40 and 20 equal sub-
intervals, so that the partition of Λ is made up of 
N = 800 rectangles. Furthermore, Δz = 1.25 ⋅ 10−2 
and Δt = 7.81 ⋅ 10−5s were used. The relative error 
calculated with the formula (34) is of the order 
of 4 ⋅ 10−2 . Fig.  6 compares the numerical results 
with those obtained explicitly, at the three instants 
considered.

6 � Conclusions

From the results obtained in the cases examined it 
appears that the accuracy of the cumulative distribu-
tion function, calculated with the proposed method, is 
good. The relative numerical procedure can be imple-
mented in any code that allows the solution of the 
dynamic system and can be easily extended to vector-
valued random processes.
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