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Nomenclature 
Problem unknowns  
��  Curvature variation
Γ  Cracked set
�  Hoop strain
v  Tangential displacement
w  Radial displacement
Physical parameters �  Dimensionless spring 

rigidity
�  Dimensionless rigidity
�  Relaxation parameter 

value
�, �  Characteristic numbers of 

the problem
�  Dimensionless fracture 

toughness
�  Slenderness of the ring
A  Area of the ring’s 

cross-section
E  Young’s modulus
G  Fracture toughness
I  Moment of inertia of the 

ring’s cross-section
kv  Tangential rigidity of the 

support
kw  Radial rigidity of the 

support
p  Internal pressure

Abstract The evolution of the cracking pattern of 
an internally pressurized, circular, brittle ring sup-
ported with radial elastic springs is investigated. The 
ill-posed Griffith-type energy functional is regular-
ized via a sequence of boundary value problems 
(BVPs). We show, that internal bending in the frag-
ments plays an essential role in the position of the 
new crack. We also find that the pattern formation 
is driven by a co-dimension one bifurcation, which 
leads to the conclusion that in the beginning of the 
cracking process the new crack emerges in the vicin-
ity of the existing cracks. In the second phase of the 
evolution the cracking process obeys a halving rule. 
The critical value of the fragment-length is derived. 
The results obtained are readily applicable to describe 
the crack evolution of hemispherical domes.
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1 Introduction

Investigating the cracking pattern plays a prominent 
role in different fields of science, think about stress-
inversion methods in structural geology [1], or the 
stimulating history of the cracks of the St. Peter’s 
Basilica in Vatican City [2]. Starting with the semi-
nal paper by Griffith [3], a flourishing literature has 
been devoted to the subject of quantifying and pre-
dicting the fracture process, but none of the methods 
currently available has yet proved to be unanimously 
adopted. At one end of the spectrum, the classical 
continuum mechanics approach relies on the local 
study of the singular stress field around the crack 
extremities. This stress field is studied by various 
regularization tricks allowing to retrieve the singu-
larity at the crack tip as some limit. Refinements of 
the material behavior around the crack tip, taking into 
account some level of plasticity, relaxation or cohe-
sive zones coupled with an ad-hoc yield criterion 
allows to rule out unphysical energy values while 
accounting for the real properties of the material: it 
can be decided if, how and where the crack would 
behave [4, 5]. A limitation in this class of models is 
to handle the initiation of the crack: the a-priori exist-
ence of a singularity is a needed ingredient to tackle 
the problem.

On the other side attempts to provide a unified 
framework of fracture roots into a variational frame-
work [6–9]. The energy of a sample is considered 
as the sum of a bulk energy for the uncracked parts 
and a fracture energy and a functional is minimized 
over both a deformation field on the cracked body 
and a test crack set modifying the geometry of the 
body, whose choice is conditioned by some dissipa-
tion potential. The whole evolution of the cracking is 
then reduced to a sequence of minimization problems 
over some functional space. Properties of the crack 
evolution can be decided depending on the proper-
ties of the functional chosen, and the irreversibility 
of the cracking has to be enforced via additional uni-
lateral constraints on the problem. The unified frame-
work offered provides a single criterion for crack 
study regardless if it is question of tackling initiation, 
growth or pattern of the crack.

Despite the long track record of the study of 
crack formation and fracture mechanics, the con-
nection between the fracture process and the emerg-
ing geometric pattern is still partially unrevealed. 

Most of the relevant literature focuses on the growth 
of a single crack under external loading. The devel-
oped cracking pattern is also widely studied, both 
with the techniques of classical mechanics [5], sta-
tistical physics [10] and pure geometry [11]. The 
classical problem of the unexpected meridional 
cracking of the St. Peter’s Basilica in Rome [2, 12] 
underscores the validity of investigating the equi-
librium and overall mechanical performance of the 
cracked structure without considering the evolution-
ary path that produced the pattern itself. Motivated 
by the distinguished role of hemispherical domes 
made of materials with limited tensile strength 
(i.e., masonry, concrete) in structural mechanics 
[2, 13], this study aims to introduce a simple model 
based on dimension-reduction, that can describe 
the evolution of the emergence of new cracks as 
the external load is increased. In specific, instead 
of a hemispherical dome, a pressurized, brittle ring 
with elastic supports, associated with a horizontal 
section closed to the bottom of the dome, is consid-
ered. The evolution of the pattern, that covers the 
mutual effect of the existing cracks on each other 
and the emerging new crack requires to follow the 
time-development of the system, where cracks pro-
duce sudden jumps in the displacement field. Due 
to the simplified geometry, analytical treatment of 
the problem is possible, as long as the elasticity of 
the support is constant along the perimeter of the 
ring. Although we start with postulating the poten-
tial energy of the system, instead of introducing a 
damage-field to regularize the ill-posed functional, 
the one-dimensional setting enables us to follow a 
sequence of boundary value problems (BVP). Each 
BVP is associated with an unbroken fragment of 
the ring, where, upon fragmentation, the elastic 
energy is relaxed. Furthermore, an energetic con-
dition is used to determine the position of the new 
crack along with the critical load needed for such 
an event.

