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1 Introduction

The harmonic balance method (HBM) is a very pow-
erful tool, often used to solve problems of nonlinear 
vibrations. Using the HBM, the steady state vibration 
problems can be solved for strongly nonlinear sys-
tems [1–3]. Moreover, problems for which a multi-
harmonics solution was previously required could 
also be successfully solved [4, 5]. The almost-period 
vibration is also analysed using HBM in [6–8]. The 
HBM is described in a number of papers [9–12] and 
monographs [13, 14]. Due to the abundance of lit-
erature on the subject, only selected and most recent 
items are mentioned above.

In HBM, solutions to the equations of motion are 
sought (in almost all cases) which are in the form of 
trigonometric series (for one-dimensional discrete 
systems and in a case of forced vibrations) and can be 
written as

where �(t) is the vector of the sought solution of the 
equation of motion, �ck and �sk are unknown vectors 

(1)�(t) =

n∑
k=0

(
�ck cos k�t + �sk sin k�t

)
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of the “amplitudes” of harmonics, and � is the excita-
tion frequency.

By means of HBM it is possible to solve also 
undamped linear or nonlinear problems of free 
vibrations. In these cases � is the natural frequency 
and only one trigonometric function (sine or cosine) 
is present in (1).

However, the second possibility is to use the 
complex representation of the Fourier series and 
to write a solution to the equation of motion in the 
form

where �k and �k are unknown complex vectors, (∙) 
is complex, conjugate and i =

√
−1 is the imagi-

nary unit. The exponential form of the solution of 
the equation of motion is very often used when lin-
ear dynamic systems are considered. This case is dis-
cussed in many monographs (see, for example [15]). 
In the context of mechanical nonlinear systems, the 
discussed exponential form of solution is almost 
non-existent. In open literature, the exponential ver-
sion of HBM has been applied to some problems, 
particularly those related to nonlinear circuit analy-
sis [16–19]. Only the application of the exponential 
version of HBM to a dynamic analysis of mechani-
cal systems will be discussed. The most general and 
detailed description of this method is presented in 
[14]. The exponential version of HBM together with 
the continuation method was used in [11] to analyse 
periodic responses of rotor/stator dynamics. The dis-
cussed method was also utilized in papers [9, 12] to 
discuss some problems of nonlinear dynamics. Using 
the exponential version of HBM, the steady state 
vibration is also analysed in [4]. In [4], the systems 
that feature distinct states (i.e. where the equations of 
motion involve piecewise defined functions) are con-
sidered. In paper [20], the application of exponential 
version of HBM to the analysis of vibration of bladed 
disks coupled by friction joints is presented. Complex 
nonlinear modal analysis for turbomachinery blades 
with friction and using the exponential version of 
HBM is presented in [21] by Laxalde and Thouverez. 
The application of HBM together with the continua-
tion procedure is developed in [22] and applied to the 
analysis of the quasi-periodic solutions of the equa-
tion of motion.

(2)�(t) =

n∑
k=0

(
�ke

i�t + �ke
−i�t

)

In general, in order to obtain the unknown vec-
tors �ck and �sk or �k and �k (for k = 1, 2, ..., n) the 
amplitude equations must be developed. This is usu-
ally done using the Galerkin method. The ampli-
tude equations are nonlinear algebraic equations. 
It is common practice to determine the response 
curves. In this case, a family of solutions of ampli-
tude equations are required for a set of excitation 
frequency values. The response curves are deter-
mined using the continuation method as a method 
for solving the amplitude equations. The above-
mentioned procedure is well known (and described, 
for example, in [8, 23, 24]) when the solution of the 
equation of motion is written in the form of trigo-
nometric series (1). On the other hand, details of 
the exponential version of HBM and the solution to 
the equation of motion given in the form of Eq. (2) 
are not fully described and are not well known. In 
this case, as previously, the amplitude equations are 
nonlinear algebraic equations, though with complex 
coefficients this time. However, the derivation of the 
above-mentioned amplitude equations is somewhat 
simpler in comparison with derivation when the 
solution to the equation of motion is in the form of 
trigonometric series (1). It is especially important 
when the nonlinear parts of the equation of motion 
are analytic functions with continuous derivatives 
of the appropriate orders. The continuation method 
for the amplitude equation with complex coeffi-
cients has not yet been reported in the literature.

In this paper, the exponential version of HBM 
is presented together with a detailed derivation of 
amplitude equations for dynamical systems which 
nonlinear parts of the equation of motion are ana-
lytic functions. Moreover, the continuation proce-
dure which can be used to solve the above-mentioned 
amplitude equations has been developed for a first 
time. Beams which execute steady state geometri-
cally nonlinear vibration and made of a viscoelastic 
material are chosen as exemplary nonlinear dynamic 
systems. The Zener model with fractional deriva-
tives is used to describe the mechanical properties 
of the beam’s material. For a first time, the exponen-
tial version of HBM is applied here to analyse the 
steady state vibration of nonlinear systems (beams) 
where the fractional derivatives are used in the sys-
tem description. The correctness and efficiency of 
the discussed approach is illustrated by the results of 
numerical calculation.
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The paper is organized as follows. In Sect.  2, a 
viscoelastic (VE) beam is briefly described. The 
amplitude equations are derived in Sect.  3 and the 
continuation method which is applied to solve the 
equations of motion is presented in Sect.  4. The 
conditions of stability of the steady state solution 
are discussed in Sect. 5. The calculation results are 
presented and briefly discussed in Sect. 6 while the 
concluding remarks are presented in Sect. 7.

2  Description of nonlinear vibration of beams

The theory of VE beams, previously presented in 
[25], is briefly repeated here in order to make the 
presentation self-consistent. The beam with a total 
length L , area of cross-section A , mass m per unit 
length and the moment of inertia J is considered. 
The beam has its immovable end in the horizontal 
direction. Moreover, the horizontal inertia forces 
are neglected. The beam is loaded by the harmoni-
cally varying forces

where � is the excitation frequency, pc(x) and ps(x) 
are real “amplitudes” of excitation forces. Moreover, 
p1(x) =

1

2

(
pc(x) − ips(x)

)
 , p1(x) =

1

2
(pc(x) + ips(x)) . 

The last form of description of excitation forces is 
more suitable for presented analysis.

The Euler–Bernoulli theory together with the 
von Karman theory are used to describe the influ-
ence of geometric nonlinearity. It is well known that 
the von Karman theory is valid when the amplitudes 
of vibrations are of the order of the beam’s height h . 
A most important relations for considered beam are 
given in the Appendix 1.

After introducing Eq. (84) into Eq. (83), the fol-
lowing equation of motion is obtained

which, however, cannot be written in terms of 
transversal displacement explicitly.