The paper is organized as follows. The model 
assumptions and the governing equations are intro-
duced in Sect. 2. Assuming constant support rigid-
ity the model is studied analytically in Sect. 3. The 
following Sect. 4 is devoted to numerical results, in 
particular imperfections are introduced via a spa-
tially varied strength of the support. Finally, conclu-
sions are drawn.
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2  Model development

Consider a closed, circular ring with radius R in the 
plane with a polar parametrization with respect to 
the central angle � ∈ [0, 2�] (see Fig.  1, left). The 
curved rod is assumed to be unshearable, hence 
it’s elastic behavior is characterized by the flex-
ural rigidity EI and the extensional rigidity EA, 
where both are assumed to be constant along the 
arc length. Here E stands for the modulus of elastic-
ity, I is the second moment of area and A denotes 
the area of the cross-section. The ring is linked to a 
support exerting a spring-like reactions in both the 
tangential direction �(�) and radial direction �(�) , 
with respective stiffnesses kv and kw . It is loaded by 
a constant inner pressure p directed to the outward 
normal �(�) . Finally we consider that the ring is 
made of a brittle material of fracture toughness G. 
In our model we consider planar deformations (i.e., 
out-of-plane displacements are not allowed) with 
radial component w(�) and tangential component 
v(�) . We assume that any initiated crack rapidly 
extends the entire cross-section of the beam, hence 
we only allow for fully cracked or non-cracked 
cross-sections, and exclude partial cracking. We 
assume sufficient internal damping and the dissi-
pated energy associated with damping is included 
in the fracture energy. This latest assumption allows 
us to follow a quasi-static approach, in which a 
sequence of equilibrium states are studied and con-
tributions from dynamic effects are neglected.

2.1  The energy functional

Let � denote the reference domain associated with 
the problem. Our problem can be formulated in the 
framework of the classical energy-based approach of 
brittle fracture of [3] as the minimization over admis-
sible displacement fields v,  w and cracked sets Γ of 
the following energy functional:

where the first term on the right-hand side accounts 
for the work of the internal pressure and the elastic 
energy of the supporting springs, the second inte-
gral is the bulk energy in the unbroken part of the 
ring and the last term is the fracture energy associ-
ated with the (brittle) cracks. The main hardness here 
stems from the explicit dependence of the functional 
on the cracked set Γ(�) with zero measure. In spe-
cific, let N denote the number of the cracks and �N

i
 

( i = 1,… ,N ) represent the position of the cracks. 
Then Γ(�) ∶= {�N

1
,… �N

N
} . Without loss of gener-

ality �N
1
= 0 is postulated. Note that any unbroken 

fragment can be identified by its starting and ending 
angle, i.e., [�N

i
, �N

i+1
] , where, because of the rotational 

nature of the problem, the convention �N
N+1

= �N
1

 
is adopted, which means, that the last fragment is 
labeled by [�N

N
, �N

1
].

As Γ(�) is a set with measure zero, the minimiza-
tion problem that contains functional (1) is ill-posed. 
On the one hand one can investigate the problem as 
the union of uncracked segments and book keep the 
energy absorbed in the cracking process. Here a series 
of Boundary Value Problems (BVPs) can be associ-
ated with the problem. Classical regularization tech-
niques can resolve the ill-posedness, such techniques 
are called variational brittle fracture in the literature 
[6, 14, 15]. Note that variational brittle fracture is a 
general framework for 2D or 3D manifolds. There the 
damage field used for the regularization is associated 
with the internal stress, while in a 1D setting (i.e., 
a rod theory) it should be associated with the inter-
nal actions on the cross-section of the rod. Although 
there exist rod models along the lines of variational 
brittle fracture [16], in our case it seems more natural 

(1)
E(�, v,w,Γ(�)) = ∫

�

{
1

2
(kvv

2 + kww
2) − pw

}

+ ∫
��Γ(�)

�(.) + ∫Γ(�)

GA,

Fig. 1  The general model of an internally pressurized ring 
constrained to the plane and supported by radial and tangen-
tial springs and displacement components v and w, respectively 
(left). In the simplified model v ≡ 0 , hence only radial move-
ments are allowed (right)
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to keep the energy functional (1) and carry out mini-
mization with respect to the unknown fields and the 
discrete set of the crack positions directly.

In order to complete the model, we need the elastic 
energy density �(.) . A classical, finite strain model 
could be derived along the arc length parametriza-
tion of the shape [17]. As we are interested in brit-
tle fragmentation, a simple, linear model for the elas-
tic behavior of the unbroken segments of the ring is 
adopted. The � normal strain and �� change of cur-
vature comprise the strain variables of the model and 
simple geometric considerations yield

Note that we denote differentiation with respect 
to a variable with a coma-separated subscript. For 
instance the derivative of fa(b, c) w.r.t. b and c reads 
fa,bc = �b�cfa . Now the strain energy density � reads

Here we seek the simplest model to predict the 
cracking patterns of the ring, hence in the follow-
ing kv → ∞ and consequently v ≡ 0 is assumed 
(see Fig. 1, right). On the one hand this assumption 
reduces the unknown displacement fields to one, 
on the other hand it excludes shortening of the ring 
in case of cracking. In other words, the ring cannot 
exhibit relaxation upon cracking. To mimic relaxa-
tion, we assume that the elastic energy of any unbro-
ken part [�N

i
, �N

i+1
] also depends on the number of the 

cracking events, needed to form the fragment in ques-
tion. If a new crack forms in a fragment associated 
with 1 ≤ i∗ ≤ N , at �N

i
≤ �∗ ≤ �N

i+1
 , then

(2)� =
w + v,�

R
,

(3)�� =
w + w,��

R2
.

(4)

�(�,��) =
1

2
EA�2 +

1

2
EI��2

= �(v,w,w,��)

=
1

2
EA

(
w + v,�

R

)2

+
1

2
EI

(
w + w,��

R2

)2

.

(5)𝜃N+1
i

=

⎧⎪⎨⎪⎩

𝜃N
i

if i ≤ i∗,

𝜃∗ if i = i∗ + 1,

𝜃N
i−1

if i > i∗ + 1.

Let kN
i

 be an integer that counts the cracking events 
needed to produce the fragment [�N

i
, �N

i+1
] . The fol-

lowing iterative process starts with a ring contain-
ing a single crack at k1

1
= 1 . If a new crack forms in a 

fragment associated with 1 ≤ i∗ ≤ N , then

Applying kN
i

 , the elastic energy of the unbroken frag-
ment reads

where 0 < 𝜒(kN
i
) ≤ 1 is some relaxation function and 

due to our assumptions � becomes dependent on w 
and kN

i
 . In our setup we will assume that the relaxa-

tion takes place only in the fragment undergoing 
cracking, and that the relaxation is linear in the num-
ber of cracking events that were necessary to create 
the fragment. In specific, we define �(kN

i
) via

with 𝛿𝜒 > 0 being a small, fixed relaxation param-
eter. That is the relaxation function decreases slightly 
on the two fragments that are formed in the cracking 
event.

The internal normal force FN
i

 , bending moment 
MN

i
 and shear force VN

i
 in the unbroken fragment are 

directly obtained:

Note that a rigorous derivation of FN
i

 [18] results in 
a slightly different expression, however, we do not 
use FN

i
 in the following derivation, hence keep the 

approximation above.

(6)kN+1
i

=

⎧
⎪⎨⎪⎩

kN
i

if i < i∗,

kN
i
+ 1 if i = i∗,

kN
i
+ 1 if i = i∗ + 1,

kN
i−1

if i > i∗ + 1.

(7)

�N
i
(w,w,�� , k

N
i
)

= �(kN
i
)

(
1

2
EA

(
w

R

)2

+
1

2
EI

(
w + w,��

R2

)2
)
,

(8)�(k) = max(1 − k�� , 0).

(9)FN
i
= �(kN

i
)EA� =

EA

R
w,

(10)MN
i
= �(kN

i
)EI�� =

EI

R2
(w + w��),

(11)Vn
i
= MN

i,s
= −MN

i,�

d�

ds
= −�(kN

i
)
EI

R3
(w + w,��),� .
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2.2  Non-dimensional formulation

In order to simplify the following formulas, we 
introduce non-dimensional parameters. We assume 
a square cross-section for the ring with identical 
height and width denoted to h. Let the � slender-
ness of the ring be defined as � ∶= Rh−1 . Similarly, 
let � ∶= kwE

−1 and � ∶= p(Eh)−1 and � ∶= G(hE)−1 . 
With this in hand we observe that

Scaling w and � with R and using the fact, that the 
ds infinitesimal arch length in polar coordinates reads 
ds = Rd� , we obtain the non-dimensional form of the 
energy functional:

Considering a ring made of a concrete-like mate-
rial and a diameter around 40m, the relevant range 
of the non-dimensional parameters are found to be 
10−9 ≤ � ≤ 10−7 , 10−7 ≤ � ≤ 10−5 , 10−9 ≤ � ≤ 10−7 
and 5 ≤ � ≤ 50.

In the following, the energy associated with the 
elastic components of the system (bulk energy) is 
denoted to �  . It reads

(12)
EAR2

EI
=

Eh2R2

Eh4∕12
= 12�2,

(13)
kwR

4

EI
=

kw

E

R4

h4∕12
= 12��4,

(14)
pR4

EI
=

p

Eh

R4

h3∕12
= 12��3R,

(15)
GAR4

EI
=

G

Eh

h2R4

h3∕12
= 12��R3.

(16)

E(w,Γ(�)) = ∫
2�

0

{
6��4w2 − 12��3w

}
d�

+ �(kN
1
)∫

�2

�1=0

{
6�2w2 +

1

2
(w + w,��)

2

}
d�

+⋯ + �(kN
N
)∫

2�

�
N

{
6�2w2 +

1

2
(w + w,��)

2

}
d�

+

N∑
i=1

12��.

(17)� (w,Γ(�)) ∶= E(w,Γ(�)) −

N∑
i=1

12��.

In the next section we investigate the perfect problem 
with kw , hence � assumed to be constant along the 
perimeter of the ring.

3  Cracking pattern formation

3.1  An existence result

Here we justify the existence of minimizers of the 
functional in (1). This kind of problem roots in image 
segmentation [19, 20] and has been labeled as a free 
discontinuity problem in the literature. In our setup the 
functional is second order, which differs slightly from 
the one considered in Francfort and Marigo’s book [6]. 
Nonetheless, the existence of a minimizer can be rigor-
ously proved by using a �-convergence approximation 
argument, and the adapted function space called the 
Generalized Special Functions of Bounded Variations, 
GSBV in short. A first version of the result was proved 
by Belletini [21] and generalized further by Ambrosio 
[22].

To place ourselves in the latter setup, we consider 
the minimization problem (1) after leaving out the tan-
gential displacement field v. We follow the steps given 
by Ambrosio [22] to show �-convergence. We consider 
the minimization of the following energy functional:

The integrand of the first term defines an elliptic 
parabo- loid so up to a simple coordinate change the 
problem is the minimization of some Blake-Zisser-
man functional. To get rid of the dependence on the 
set Γ , we will consider functional spaces allowing dis-
continuities in the functions. We denote by Ln([0, 2�]) 
the set of functions whose n-th power is integrable 
over [0, 2�] , and by Wk,p([0, 2�]) the Sobolev space 
of Lp functions with generalized derivatives till order 
k in Lp . Finally let w̃ ∈ GSBV([0, 2𝜋]) ∩ L

2 , let S(w̃) 
denote the set of discontinuities of w̃ and H0 the 
Hausdorff measure of dimension zero. We look at 
the minimization of the equivalent functional, after 
changing the coordinates:

(18)

E(w,Γ) = ∫
2�

0

(
6�2�w2 − 12��3w +

�

2
(w + w,��)

2

+6��2w2
)
d� + ∫Γ

GA.
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where C1 and C2 are constants that can be computed 
from the material parameters and the value of the 
relaxation � . To regularize this functional we need to 
introduce some kind of approximation of the discon-
tinuities. Using Ambrosio’s notation, we define for 
s ∈ W1,2([0, 2�];[0, 1]) and 𝜀 > 0

Here s can be understood as some kind of dam-
age field, whose value as the approximation takes 
place will be 1 at the cracking points and 0 eve-
rywhere else. We are now ready to introduce the 
approximating functional. For w̃ ∈ W2,2([0, 2𝜋]) and 
s ∈ W1,2([0, 2�]) we let

Let X([0, 2�]) = L
2([0, 2�]) × L

∞([0, 2�], [0, 1]) . 
We extend the functionals over this wider space. We 
define F ∶ X([0, 2�]) → [0,+∞] as:

and F� ∶ X([0, 2�]) → [0,+∞] as:

Furthermore, we need to specify some additional 
properties for the infinitesimals in the approximation. 
We require 𝜅𝜀 > 0 and �� = o(�4) as � → 0 . We for-
mulate the � -convergence result similarly to Ambro-
sio [22] although the problem is in the scope of [21].