The beam is built of a VE material which is mod-
eled with the help of the so-called fractional Zener 
model, which means that fractional derivatives are 
used in this model. As derived in [25], the consti-
tutive equations written in terms of internal forces 

(3)
p(x, t) = pc(x) cos �t + ps(x) sin �t = p1(x)e

�t + p1(x)e
−�t

(4)mẅ(x, t) −M,xx(x, t) − N(t)w,xx(x, t) = p(x, t)

N(t) , M(x, t) and generalized strains �(x, t) and �(t) 
are:

where � is the relaxation time, E0 is the relaxed elas-
tic modulus, E∞—the non-relaxed elastic modulus. 
Moreover, the inequalities E∞ > E0 > 0 , 𝜏 > 0 must 
be fulfilled. The symbol D�

t
(∙) denotes the frac-

tional derivative of the order α with respect to time 
t of the quantity in the parenthesis. In the description 
of rheological properties of VE materials the Rie-
mann–Liouville definition of the fractional derivative 
is most frequently used [26, 27]. However, di Paola 
et al. [28, 29] have shown that in the context of rheol-
ogy it is more logical to use the Caputo definition of 
the fractional derivative. Yet, it is known (see [27]) 
that for a system at rest at t = 0 or for systems that 
operate from t = −∞ , the Caputo fractional derivative 
is equivalent to the Riemann–Liouville derivative. In 
conclusion, when the above assumptions are fulfilled, 
the operator D�

t
(∙) could be understood in either way: 

as the Riemann–Liouville derivative or as the Caputo 
derivative. In order to be precise in the derivation the 
Riemann–Liouville definition is adopted in this paper. 
Thus, the fractional operator is given by:

where �  is the gamma function. Moreover, it 
is important to note that if above definitions and 
assumptions are valid the fractional derivative of 
exponential function is D�

t
(ei�t) = (i�)�ei�t (see 

[30]).
The application of fractional calculus to analy-

sis of several mechanical problems is well-known. 
Some applications of fractional calculus in mechan-
ics can be found in [31]. Moreover, the free, steady 
and transient vibration of beams, frame structures 
and plates where the fractional models are used to 
describe damping properties of systems materials 
are, among others, presented in [1, 5, 25, 32–38]. 
Some useful reviews papers which presented the 
application of fractional calculus in mechanics are 
[39–41].

(5)
M(x, t) + ��D�

t
M(x, t) = E0J�(x, t) + E∞J�

� D�

t
�(x, t)

(6)N(t) + �� D�

t
N(t) = E0A�(t) + E∞A�

� D�

t
�(t)

D�

t
(f (t)) =

1

Γ(1 − �)

d

dt

t

∫
−∞

f (s)

(t − s)�
ds
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Alternatively, the constitutive equations for the 
fractional Zener model can be written using the 
Boltzmann superposition principle. This approach 
leads to the equation of motion written in terms of 
displacements which is in the form of integral–differ-
ential equations. However, this possibility is not dis-
cussed here.

It is important to note that, in contrast to the purely 
elastic material and the Kelvin model of the VE mate-
rial, the fractional derivatives of forces are on the left 
hand side of Eqs. (5) and (6). The consequence of 
this is that the equation of motion of beams cannot be 
explicitly written in terms of displacements (here, in 
terms of w(x, t) ). Instead, the virtual work equation is 
used which, for the considered beams, takes the fol-
lowing form:

where the quantities with the symbol �(∙) are virtual 
ones.

The equations of amplitudes will be derived using 
the harmonic balance method. Because of this, the 
time averaged of the virtual work equation will be 
used and written as:

where T = 2�∕� is the period of excitation.

3  Derivation of amplitude equation using 
the exponential version of harmonic balance 
method

Only the one harmonic solution is assumed to 
describe the steady state vibration in this paper. As 
it is proved in many papers (see, for example, [13, 

(7)

L

∫
0

�w(x, t)(b(x, t) + p(x, t)) dx

−

L

∫
0

(��(x, t)M(x, t) + ��(x, t)N(t)) dx = 0

(8)

1
T

T

∫
0

L

∫
0

�w(x, t)(b(x, t) + p(x, t)) dxdt−

1
T

T

∫
0

L

∫
0

(��(x, t)M(x, t) + ��(t)N(t)) dxdt = 0

42]), such solution accurately enough describes the 
dynamic behaviour of nonlinear systems when the 
systems are characterized by cubic nonlinearity and 
the secondary resonances are not present.

The solution for steady state vibration is assumed 
in the following form:

where the bar over the symbols means the symbol is 
complex, conjugate with an identical symbol without 
the bar.

The functions for internal forces N(t) , M(x, t) and 
generalized strains �(t) and �(x, t) are chosen in such a 
way that the geometric relations (83) and (84) and the 
constitutive Eqs. (5) and (6) are exactly fulfilled. The 
mentioned solutions are assumed in the form:

First of all, the amplitude equations for the con-
tinuous model of the beam are derived. By differen-
tiating Eq. (9) with respect to the space variable and 
introducing the obtained result and the relation (13) 
into the nonlinear term of the motion Eq. (4), the fol-
lowing is obtained

Next, relations (3), (9), (12) and (14) are substituted 
into Eq. (4) and the terms multiplied by T1(t) and T1(t) 
are separately equated to zero. Moreover, the terms 
multiplied by T3

1
(t) and T

3

1
(t) are neglected. As the 

result, the following amplitude equations are obtained 
for the continuous beam’s model:

(9)
w(x, t) = w1(x)e

i�t + w1(x)e
−i�t = w1(x)T1(t) + w1(x)T1(t)

(10)�(x, t) = �1(x)T1(t) + �1(x)T1(t)

(11)
�(t) = �

1
T
2

1
(t) + �

0
T
1
(t)T

1
(t) + �

1
T

2

1
(t)

= �
1
T
2

1
(t) + �

0
+ �

1
T

2

1
(t)

(12)M(x, t) = M1(x)T1(t) +M1(x)T1(t)

(13)
N(t) = N

1
T
2

1
(t) + N

0
T
1
(t)T

1
(t) + N

1
T

2

1
(t)

= N
1
T
2

1
(t) + N

0
+ N

1
T

2

1
(t)

(14)

N(t)w
,xx(x, t) = N

1
w
1,xx(x)T

3

1
(t) + N

1
w
1,xx(x)T1(t)

+ N
0
w
1,xx(x)T1(t) + N

0
w
1,xx(x)T1

(t)

+ N
1
w
1,xx(x)T1

(t) + N
1
w
1,xx(x)T

3

1
(t)
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The above equations are particularly useful during 
the stability analysis of steady state vibration.

Now, the amplitude equations for a discrete beam’s 
model will be derived.

From the geometric relations (80) and (84), it is easy 
to obtain the following results:

Relations between the coefficients of internal force 
functions and the generalized strain functions are 
obtained by substituting functions (10)–(13) into the 
constitutive Eqs.  (5) and (6), and equating the coef-
ficients on both sides of those equations standing near 
T1(t), T1(t) , T2

1
(t) , T

2

1
(t) and T1(t)T1(t) . Moreover, it 

must be taken into account that

It is important to note this; the simple Leibniz rule 
is not valid for the fractional derivative (compare 
[43–45]). The final results are:

−i�2mw1(x) −M1,xx(x) −
[
N0w1,xx(x) + N1w1,xx(x)

]
= p1(x)

(15)
−i�2mw1(x) −M1,xx(x) −

[
N1w1,xx(x) + N0w1,xx(x)

]
= p1(x)

(16)�1(x) = −w1,xx, �1(x) = −w1,xx

(17)

�1 =
1

2L

L∫
0

w
2

1,x
dx, �0 =

1

L

L∫
0

w1,xw1,xdx, �1 =
1

2L

L∫
0

w2
1,x
dx

(18)
D

𝛼

t
T1(t) = (i𝜆)𝛼T1(t), D

𝛼

t
T̄1(t) = (−i𝜆)𝛼T̄1(t),

D
𝛼

t
T1(t)T̄1(t) = D

𝛼

t
1 = 0

(19)M1(x) =
(
E0J + ΔEJ�1(�)

)
�1(x)

(20)M1(x) =
(
E0J + ΔEJ�1(�)

)
�1(x)

(21)N1 =

(
E0A

2L
+ �

2
(�)

ΔEA

2L

) L

∫
0

w
2

1,x
dx

(22)N1 =

(
E0A

2L
+ �2(�)

ΔEA

2L

) L

∫
0

w2
1,x
dx

where ΔE = E∞ − E0 , C = cos(��∕2) , S = sin(��∕2) 
and functions �1(i��) , �1(−i��) , �2

(i��) , �2(−i��) are 
defined in the Appendix 2.

Now the assumed solutions are introduced into the 
time averaged virtual work Eq.  (8). The beam’s vir-
tual state is described as the following functions of 
time:

where �(∙) means the virtual variation of (∙) with 
respect to space and

The subsequent part of the averaged virtual work 
equation will be analysed separately.

After introducing Eqs. (86)–(89) and (28) into the 
virtual work of excitation forces and performing inte-
gration with respect to time, the following results are 
obtained:

In the course of calculation, the following integral 
appears:

(23)N0 = 2
E0A

2L

L

∫
0

w,xw,xdx

(24)�w(x, t) = �w1(x)T1(t) + �w1(x)T1(t)

(25)��(x, t) = ��1(x)T1(t) + ��1(x)T1(t)

(26)��(t) = ��1T
2
1
(t) + ��0 + ��1T

2

1
(t)

(27)��1(x) = −�w1,xx(x), ��1(x) = −�w1,xx(x)

(28)��1 =
1

L

L∫
0

w1,x�w1,xdx, ��1 =
1

L

L∫
0

w1,x�w1,xdx

(29)��0 =
1

L

L

∫
0

�w1,xw1,xdx +
1

L

L

∫
0

w1,x�w1,xdx

(30)

1

T

T

∫
0

L

∫
0

�w(x, t)p(x, t) dxdt

=

L

∫
0

[
�w

1
(x)p

1
(x) + �w

1
(x)p

1
(x)

]
dx
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Proceeding in a similar way with the virtual work 
of inertia forces, the following is finally obtained:

After substituting Eqs. (10) and (12) into the aver-
aged virtual work of bending moment and integrating 
this part with respect to time, we obtain:

Additionally, the above integral can be written in 
terms of “amplitudes” w1(x) and w1(x) when relations 
(19), (20) and (26) are introduced into it. The final 
form is:

where

The transformation of the last term of Eq.  (8) is 
a little bit more complicated in comparison with the 
previous ones. First of all, relations (13) and (27) are 
introduced into it and this term must be integrated 
with respect to time. During the calculation, integrals 

(31)

1

T

T∫
0

T2
1
(t)dt =

1

T

T∫
0

T
2

1
(t)dt = 0,

1

T

T∫
0

T1(t)T1(t)dt = 1

(32)

1
T

T

∫
0

L

∫
0

�w(x, t)b(x, t) dxdt

= −�2
L

∫
0

[

�w1(x)mw1(x) + �w1(x)mw1(x)
]

dx

(33)

1
T

T

∫
0

L

∫
0

��(x, t)M(x, t) dxdt =
L

∫
0

[

��1(x)M1(x) + ��1(x)M1(x)
]

dx

(34)

1

T

T

∫
0

L

∫
0

��(x, t)M(x, t) dxdt =

L

∫
0

�w1,xx(x)E1(�)Jw1,xx(x) dx

+

L

∫
0

�w1,xx(x)E1(�)Jw1,xx(x) dx

(35)
E1(�)J = E0J + ΔEJ�1(�), E1(�)J = E0J + ΔEJ�1(�)

similar to (31) are obtained. Additionally, the follow-
ing is obtained

It should be noted the terms in the averaged vir-
tual work which give us the nonzero components of 
the amplitude equations are ones for which the sum 
of the exponents of functions appearing in integrals 
(31) and (36.1) is zero. The fact has greatly simplified 
derivation of amplitude equations.

Taking into account the above results of integra-
tion and remembering that ��(t) and N(t) depends on 
time only, the average virtual work of normal force 
can be written in the following form:

Subsequently, using relations (21)–(23), (28) and 
(29), Eq. (37) can be rewritten in the form:

where

The discrete version of average virtual work equa-
tion is obtained using the finite element approxima-
tion for the “amplitude” functions w1(x) and w1(x) . 
The beam is divided into finite elements and in each 
element these functions are approximated using the 
well known cubic Hermite polynomials, i.e.

(36)1

T

T∫
0

T4
1
(t)dt = 0,

1

T

T∫
0

T2
1
(t)T

2

1
(t)dt =

1

T

T∫
0

dt = 1

(37)

1

T

T

∫
0

L

∫
0

��(t)N(t) dxdt =(��1N1 + ��0N0 + ��1N1)L

(38)

1
T

T

∫
0

L

∫
0

��(t)N(t) dxdt = E2(�)A

L

∫
0

w1,x�w1,xdx

L

∫
0

w2
1,xdx

+
E0A
L

⎛

⎜

⎜

⎝

L

∫
0

�w1,xw1,xdx +

L

∫
0

�w1,xw1,xdx
⎞

⎟

⎟

⎠

L

∫
0

w,xw,xdx + E2(�)A

L

∫
0

�w1,xw1,xdx

L

∫
0

w2
1,xdx

(39)
E2(�)A =

E0A

2L
+ �

2
(�)

ΔEA

2L
, E2(�)A =

E0A

2L
+ �2(�)

ΔEA

2L
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where �e =
[
wa �a wb �b

]T and 
�e =

[
wa �a wb �b

]T
 are the vectors of nodal 

parameters and �(x) is the matrix of shape functions, 
which can be easily found in many monographs. The 
virtual functions �w1(x) and �w1(x) are approximated 
similarly, i.e.