Lemma 1 With the previous assumptions, (F�) Γ
-converges to F  in the [L1([0, 2�])]2 topology as � → 0

. Further, any limit point is of the form (w̃, 0) with w̃ a 
minimizer of E.

Proof The approximation we constructed follows 
all the steps of Ambrosio [22, Section 3]. Moreover 

(19)

F(w̃) = ∫
2𝜋

0

(
w̃2

,𝜃𝜃
+ C1w̃

2
)
d𝜃 + C2H

0(Sw̃ ∪ Sw̃,𝜃
),

(20)G�(s) = ∫
2�

0

(
�s2

,�
+

1

4�
s2
)
d�.

(21)
F𝜀(w̃, s) = ∫

2𝜋

0

((1 − s)2 + 𝜅𝜀)w
2

,𝜃𝜃
+ C1w̃

2d𝜃

+ C2G𝜀(s).

(22)F(w̃, s) =

{
F(w̃) if w̃ ∈ GSBV([0, 2𝜋]), s ≡ 0,

+∞ otherwise,

(23)

F𝜀(w̃, s) =

{
F𝜀(w̃, s) if w̃ ∈ GSBV([0, 2𝜋]), s ≡ 0,

+∞ otherwise.

our domain � = [0, 2�] is star-shaped. We get the full 
Γ-convergence result from Ambrosio’s Theorems 3.2 
and 3.4. The fact that the limit point is a minimizer of 
F follows from the properties of the Γ-convergence  
 ◻

3.2  Properties of the unbroken solutions

In this subsection we look at the equilibrium equa-
tions obtained from minimizing the functional with 
a given number of cracks N. We show that the prob-
lem of finding sequentially the position of new cracks 
reduces to a sequence of segmentation problems 
that can be solved explicitly. We also show that the 
sequence of problems defines a cracking criterion 
allowing to predict at which pressure threshold a new 
crack will occur.

We start with fixing the cracked domain Γ(�) in the 
functional  (16) and consider N cracks. Due to the 
rotational symmetry, the number of the fragments is 
also N. Investigating test displacement fields of the 
shape �(�N

i
,�N

i+1
)w with �N

i
, �N

i+1
∈ Γ , by using the classi-

cal tools of calculus of variations, we obtain that on 
each unbroken interval [�N

i
, �N

i+1
] minimizing dis-

placement fields satisfy the following ODE

irrespective of the position of the ends of the unbro-
ken section. Further we require the solution to satisfy 
the following boundary conditions at the ends of the 
domain

expressing respectively that the internal moment MN
i

 
(see (10)) and shear force VN

i
 (see (11)) vanish at the 

broken ends of the fragment. Beyond being physi-
cal, these expressions produce uncoupled BVP-s, 
i.e., each segment can be solved in its own, as the 
boundary conditions are not effected by the neighbor-
ing fragments. Finally, we notice that the linear BVP 
given in (24), (25) and (26) is translation invariant 
as long as � is constant: solutions on identical length 
intervals are identical up to a translation.

(24)
�(kN

i
)
(
w,���� + 2w,�� + (1 + 12�2)w

)

+ 12��4w − 12��3 = 0,

(25)(w + w,��)(�
N
i
) = (w + w,��)(�

N
i+1

) = 0,

(26)(w + w,��),�(�
N
i
) = (w + w,��),�(�

N
i+1

) = 0,
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From the translation invariance, we consider the 
BVP given above as follows. We denote the central 
angle of an unbroken piece by T, and consider that 
the unbroken piece is [−T∕2, T∕2] . Of course the 
boundary conditions (25), (26) are adapted and are 
taken at � = ±T∕2 . It is easy to see that the BVP 
is well-posed hence defines a unique displacement 
field for almost all lengths T. From the system to 
solve, we also see that the solutions depends contin-
uously on the parameter T, except maybe at points 
where it is not defined.

Solving the characteristic polynomial of  (24) 
yields four complex roots. By the symmetry of the 
problem and basic algebraic manipulations it is 
clear that the solution can be written as the sum of 
a particular solution W0 and a linear combination of 
the functions W1 and W2:

where �N
i
, �N

i
 are obtained from the material constants 

and satisfy the characteristic equations, namely

Thus we denote the solution on [−T∕2, T∕2] as wT , 
where the dependence in T is contained in the coef-
ficients A1,A2 as follows. Let

A computed example of the solution is plotted in 
Fig. 2. Nonetheless, the constants A1,A2 are obtained 
from the boundary conditions:

(27)W0(�) =
12��3

(1 + 12�2)�(kN
i
) + 12��4

,

(28)W1(�) = cosh(�N
i
�) cos(�N

i
�),

(29)W2(�) = sinh(�N
i
�) sin(�N

i
�),

(30)
�N
i
=

����
�

1 + 12�2 +
12��4

�(kN
i
)
− 1

√
2

,

(31)
�N
i
=

����
�

1 + 12�2 +
12��4

�(kN
i
)
+ 1

√
2

.

(32)wT (�) = W0 + A1(T)W1(�) + A2(T)W2(�).

and we easily see that A1,A2 are proportional to W0 
hence �.