Using the well-known finite element procedure the 
following amplitude equations are obtained

Detailed derivation of above equations is presented 
in the Appendix 3.

From the mathematical point of view, this is a 
set of nonlinear algebraic equations with respect to 
vectors � and � as the unknowns. However, in com-
parison with the usual cases, these equations have 
complex coefficients and complex, conjugate vec-
tors are expected as the solution. This makes a sig-
nificant difference in comparison with the ordinary 
HBM where the coefficients of the amplitude equa-
tions are real numbers. In many cases, the response 
curve is needed, which means that a set of solutions 
for different values of excitation forces are required. 
Therefore, the above amplitude equations are treated 
as equations with parameter and the main parameter 
is the excitation frequency �.

Having the complex solution for the steady state 
vibration problem given by Eq. (9), this solution can 
be rewritten as a real function. This can be done using 
the Euler formula:

and the final result is

(40)w1e(x) = �(x)�e, w1e(x) = �(x)�e

(41)�w1e(x) = �(x)��e, �w1e(x) = �(x)��e

(42)

�(�,�, �) ≡(� + �1(�)�v − �2�
)
� +

E0A

L
�T����

+

(
E0A

2L
+ �

2
(�)

ΔEA

2L

)
�T���� − � = �

(43)

�(�,�, �) ≡(� + �1(�)�v − �2�
)
� +

E0A

L
�T����

+

(
E0A

2L
+ �

2
(�)

ΔEA

2L

)
�
T
���� − � = �

(44)ei�t = cos �t + i sin �t, e - i�t = cos �t − i sin �t

where

4  Continuation method for nonlinear amplitude 
equations with complex coefficients

The response curve is determined using the continu-
ation method. The continuation method, also termed 
the path following method, is frequently used to solve 
nonlinear equations with parameter, occurring in 
many problems encountered in modern mechanics. 
The static analysis of geometrically or/and physically 
nonlinear structures (see [46, 47]) and the analysis of 
large-amplitude free and steady state vibrations [23, 
48, 49] are some of the examples of such problems. 
A general description of the continuation method can 
be found, for example, in [50]. However, in all of the 
above-mentioned problems, a set of nonlinear alge-
braic equations with real coefficients must be solved. 
The expected solutions are also real vectors.

The continuation method which will be used to 
solve the amplitude Eqs. (42) and (43) must be modi-
fied because they are a set of equations with complex 
coefficients. When the response curve must be deter-
mined, the vectors � , � and the excitation frequency � 
is treated as unknown quantities.

The continuation method is an incremental-iter-
ative one. The response curve is represented by a 
sequence of excitation frequencies and amplitude 
vectors, i.e., �m , �m , �m , m = 1, 2, ... . For any incre-
mental step, the vectors �m , �m and the frequency �m 
of the preceding step is assumed to be known. The 
purpose of an incremental step is to find an increment 
of frequency Δ� and increment of amplitude vectors 
Δ� , Δ� , which can be accumulated to yield

Because the excitation frequency is treated as 
an unknown quantity, the number of the unknowns 
is greater than the number of equations. In order 
to ensure the uniqueness of the solution, some 

(45)w(x, t) = wc(x) cos �t + ws(x) sin �t

(46)wc(x) = w1(x) + w1(x), ws(x) = w1(x) − w1(x)

(47)�m+1 = �m + Δ�, �m+1 = �m + Δ�

(48)�m+1 = �m + Δ�
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additional equations, called the constraint equa-
tion, have been added. However, according to the 
author’s best knowledge, the continuation method 
was not applied previously to a set of nonlinear 
algebraic equations with complex coefficients. 
Owing to this difference in the types of coefficients 
the constraint equation must be defined differently.

The constraint equations in the following form 
are proposed:

which is similar to the one proposed by Crisfield 
in [51], except that here it is adopted for a problem 
with complex vectors. It should be noted that the 
quantity s (the arch length) is a real number because 
the amplitude vectors are complex, conjugate.

The problem at hand is a nonlinear one and can 
be solved only by an iterative way. Let us assume 
that, after the iteration number i , we know an 
approximation of the solution denoted by �(i) , �(i) 
and �(i) . The Newton method is used to determine 
the iterative change of the frequency increment �� 
and the amplitude increments �� and �� . According 
to the Newton method, the above mentioned incre-
ments are governed by the following equations:

where the matrices �qq , �qq , �qq , �qq and vectors �� , 
�� are defined in the Appendix 4.

The vectors of the amplitude changes �� and �� 
can be written as a sum of two components, i.e.:

where ��1 and ��1 represent the influence of residual 
vectors � , � and the second terms (i.e., ��2 , ��2 ) are 
there due to �� . These vectors are obtained by solving 
Eqs. (50) with the appropriate right hand side of Eqs. 
(i.e. −� , −� when ��1 and ��1 are needed or −�� , −�� 
where ��2 , ��2 must be found).

The increment of frequency �� is calculated from 
the constraint Eq.  (49). After substituting the total 
increments of � and � up to the (i + 1)th iteration 
given by

(49)(� − �m)
T (� − �m) = Δ�TΔ� − Δs2 = 0

�qq�� + �qq�� = −� − ����,

(50)�qq�� + �qq�� = −� − ����

(51)�� = ��1 + ��2��, �� = ��1 + ��2��

(52)Δ�(i+1) = Δ�(i) + ��, Δ�
(i+1)

= Δ�
(i)
+ ��

into Eq.  (49), the following quadratic equa-
tion with real coefficients and with respect to �� is 
obtained

where

The solutions to Eq.  (53) will be denoted as ��1 
and ��2 . Typically, they are real positive or nega-
tive numbers although complex numbers are also 
obtained in some cases. If the continuation method is 
applied to solve the nonlinear equation with real coef-
ficients, the increments �� which give a positive angle 
between the previous and the current increments are 
chosen to avoid doubling back on the response curve. 
This condition could be written as Δ�(i)TΔ�(i+1) > 0 
where Δ� is (temporarily) the increment of ampli-
tudes in the above-mentioned case. This condition 
cannot be directly adopted in the continuation method 
for the nonlinear equations with complex coefficients. 
The concept of angles in complex vector spaces pre-
sented in [52] is utilized instead. In this paper, the 
cosine of the angle �c between two complex vectors � 
and � is defined as

In the context of the problem at hand, the above-
mentioned angle between two successive increments 
of amplitudes is

It should be noted that cos�c is generally a com-
plex number but the denominator in Eq. (54) is a real 
number.

At the end, the following criteria of choosing the 
right increment of frequency �� are proposed:

However, some other cases must also be dis-
cussed. If, for both increments of � , inequality (57) 

(53)��2a + ��b + c = 0

(54)

a = ��T2 ��2, b = (Δ�T + ��T1 )��2 + ��T2 (Δ� + ��1),
c = (Δ�T + ��T1 )(Δ� + ��1) − Δs2

(55)cos�c =
�
T
�

√
�
T
�

�
�
T
�

(56)cos�c =
Δ�

(i)T
Δ�(i+1)√

Δ�
(i)T

Δ�(i)
√

Δ�
(i+1)T

Δ�(i+1)

(57)Re(Δ�
(i)T

Δ�(i+1)) > 0
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is fulfilled, the right increment of �� is the one 
which is close to ��lin = −c∕b . Moreover, if both 
increments, i.e., ��1 and ��2 give negative values of 
Re(Δ�

(i)T
Δ�(i+1)) , then the current incremental step 

is restarted with the increment of the arch length Δs 
reduced to one half. The same procedure is followed 
in the case of complex solutions of Eq. (52). To pre-
vent the number of iterations being too large, the 
maximum number of iterations is set. If the number 
of iterations exceeds the set maximum value, the 
incremental step is restarted according to the same 
procedure as before.

A new approximation of the solution to the ampli-
tude equations is given by:

The iterations are repeated until the inequalities

are satisfied, where �1 , �2 and �3 denote the assumed 
accuracy of calculations.

At the end of the description of the continuation 
method, some remarks on the arch length increment 
and on how to start calculations are needed. A good 
initial approximation of the solution is needed at the 
beginning of each incremental step because the New-
ton method is only locally convergent. Normally, it 
is achieved when the solution obtained for a previ-
ous incremental step is chosen as the initial approxi-
mation of the solution in the current increment. But 
where a whole procedure is started, the initial approx-
imation of the solution can be chosen as a solution to 
the corresponding linear problem calculated for the 
excitation frequency which is far from the resonance 
region.

The values of the arch length increment Δs could 
be a fraction of 

√
�
T
� , where � denotes now the 

above-mentioned linear solution to the amplitude 
equations. A second possibility is to perform one or 
a few increments with the help of the Newton method 
and assuming that Δs =

√

Δ�TΔ� where Δ� is the 

(58)
�(i+1) = �(i) + ��1 + ��2��, �

(i+1)
= �

(i)
+ ��1 + ��2��

(59)�(i+1) = �(i) + ��

(60)
|��| ≤ �1

||Δ�(i+1)||, ‖‖‖��
T
��

‖‖‖ ≤ �2
‖‖‖Δ�

(i+1)T
Δ�(i+1)

‖‖‖

(61)
‖‖‖�

(i+1)T�(i+1)
‖‖‖ ≤ �3

‖‖‖‖�
T
�
‖‖‖‖

increment of amplitudes calculated for two successive 
values of excitation frequency. It is common practice 
to change Δs during the incremental process. After 
Crisfield [52], it is proposed to change Δs according 
to the following formula:

where Δsp and Ip are the arc-length and the iteration 
number in the previous incremental step, respectively, 
and Id is the desired number of iterations. In order to 
achieve enough points for good representation of the 
response curve, Δs is reduced (usually to one half) 
when the total increment of frequency Δ� or the norm 
of total increments of amplitudes (i.e. 

√
Δ�

T
Δ� ) are 

greater than the assumed values.

5  Stability of steady state solution

The stability of the steady state solution is verified by 
the averaging method. The approach presented here is 
very similar to the one published in [30] but now the 
complex exponential functions are used to describe 
the steady state solution. The starting point of deriva-
tion is the equation of motion (4). Moreover, the small 
parameter 0 < 𝜂 ≤ 1 is artificially introduced, i.e., 
the term �N(t)w,xx(x, t) is written in Eq.  (4) instead 
of N(t)w,xx(x, t) . The steady state solution is assumed 
in the form of relationships (9)–(13) but w1(x, t) and 
w1(x, t) are now slowly-varying functions of time. This 
means, the displacements and velocity functions are 
assumed in the following form:

Equation (64) is true if

The accelerations of displacements are

Using relationships (63), (64) and (65), the equation 
of motion (4) could be transformed into the following 
form

(62)Δs = Δsp

√
Id∕Ip

(63)w(x, t) = w1(x, t)T1(t) + w1(x, t)T1(t)

(64)ẇ(x, t) = i𝜆w1(x, t)T1(t) − i𝜆w1(x, t)T1(t)

(65)ẇ1(x, t)T1(t) + ẇ1(x, t)T1(t) = 0

(66)
ẅ(x, t) = i𝜆ẇ1(x, t)T1(t) − i𝜆ẇ1(x, t)T1(t) − 𝜆2w(x, t)
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where

Equations (65) and (67) are now a set of first-order 
differential equations with respect to w1(x, t) and 
w1(x, t) and the solution to these equations is:

According to the averaging method and taking 
into account the assumption concerning w1(x, t) and 
w1(x, t) , the average functions w̃1(x, t) and w̃1(x, t) 
could be used in the time range (t, t + T) instead of 
w1(x, t) and w1(x, t) . Moreover, it is possible to prove 
that ẇ1(x, t) = ̇̃w1(x, t) and ẇ1(x, t) =

̇̃
w1(x, t) . The 

average equations are:

It must be underlined that the R(x, t) function 
depends on w̃1(x, t) and w̃1(x, t) but, according to the 
average procedure, w̃1(x, t) and w̃1(x, t) are consid-
ered as being independent of time in the integration 
period. After substituting Eqs. (3), (9), (12), (13) and 
(68) into (70) and performing the necessary integra-
tion, the following equations are obtained:

All the quantities with the wave which appear 
in Eqs. (71) above must be understood as aver-
age, slowly varying functions of time. Relationships 
between the averaged amplitudes of moments and 
normal forces and the averaged amplitudes of dis-
placements are in the form of relationships (19)–(23). 

(67)i𝜆mẇ1(x, t)T1(t) − i𝜆mẇ1(x, t)T1(t) = R(x, t)

(68)
R(x, t) = �2mw(x, t) +M,xx(x, t) + �N(t)w,xx(x, t) + p(x, t)

(69)
2i𝜆mẇ1(x, t) = −R(x, t)T1(t), 2i𝜆mẇ1(x, t) = R(x, t)T1(t)

2i𝜆m ̇̃w1(x, t) = −
1

T

t+T

∫
t

R(x, t)T1(t)dt,

(70)2i𝜆m
̇̃
w1(x, t) =

1

T

t+T

∫
t

R(x, t)T1(t)dt

− 2i�m ̇̃w1(x, t) = �2mw̃1(x) + M̃1,xx(x)

+ �N0w̃1(x) + �N1w̃1(x) + p1(x),

(71)
2i�m ̇̃w1(x, t) = �2mw̃1(x) + M̃1,xx(x)

+ �N1w̃1(x) + �N0w̃1(x) + p1(x)

Moreover, the averaged quantities are introduced in 
the place of their corresponding quantities without 
the wave.