Recall now the expression of the bulk energy � in 
(17). At the stage with N cracks, let �N,Ti

i
 denote the 

bulk energy associated with the fragment with central 
angle Ti staring at �N

i
:

And for N = 0 , � 0,2�

0
 is given by taking T = � and 

substituting the particular (constant) solution (27), i.e. 
wT = W0 into (35).

Now substitute (32) and the values of the constants 
A1 and A2 into (35) to obtain

(33)
W0 + A1(W1(T∕2) +W1,��(T∕2))

+ A2(W2(T∕2) +W2,��(T∕2)) = 0,

(34)
A1(W1,�(T∕2) +W1,���(T∕2)) + A2(W2,�(T∕2)

+W2,���(T∕2)) = 0,

(35)

�
N,Ti
i

= ∫
Ti∕2

−Ti∕2

{
6��4w2

T
− 12��3wT

+ �(kN
i
)
(
6�2w2

T
+

1

2
(wT + wT ,��)

2

)}
d�.

(36)�
N,Ti
i

= a(Ti, k
N
i
)�2,

Fig. 2  The displacement fields on a ring with cracks at 
0,�∕2, 1.08� computed according to  (24), (25) and (26). The 
center angles for each piece are displayed in the legend. Param-
eters � = 1e−8 , � = 10 , �(i,N) = 1 , � = 1e−6 . At cracks the 
displacement field is discontinuous, hence the regularity of w 
is not C0



1646 Meccanica (2022) 57:1639–1656

1 3
Vol:. (1234567890)

where the function a(., kN
i
) depends (in background) 

exclusively on the length of the unbroken piece and 
the evolution that produced the given piece, at fixed 
material parameters. In this way the bulk energy of 
the ring with N segments, denoted to �N , reads

Note that the bulk energy is quadratic in � and 
a(Ti, k

N
i
) is constant between cracking events for all 

segments. Let TN ∶= {�N
i+1

− �N
i
} with �N

i
∈ ΓN and 

�N
i+1

∈ ΓN ∪ {2�} . Our findings so far are summarized 
in the following lemma:

Lemma 2 At a given number of cracks N and pres-
sure � , the value of the energy functional depends on 
the position of the cracks (or lengths of the unbro-
ken pieces) and the evolution that produced the given 
arrangement in the following fashion:

Here aN can be computed recursively.

Notice that (38) gives a geometric interpretation 
to the problem. The energy landscape consists of 
parabolas whose shape is controlled by the param-
eter aN depending exclusively on the geometry and 
the preceding evolution. The cracking pressures, at 
which a cracking event occurs, are the intersection 
points of these parabolas.

Lemma 3 (Possibility of a new crack) If we have fol-
lowed a quasi-static evolution till the point when there 
are N cracks, and � is such that

(37)�N =

N∑
i=1

�
N,Ti
i

= �2
N∑
i=1

a(Ti, k
N
i
).

(38)

E
N = �2

N∑
i=1

a(Ti, k
N
i
) + 12N�� = �2aN + 12N��.

(39)

a
0 =

𝛹
0,2𝜋

0

𝛽2
,

a
1 =

𝛹
1,2𝜋

1

𝛽2
,

a
N+1 − a

N = min
T∈TN ,0<x<1

a(Tx, kN+1
i

)

+ a(T(1 − x), kN+1
i

) − a(T , kN
i
).

(40)aN − aN+1 =
12��

�2
,

then a new crack appears.

Proof Let us now consider a cracked set of N cracks 
�N . We look for a new crack position x satisfying (39). 
Due to the quasi-static setting, at the cracking value � 
at which the N + 1-th crack instantaneously opens, we 
have EN = E

N+1 . Using expression  (39) for the coef-
ficients aN , aN+1 defining the energy and the fact that 
only the last crack position differs due to the irrevers-
ibility, plus recalling the translation-invariance gets 
us to the desired result.   ◻

Equation  (40) lies at the very heart of the crack-
ing process: there cannot be an additional crack as 
long as the change in the bulk energy associated with 
every test-crack position is not at least the cracking 
energy. On the other hand as soon as this condition is 
satisfied, a new crack opens and we switch from the 
parabola equation EN to the parabola EN+1 . Note that 
the left-hand side contains on its own all the influence 
of the geometry and on the p on the possibility to 
open a new crack, whereas the right-hand side should 
be understood as some kind of bound that becomes 
easier to overcome as the pressure � increases.

Note that Eq. (40) might have no solutions if (aN) 
is a nondecreasing sequence. We pursue these consid-
erations further in Sect. 3.4.

3.3  Cracking on a single fragment

In this subsection we look into the properties of one 
unbroken fragment. In particular, we show how to 
choose the new crack position according to an energy 
minimality criterion. We show that there exist a criti-
cal length above which two possible cracking points 
coexist, and they merge into one as the length of the 
unbroken piece shrinks to zero.

Take a cracked set ΓN = {�N
i
}N
i=1

 . The problem to 
solve to find a new cracking position is given by (39), 
and we see that this comes to comparing the results 
of N instances of the same minimization problem. 
Namely we investigate the minimization of the fol-
lowing add-crack energy function:

where x ∈]0, 1[ represents the relative position on the 
fragment of length T at which we expect a new crack 

(41)f N
i
(T , x) = a(T(1 − x), kN+1

i+1
) + a(Tx, kN+1

i+1
),
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to occur. The solution of the minimization for the 
whole ring  (39) will then follow easily by compar-
ing the minimizing values on the set of N unbroken 
fragments.

Lemma 4 (Critical points of the add-crack energy 
function) Possible cracking positions for the unbroken 
piece [−T∕2, T∕2] with relaxation function value �(kN

i
) 

are to look for among those x such that either

or

Proof Let us search for critical points. In a first step 
we find an expression for the derivative of a(T , kN

i
 

with respect to T. Recall the expression of a(T , kN
i
) 

given in Eqs. (35) and (36). An affine variable change 
allows to write a(T , kN

i
) as an integral expression of 

the following form:

We can differentiate this expression with respect to T 
and rearrange to obtain the following:

(42)wT(1−x)

(
T(1 − x)

2

)
− wTx

(
Tx

2

)
= 0,

(43)
wT(1−x)

(
T(1 − x)

2

)
+ wTx

(
Tx

2

)

−
2��

��2 + �(kN
i
)
= 0.