When the steady state solution is considered, then 
̇̃w1(x, t) = 0 and ̇̃

w1(x, t) = 0 and Eqs. (71) has (for 
� = 1 ) a form identical with the amplitude Eq.  (15). 
Only the averaged quantities instead of non-averaged 
ones appear in Eqs. (71). It could be proved that, for 
� = 1 , the discrete form of Eqs. (71) is identical with 
the matrix amplitude Eqs. (42) and (43). As in the 
previous relationships, the averaged quantities must 
be introduced in the place of the non-averaged ones. 
Now, it is possible to rewrite Eqs. (71) (for � = 1 ) in 
the following matrix form:

In order to examine the stability of the steady state 
solution (9) the in-time behaviour of a small perturba-
tion of averaged amplitudes Δ�̃ and Δ�̃� will be ana-
lysed. As shown above, the unperturbed solution ful-
fils Eqs. (72) while the perturbed solution denoted as

Fulfils a similar set of Eqs. (74)

Now, Eqs. (72) is subtracted from Eqs. (74). More-
over, the nonlinear terms are expanded with respect to 
Δ�̃ and Δ�̃� into the Taylor series and only two terms 
of these series are retained. Finally, the following set 
of differential equations with respect to Δ�̃ and Δ�̃� is 
obtained:

(72)

−2i𝜆𝐌 ̇̃𝐪(𝐭) = (𝐊 + �̄�1(𝜆)𝐊v
− 𝜆2𝐌)�̃� +

E0A

L

�̃�T𝐁̃̄𝐪𝐁𝐪

+

(
E0A

2L
+ �̄�

2
(𝜆)

ΔEA

2L

)
�̃�T𝐁�̃�𝐁̃̄𝐪 − 𝐏,

2i𝜆𝐌 ̇̄̃𝐪(𝐭) = (𝐊 + 𝜃1(𝜆)𝐊v
− 𝜆2𝐌) ̃̄𝐪 +

E0A

L

�̃�T𝐁̃̄𝐪𝐁̃̄𝐪

+

(
E0A

2L
+ 𝜃

2
(𝜆)

ΔEA

2L

)
̃̄𝐪
T

𝐁̃̄𝐪𝐁�̃� − �̄�

(73)�̃�p = �̃� + Δ�̃�, �̃�p = �̃� + Δ�̃�

(74)

−2i𝜆𝐌 ̇̃𝐪
p
(𝐭) = (𝐊 + �̄�1(𝜆)𝐊v

− 𝜆2𝐌)�̃�
p
+

E0A

L

�̃�T
p
𝐁̃̄𝐪

p
𝐁𝐪

p

+

(
E0A

2L
+ �̄�

2
(𝜆)

ΔEA

2L

)
�̃�T
p
𝐁�̃�

p
𝐁̃̄𝐪

p
− 𝐏,

2i𝜆𝐌 ̇̄̃𝐪
p
(𝐭) = (𝐊 + 𝜃1(𝜆)𝐊v

− 𝜆2𝐌) ̃̄𝐪
p
+

E0A

L

�̃�T
p
𝐁̃̄𝐪

p
𝐁̃̄𝐪

p

+

(
E0A

2L
+ 𝜃

2
(𝜆)

ΔEA

2L

)
̃̄𝐪
T

p
𝐁̃̄𝐪

p
𝐁�̃�

p
− �̄�.
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where �qq , �qq , �qq and �qq are the previously 
derived blocks of tangent matrices. These matrices 
depend on the amplitudes �̃ and �̃� of the currently 
examined steady state solution.

The solution of Eqs. (75) are

which, after substituting into Eqs. (75), leads to the 
following linear eigenvalue problem:

In Eq. (77), � is the eigenvalue and 
[
�T ,�

T
]T

 is the 
eigenvector.

It should be noted that a non-typical eigenvalue 
problem is obtained as the result. In contrast to an ordi-
nary case, the first matrix in Eq. (77) is the matrix with 
complex coefficients while the second matrix is sym-
metric but with elements which are imaginary num-
bers. The above-mentioned eigenvalue problem needs 
a deeper analysis some time in the future but is out of 
scope here. However, some general remarks can be 
formulated:

 (i) If the real part of all eigenvalues � are negative, 
then the examined steady state solution is sta-
ble;

 (ii) If at least one real part of the above-mentioned 
eigenvalues is positive, the steady state solution 
is unstable;

 (iii) At the limit between the stable and unstable 
solutions, the real part of at least one eigen-
value must be zero or both the real and the 
imaginary parts of eigenvalue are zero, i.e., 
� = 0.

In the latter case, the discussed limit is reached when

−2i𝜆𝐌Δ ̇̃𝐪(t) = 𝐑qqΔ�̃�(t) + 𝐑qqΔ�̃�(t),

(75)2i𝜆𝐌Δ
̇̃
𝐪(t) = 𝐑qqΔ�̃�(t) + 𝐑qqΔ�̃�(t)

(76)Δ�̃�(t) = e𝜇t𝐱, Δ�̃�(t) = e𝜇t𝐱

(77)

([
�qq �qq

�qq �qq

]
+ 2i��

[
� �

� −�

]{
�

�

})
= �

(78)det

[
�qq �qq

�qq �qq

]
= 0

The condition (78) is fulfilled when the limit or 
returning point on the response curve is reached.

6  Discussion of results of exemplary calculation

The one-span VE beam subjected to the harmonically 
varying force acting in the middle of the beam’s length 
is analysed. The beam is of the length L = 4.0 m and 
has the cross-section dimensions b = h = 0.4 m . 
The VE beam’s material is described with the help 
of the fractional Zener model of which the param-
eters (taken from [30, 53]) are: E0 = 7.0 MPa , 
E∞ = 10.0 MPa , � = 20.0 ms and � = 0.8 . The 
beam’s mass per unit length is m = 160.0 kg/m . The 
amplitudes of excitation forces, described using the 
relation (3), are: pc(x) = P�(x − L∕2) = 4000.0 N and 
ps(x) = 0.0 , where �(x − L∕2) is the Dirac delta func-
tion. The beam’s ends are horizontally immovable.

First of all, convergence of the results for an 
increasing number of finite elements is verified. The 
response curves of a beam with fixed–fixed ends are 
shown in Fig. 1. The response in the vicinity of the 
first resonance region is presented. A variation of 
the amplitude of transverse displacement in the mid-
dle of the beam is shown. The response curve for 2 
elements is represented by the solid line, for 4 ele-
ments—by the solid line with small rhombuses, for 6 
elements—by the solid line with small circles, and for 
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Fig. 1  Comparison of the response curves of fixed–fixed beam 
for various numbers of finite elements: 2 elements—the solid 
line; 4 elements—the solid line with rhombuses; 6 elements—
the solid line with circles; 8 elements—the solid line with 
crosses
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8 elements—by the solid line with small crosses. The 
maximal amplitudes of vibration are large i.e., greater 
than the height of the beam and the influence of geo-
metric nonlinearity is significant. Convergence is very 
fast because the differences between the results for 
four, six and eight finite elements are almost imper-
ceptible. Similar results are obtained for the simply 
supported-simply supported beam and for the simply 
supported-fixed beam. Division of beams into 8 finite 
elements is chosen as sufficient in further analysis.