(44)

a(T , kN
i
) = T ∫

1∕2

−1∕2

6��4wT (�T)
2 − 12��3wT (�T)

+�N
i
(w,w,��)(T ,�T)d�.

(45)

�a(T , kN
i
)

�T
=

a(T , kN
i
)

T

+ ∫
1∕2

−1∕2

w
T ,T (�T)

(
��N

i

�w
(w

T
,w

T ,��))(�T)

+ 12��4w
T
(�T) − 12��3

)

+ w
T ,��T (�T)

��N

i

�w��

(w
T
,w

T ,��)(�T)d�+

(46)
1

T ∫
1∕2

−1∕2

�
d

d�

(
6��4w2

T
(�T) − 12��3wT (�T)

+�N
i
(wT ,wT ,��)(�T)

)
d�.

After two integrations by part the first integral  (45) 
is just the integral of  (24) and some terms that van-
ish from the boundary conditions (25), (26). Another 
integration by part in  (46) and using the boundary 
conditions again considerably simplifies the result 
namely

The second step is to differentiate f N
i

 . Recalling its 
expression  (41), differentiating with respect to x, 
substituting  (47), taking into account the boundary 
condition (25) and factorizing yields the claim of the 
lemma.   ◻

Now that we have a characterization of the criti-
cal points, let us look at what happens in practice 
when the unbroken segment of angular length T is to 
undergo fracture. We start by looking at the possible 
cracking points by investigating the criticality condi-
tions. We first show a useful property of the solution 
that makes Lemma 4 more exploitable.

Lemma 5 (Solution values at endpoints) The solu-
tion of the problem (24) on [−T∕2, T∕2] with bound-
ary conditions (25), (26) and relaxation function value 
�(kN

i
) has the following value at ±T∕2:

where

Proof Recall equations  (33), (34). Solving for 
A1 and A2 is straightforward. Plugging the result 
into (32), substituting (27), (28) and (29) and making 
good use of circular and hyperbolic trigonometry for-
mulas yields the result.

  ◻

With the previous lemma in hand we can get a 
great deal of information about the behavior of the 

(47)

�a(T , kN
i
)

�T
= 6��4wT

(
T

2

)2

− 12��3wT

(
T

2

)
+ 12��4wT

(
T

2

)
.

(48)wT (T∕2) = KN
i

�N
i
sin(�N

i
T) + �N

i
sinh(�N

i
T)

�N
i
sin(�N

i
T) + �N

i
sinh(�N

i
T)

,

(49)

KN
i

=

√
12�2�4

(�(kN
i
) + ��2)(12��4 + (1 + 12�2)�(kN

i
))
.
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system. In particular, we see that the second critical-
ity condition (43) is never fulfilled: (42) gives all the 
critical points. The condition (42) is easily seen to be 
equivalent to finding the roots of the following criti-
cality function

It is sufficient to investigate x ∈]0, 1[ . We consider T 
as a parameter for the time being.

Theorem  1 (Small fragments: the halving rule) 
There exists an angle value Tc such that, if every con-
secutive crack positions �N

i
, �N

i+1
 in the cracked set ΓN 

satisfy �N
i+1

− �N
i
≤ Tc , then cracking occurs at the mid-

dle of one of the current unbroken pieces.

Proof We are looking at solutions x of  (42). We 
study rather the roots of the criticality function (50). 
That is we look for solutions x of:

where we see T as a parameter. Consider now small 
lengths T. The left hand side can be expanded at 4th 
order in T to obtain

And this expression cannot be zero except for 
x = 1∕2 , as the values x = 0 or x = 1 are prohibited.  
 ◻

This means that as soon as the ring is composed 
of uniformly small fragments, every further crack will 
appear at the middle of one of the existing fragments. 
From that point we know exactly how the cracking 
pattern will evolve: every piece will follow a halving 
rule. We complete it with the behavior of the system 
when there exist longer fragments.

Theorem  2 (Pattern bifurcation) Consider the 
problem of finding the new cracking position for an 

(50)
cN
i
(T , x) = sin(�N

i
Tx) sinh(�N

i
T(1 − x))

− sin(�N
i
T(1 − x)) sinh(�N

i
Tx).

(51)
sin(�N

i
Tx) sinh(�N

i
T(1 − x))

− sin(�N
i
T(1 − x)) sinh(�N

i
Tx) = 0,

(52)

sin(�N
i
Tx) sinh(�N

i
T(1 − x))

− sin(�N
i
T(1 − x)) sinh(�N

i
Tx)

=
(�N

i
)4 − (�N

i
)4

3!
T4�N

i
�N
i
x(1 − x)

(
(1 − x)2 − x2

)

+ o(T4).

unbroken piece [0, L]. The add-crack energy function 
minimum undergoes a supercritical pitchfork bifurca-
tion at T∗.

1. If T < T∗ , the midpoint of the unbroken piece is 
the only global minimum.

2. If T > T∗ , there are two global minima, their 
position is symmetrical w.r.t the midpoint of the 
fragment.

Proof Recall that for a given piece defined by an 
angle T, the midpoint x = 1∕2 is a critical point of the 
add-crack energy function. Searching for more possi-
ble critical points, we look at the behavior of cN

i
 in 

the vicinity of the midpoint, so we let x = 1∕2 ± �x 
in  (42) and expand at third order in �x around T/2. 
After using the criticality of x = 1∕2 for cN

i
 we have 

two equations.