Changes, depending on the excitation frequency, of 
the real and the imaginary parts of the displacement 

amplitude are shown in Fig. 2. It should be noted that 
these parts look like coefficients multiplied by cosine 
and sine terms in a traditional form of the steady state 
solution.

The influence of boundary conditions on the 
response curve in the first resonance region is illus-
trated in Fig.  3. It is easy to note that the influence 
of boundary conditions is significant; the largest non-
linearity effect is observed in the case of the simply 
supported beam while the smallest effect is seen for 
the fixed–fixed beam. These results are comparable 
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Fig. 2  The real part of the solution (the solid line with circles) 
and the imaginary part of the solution versus excitation fre-
quency
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Fig. 3  Illustration of the influence of boundary condition on 
the response curves. The simply supported beam—the solid 
line; the simply supported-fixed beam—the solid line with 
crosses; the fixed–fixed beam—the solid line with circles
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Fig. 4  Comparison of the response curves of the elastic, 
undamped beam (the solid line) and VE beam (the solid line 
with crosses)
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Fig. 5  Comparison of the response curves of simply sup-
ported-fixed VE beams for different values of parameter � ; 
� = 1—the solid line, � = 0.8—the solid line with circles, and 
for � = 0.6—the dashed line
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to the ones obtained for elastic beams with viscous 
damping.

In Fig.  4, the response curve for the simply sup-
ported elastic undamped beam (of which the elas-
tic modulus is E0 = 7.0 MPa ) is compared with the 
response curve for the VE beam. As expected, the 
response curve for the VE beam is almost perfectly 
limited by the response curve for the elastic beam. 
This limitation is not perfect because, in the fractional 
Zener model, the elastic properties of the material are 
present in the first term on the right side of Eqs. (5) 
and (6) but also in the second one. However, the influ-
ence of the second term is omitted from calculations 
for the response curve for the elastic beam.

Next, the response curves of a one-span sim-
ply supported-fixed beam are compared for various 
values of the fractional parameters � . In Fig.  5, the 
plots of the response curves are presented for the 
fractional parameters � = 1 (the solid line), � = 0.8 
(the solid line with circles) and for � = 0.6 (the 
dashed line). Especially in the resonant range of the 
response curves, one can observe a significant influ-
ence of fractional damping on the progress of these 
curves. For � = 1 , the maximum amplitudes of reso-
nant vibration are much smaller than the maximum 
amplitudes of vibrations obtained when the order of 
the fractional derivative is � = 0.6 . This indicates 
that reduction of the fractional parameters strongly 
increases resonant amplitudes. The effect is expected 
because, for a decreasing � , the beam’s material has 

lower damping properties. Differences in the progress 
of the response curves in the non-resonant range can 
also be observed although the deviations are not sig-
nificant. The results presented in Fig.  5 are qualita-
tively consistent with the ones presented in [30] for 
the fixed–fixed beam.

The influence of relaxation time � on the response 
curve for the simply supported beam is shown 
in Fig.  6. Three different values of the relaxa-
tion time are chosen, i.e. � = 0.02 ms (the solid 
line); � = 0.01 ms—the solid line with circles and 
� = 0.001 ms—the dashed line. The maximal ampli-
tude in the resonance region grows significantly for 
decreasing relaxation times.

The last parametric analysis shows the influence 
of the E∞∕E0 ratio on the maximal amplitudes of 
vibration in the vicinity of the first resonance region 
of the simply supported-fixed beam. The results of 
calculation are shown in Fig. 7, where the resonance 
curves of the simply supported-fixed beam are pre-
sented. The amplitude in that figure is the amplitude 
in the middle of the beam and the resonance curves 
are in the vicinity of the first resonance region. Four 
response curves are presented, i.e., the curve for 
E∞∕E0 = 1.43 shown as the solid line; the curve for 
E∞∕E0 = 2.0 shown as the solid line with circles; 
the curve for E∞∕E0 = 3.0 shown as the solid line 
with crosses, and the curve for E∞∕E0 = 4.0 shown 
as the dashed line. This ratio has a huge influence on 
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Fig. 6  Comparison of response curves for the simply sup-
ported-fixed beam and for different values of relaxation time � ; 
� = 0.02 ms—the solid line, � = 0.01 ms—the solid line with 
circles; � = 0.001 ms—the dashed line
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Fig. 7  Influence of the E∞∕E0 ratio on the amplitude of 
vibration in the middle of the simply supported-fixed beam. 
E∞∕E0 = 1.43—the solid line; E∞∕E0 = 2.0—the solid 
line with circles; E∞∕E0 = 3.0—the solid line with crosses; 
E∞∕E0 = 4.0—the dashed line
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the response. For the smallest E∞∕E0 ratio, the beam 
behaves as a strongly nonlinear system, whereas for 
the largest E∞∕E0 ratio, the beam can be treated as a 
nearly linear one. In the considered range of values 
of the E∞∕E0 ratio, the maximal resonance amplitude 
is a monotonically decreasing function of the E∞∕E0 
ratio.

7  Concluding remarks

An exponential version of HBM, in which the steady 
state solution of the equation of motion is written 
using the complex exponential functions, is presented. 
The detailed derivation of the amplitude equations is 
described. The procedure for derivation of amplitude 
equations is much simpler than that of the ordinary ver-
sion of HBM. Now, in contrast to the ordinary HBM, 
the amplitude equations are the nonlinear algebraic 
equations with complex coefficients. Such amplitude 
equations are treated as a set of equations with excita-
tion frequency as the main parameter. For a first time, a 
new version of the continuation method (known also as 
the path-following method) is proposed for determining 
the response curves. Moreover, the proposed method 
is, for a first time, used for the analysis of systems for 
which the equation of motion contains fractional deriv-
atives. The steady state, nonlinear vibration of beams 
is considered as an example of geometrically nonlinear 
systems. The von Karman theory is used to describe 
the behaviour of beams which are made of a viscoelas-
tic material. The so-called fractional Zener model with 
the Riemann–Liouville derivatives is used to describe 
the mechanical properties of the material. To overcome 
the problems with the physical law involved, including 
the fractional derivatives of internal forces and gener-
alized strain, the approach with time averaging car-
ried out prior to the HBM and the space integration 
was proposed. The stability of the steady state solution 
obtained with the help of exponential functions is also 
presented. In the course of analysis of numerical results 
for several simple examples of vibrating beams, some 
conclusions were drawn. They are related to the level of 
nonlinearity observed in the response curves taking into 
account different values of the beam’s parameters, such 
as the impact of boundary conditions, order of the frac-
tional derivative, relaxation time, and ratio of material 
modulus. We believe that there are no apparent difficul-
ties in the possible future application of the presented 

approach to the analysis of the steady-state vibrations 
of other systems, including laminated beams, plates or 
shells with viscoelastic layers.
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Appendix 1

The most important relations for beam considered in 
this paper are:

ux(x, z, t) is the displacement at an arbitrary point of 
the cross-section of a beam, u(x, t) , w(x, t) are axial 
and transverse displacements of the neutral axis, 
�(x, t) is the angle between the normal to the cross-
sectional plane before deformation and the normal 
after deformation, t is time and (⋅),x = d(⋅)∕dx.