From the symmetry of the system these two should 
be equal so their difference is zero. After ruling out 
�x = 0 we ask if there are solutions to the following:

The possibility for nontrivial solutions is given by the 
sign of the ratio cN

i,x
(T , 1∕2)∕cN

i,xxx
(T , 1∕2) : two addi-

tional solutions if it is positive and none if it is nega-
tive. A plot here way more insightful than a long cal-
culation. According to Figs. 3 and 4, we get that there 
is a sign change at some critical angle T∗ . So there 
is more than one candidates for cracking positions as 
long as the unbroken piece is long enough.

Looking at the minimality, we realize that for 
small unbroken fragments T < T∗ , only the midpoint 
is a global minimizing position. On the other hand for 
long fragments, there are two global minima, sym-
metrical with respect to the midpoint.   ◻

(53)

cN
i
(T ,

1

2
+ �x) = �x cN

i,x
(T , 1∕2) +

�x2

2
cN
i,xx

(T , 1∕2)

+
�x3

3!
cN
i,xxx

(T , 1∕2) + o(�x3),

(54)

cN
i
(T ,

1

2
− �x) = −�x cN

i,x
(T , 1∕2) +

�x2

2
cN
i,xx

(T , 1∕2)

−
�x3

3!
cN
i,xxx

(T , 1∕2) + o(�x3).

(55)�x2

3!
cN
i,xxx

(T , 1∕2) = cN
i,x
(T , 1∕2).
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Finally we give some bounds on the length 
of the fragment T∗ where the system undergoes 
bifurcation.

Theorem 3 (Bifurcation position) We have the fol-
lowing bounds for T∗:

With �N
i
, �N

i
 given (31), (30) and depending on the slen-

derness � , the spring rigidity � and the value of the 
relaxation �(kN

i
).

Proof Recall the definition of the criticality func-
tion cN

i
 from (50).

From the symmetry we can restrict ourselves to 
x ∈]0, 1∕2[.

The upper bound is proved by setting 
T = 5�∕(2�N

i
) and showing that there exist roots of cN

i
 

in ]0, 1/2[. We may equivalently factor an hyperbolic 
sine out and show that there exist roots of

It is straightforward that

Differentiating c̃N
i

 yields:

Let us examine the limits of the derivatives on the 
boundaries of the interval. We have easily the sign 
around zero:

(56)
5𝜋

2𝜁N
i

< T∗ <
5𝜋

2𝜂N
i

.

c
N

i
(T , x) = sin(�N

i
Tx) sinh(�N

i
T(1 − x))

− sin(�N
i
T(1 − x)) sinh(�N

i
Tx).

(57)

c̃N
i
= sin(𝜁N

i
Tx) − sin(𝜁N

i
T(1 − x))

sinh(𝜂N
i
Tx)

sinh(𝜂N
i
T(1 − x))

.

(58)lim
x→0

c̃N
i
(T , x) = lim

x→1∕2
c̃N
i
(T , x) = 0.

(59)

c̃N
i,x
(T , x) = 𝜁N

i
T cos(𝜁N

i
Tx)𝜁N

i
T

+ cos(𝜁N
i
T(1 − x))

sinh(𝜂N
i
Nx)

sinh(𝜂N
i
T(1 − x))

− 𝜂N
i
T sin(𝜁N

i
T(1 − x))

sinh(𝜂N
i
T)

sinh(𝜂N
i
T(1 − x))2

.

Fig. 3  Value of the critical condition  (42) against rela-
tive position on the unbroken piece for the set of parameters 
� = 10, � = 1e−8,�(i,N) = 0.992 and different lengths. Note 
the bifurcation between T = 1.5 and T = 2 : as L increases the 
number of roots increases from 1 to 3. The second order mini-
mality condition can be seen from the sign of the derivative at 
the roots. As the bifurcation occurs, the slope at the position 
x = 1∕2 switches from negative for lengths T ≤ 1.88 to posi-
tive for lengths T ≥ 1.88 , making the middle point from a min-
imum a maximum

Fig. 4  The value of the ratio of the first to third deriva-
tives of c1 for 1.5 ≤ T ≤ 2 for the set of parameters 
� = 10, � = 1e−8,�(i,N) = 0.992 . Observe the expected 
change of sign in the first to third derivative ratio as given 
in (55) and seen in Fig. 3. We get a value for the bifurcation at 
T
∗ ≈ 1.87
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After taking a series expansion and factorizing 
around x = 1∕2 we find

which is easily verified to be an alternating series, 
hence positive like its first term. Now we see that c̃N

i,x
 

is positive close to x = 0 and x = 1∕2 . This means c̃N
i

 
is positive next to x = 0 and negative next to x = 1∕2 . 
The intermediate values theorem allows to conclude 
the existence of a root for c̃N

i
 , thus for cN

i
.

For the lower bound, we have to prove that for all 
0 < T <

5𝜋

2𝜁N
i

 , the criticality function has no zero in 
]0, 1/2[.

First we show the bound for 0 < T ≤ 2𝜋

𝜁N
i

 We will 
use the product expansions of sinh and sin

Substituting in (50) and factoring yields the following 
expression for cN

i
:

The first sum is strictly positive from the hypothesis 
on T. Factoring reduces the study of the sign of cN

i
 to 

that of

(60)lim
x→0

c̃N
i,x
(x) = 𝜁N

i
T

(
1 −

𝜂N
i

𝜁N
i

sin(𝜁N
i
T)

sinh(𝜂N
i
T)

)
> 0.

(61)

lim
x→1∕2

c̃N
i,x
(x)

=
∑
k≥0

(−1)k

(2k)!

(
𝜋𝜁N

i

4𝜂N
i

)2k(
2 −

5𝜋

4(2k + 1) sinh(5𝜋∕4)

)
,

(62)sinh(�N
i
Tx) = x

∏
n≥1

(
1 +

(�N
i
Tx)2

�2n2

)
,

(63)sin(�N
i
Tx) = x

∏
n≥1

(
1 −

(�N
i
Tx)2

�2n2

)
.