The geometric relations are:

where �x(x, z, t) denotes the strains at an arbitrary 
point of a cross-section, �(x, t) is the strain of the neu-
tral beam axis, �(x, t) is the beam’s curvature.

The equilibrium conditions for the beam loaded by 
the transverse excitation load p(x, t) are:

(79)ux(x, z, t) = u(x, t) − z�(x, t), �(x, t) = w,x(x, t)

(80)
�x(x, z, t) = �(x, t) − z�(x, t), �(x, t) = −w,xx (x, t)

(81)�(x, t) = u,x (x, t) +
1

2
w,2

x
(x, t)

http://creativecommons.org/licenses/by/4.0/
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where N(x, t) , T(x, t) and M(x, t) denotes normal force, 
shear force and bending moment, respectively. More-
over, (∙),x(x, t) ≡ �(∙)∕�x and (∙̇) ≡ 𝜕(∙)∕𝜕t . From 
Eq. (82), it follows that the axial force depends only 
on time, i.e., N(x, t) = N(t) . Moreover, it also follows 
(see [25]) that the axial strain is also the function of 
time only and the following relation holds true:

Appendix 2

The definition of functions �1(i��) , �1(−i��) , �2
(i��) , 

�2(−i��) are

Appendix 3

Using the well-known finite element procedure, it is 
possible to rewrite the integral appearing in Eq. (33) 
in the following matrix form:

(82)N,x(x, t) = 0

(83)mẅ(x, t) = T,x(x, t) + p(x, t)

(84)T(x, t) = M,x(x, t) + N(x, t)w,x(x, t)

(85)�(x, t) ≡ �(t) =
1

2L

L

�
0

w,2
x
(x, t)dx

(86)

�1(i��) =
(i��)�

1 + (i��)�
= (��)�

C + (��)� + iS

1 + 2C(��)� + (��)2�

(87)

�1(−i��) =
(−i��)�

1 + (−i��)�
= (−��)�

C + iS + (−��)2�

1 + 2C(−��)� + (−��)2�

(88)

�
2
(i��) =

(2i��)�

1 + (2i��)�
= (2��)�

C + (2��)� + iS

1 + 2C(2��)� + (2��)2�

(89)

�
2
(−i��) =

(−2i��)�

1 + (−2i��)�

= (−2��)�
C + iS + (−2��)2�

1 + 2C(−2��)� + (−2��)2�

and the discrete form of relation (38) is

The global � matrix is built of the elemental �e 
matrix defined as

where le is the length of the finite element.
It is easy to find the discrete form of the remaining 

parts of the virtual work Eq. (30), which are:

The global � and � matrices are well-known lin-
ear stiffness and mass matrices, respectively, and are 
defined as follows at the finite elemental level:

(90)

L∫
0

w2
1,x
dx = �T��,

L∫
0

w
2

1,x
dx = �

T
��,

L∫
0

w,xw,xdx = �T��

(91)

L∫
0

w1,x�w1,xdx = ��T��,
L∫
0

�w1,xw1,xdx = ��
T
��

(92)

L∫
0

w1,x�w1,xdx = ��T��,
L∫
0

w1,x�w1,xdx = ��
T
��

(93)

1

T

T

∫
0

L

∫
0

��(t)N(t) dxdt =

(
E0A

2L
+ �

2
(�)

ΔEA

2L

)
��

T
���

T
��

+

(
E0A

2L
+ �

2
(�)

ΔEA

2L

)
��T���

T
��

+
E0A

L
(��

T
�� + ��T��)�T��

(94)

�e =

le

∫
0

�T
,x
(x)�,x(x)dx =

1

30le

⎡⎢⎢⎢⎣

36 3le −36 3le
3le 4l2

e
−3le −l2

e

−36 −3l2
e

36 −3le
3le −l2

e
−3le 4l2

e

⎤⎥⎥⎥⎦

(95)
1
T

T

∫
0

L

∫
0

��(x, t)M(x, t) dxdt = �

�T (� + �1(�)�v)� + ��T (� + �1(�)�v)�

(96)

1

T

T

∫
0

L

∫
0

�w(x, t)b(x, t) dxdt = −�2��
T
�� − �2����

(97)1

T

T

∫
0

L

∫
0

�w(x, t)p(x, t) dxdt = ��
T
� + ��T�
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The global �v matrix is called the VE stiffness 
matrices and is defined (at the elemental level) as:

Moreover, the � and � are complex, conjugate vec-
tors of nodal excitation forces defined as follows at the 
elemental level:

Because the virtual vectors �� and �� can be freely 
chosen from the average virtual work equation, the so-
called amplitude Eqs. (32) and (33) are obtained.

Appendix 4

The matrices �qq , �qq , �qq , �qq and vectors �� , �� are 
defined as follow:

Above block matrices of the tangent matrix are cal-
culated from the recent approximation of the solution, 
i.e., �(i) , �(i) and �(i) . Also the residual vectors � and � 
are calculated using the recent approximation of the 
solution. Moreover,

(98)

�e =
le∫
0

�T
,xx
(x)E0J�,xx(x)dx, �e =

le∫
0

�T (x)m�(x)dx

(99)�ve =

le

∫
0

�T
,xx
(x)ΔEJ�,xx(x)dx

(100)�e =
L∫
0

�T (x)p1(x) dxc, �e =
L∫
0

�T (x)p1(x) dx

(101)

�qq =
��

��
= � + �

1
(�)�v − �2� +

E
0
A

L
(���

T
� + �

T
���)

+

(
E
0
A

L
+

ΔEA

L
�
2
(�)

)
���

T
�

(102)

�qq =
��

��
=

E0A

L
���T� +

(
E0A

2L
+ �2(�)

ΔEA

2L

)
�T���

(103)

�qq =
��

��
=

E0A

L
���

T
� +

(
E0A

2L
+

ΔEA

2L
�2(�)

)
�
T
���

(104)

�qq =
��

��
= � + �

1
(�)�v − �2� +

E
0
A

L

(
���

T
� + �

T
���

)

+

(
E
0
A

L
+

ΔEA

L
�
2
(�)

)
���

T
�

where
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