(64)

c
N

i
(x) =

(
x(1 − x)�N

i
�N
i
T
2
)2

×

(∏
n≥1

(
1 −

(�N
i
Tx)2

(�n)2

)(
1 +

(�N
i
T(1 − x))2

(�n)2

)

−
∏
n≥1

(
1 −

(�N
i
T(1 − x))2

(�n)2

)(
1 +

(�N
i
Tx)2

(�n)2

))
.

It is easy to see that for 0 < T <
2𝜋

𝜁N
i

 , for all 
0 < x < 1∕2 , each term in the product on the right is 
strictly smaller than 1 and positive but two. That is 
however not a problem because these two terms 
belong to the same product, and we conclude that 
cN
i
> 0 on ]0, 1/2[.
Now for 2𝜋

𝜁N
i

< T <
5𝜋

2𝜁N
i

 , the previous method 
applies to 0 < x <

𝜋

𝜁N
i
T
 However, it fails for other x 

because there are two negative terms not in the same 
product. So let 𝜋

𝜁N
i
T
< x <

1

2
 . The fact that there is no 

zero for x on this interval reduces to showing that for 
all x

The derivative on the left hand side is easily seen to 
be − 𝜁N

i
T

sin(𝜁N
i
Tx)

> 0 , whereas that of the right hand side 

is − 𝜂N
i
T

sinh(𝜂N
i
Tx)

< 0 . Further, these two terms both have 
limit 1 when x → 1

2
 . The inequality is true in the 

range considered, and we have the bound announced.  
 ◻

(65)1 −
∏
n≥1

(
1 −

(�N
i
T(1−x))2

(�n)2

)(
1 +

(�N
i
�x)2

(�n)2

)
(
1 −

(�N
i
Tx)2

(�n)2

)(
1 +

(�N
i
�(1−x))2

(�n)2

) .

(66)
sin(𝜁N

i
T(1 − x))

sin(𝜁N
i
Tx)

<
sinh(𝜂N

i
T(1 − x))

sinh(𝜂N
i
Tx)

.

Fig. 5  The plot of a bifurcation diagram with the parameters 
� = 10, � = 1e−8,� = 0.992 . In blue, the crack position mini-
mizing the energy as a function of the length of the piece. 
Observe the bifurcation at T ≈ 1.87 as expected from Fig. 4
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With this in hand we know exactly where a crack 
will open on one fragment. For long fragments, 
cracking occurs next to the edge till the fragment 
reaches the critical length T∗ , after what cracking 
occurs according to the halving rule. The bifurcation 
occurring at T∗ is depicted in Fig. 5. The variation of 
the bifurcation diagram as the relaxation takes place 
is shown on Fig. 6. Examples of the full evolution are 
given in Sect. 4.

3.4  Cracking pressure, homogeneity

In this subsection we examine the problem (38), (39) 
for the cracking of the whole ring. In particular we 
show that cracking occurs always on the longest frag-
ment and derive the expression for �N,N+1 at which the 
N + 1th crack opens. Finally, we discuss the require-
ments aN should satisfy to ensure a ”well-behaved” 
evolution.

Recall Eq. (38) and that aN are defined recur-
sively from the add-crack energy function 
f N
i
(L, x)  (41) and the size of the ring fragments 

TN = {�i+1 − �i, �i, �i+1 ∈ �N ∪ {2�}} . Under the 
form (38), the energy minimization is exactly a seg-
mentation problem, and we refer for instance to [23] 
for an introduction to the subject.

The energy EN against � curves are parabolas 
whose shape is given by the value of the coefficient 
aN , as a byproduct of the minimization of the energy 
w.r.t. the crack positions. As � increases and we fol-
low a quasi-static evolution path, the number of 
cracks gradually increases and the energy minimiza-
tion follows a path given by sections of the parabolas 
E
0
,… , E

N . For a new crack to occur we have to be at 
the intersection point of curves EN and EN+1 , thus the 
pressure at which the (N + 1)th crack occurs satisfies

Equation  (67) defines �N,N+1 uniquely on ℝ+ ∪ ∞ as 
long as there is a solution. For a solution to exist it is 
sufficient to verify that (aN) is a decreasing sequence.

Lemma 6 (Existence of the cracking pressure) 
The sequence (aN) is decreasing. That is to say 
for all N, there is a value �N,N+1 ∈ ℝ

+ such that 
E
N(�N,N+1) = E

N+1(�N,N+1).

Proof Two linear changes of variables � = �∕x , 
� = �∕(1 − x) allow to write the quantity to be mini-
mized (39) as

(67)(aN − aN+1)�2
N,N+1

= 12�� .

Fig. 6  The minimas existence zone for � = 10 , � = 1e−8 . 
As the evolution goes on for the whole ring, relaxation takes 
place over the different fragments and the relative cracking 
position will remain in the green zone for all fragments where 
1e − 6 < 𝜒 < 1 . The influence of the relaxation becomes 
noticeable only when 1 + 12�2 is of the same order of magni-
tude as 12�4∕�

Fig. 7  Plot of the energy trajectories EN (�) , 0 ≤ N ≤ 4 for 
the parameter set � = 10, � = 1e−8, � = 1e−4, �� = 1e−3 on 
the range � ∈ [0, 1e−3] . Notice the evolution according to 
Lemma  6. On the range of � considered here, the uncracked 
solution is the global minimizer. The parabolas intersect at a 
slightly higher pressure, leading to the cracked solutions being 
energetically more favorable, see Fig. 8
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The result follows from �(kN
i
) decreasing with N.  

 ◻

An example can be seen in Figs.  7 and 8. Now 
we show that up to a correct choice of the relaxation 
parameter, it is always the longest piece that cracks. 
This has a very simple meaning. If cracking dissi-
pate most of the strain energy in one piece, then this 
piece will no longer be a good candidate for cracking, 
hence favoring less relaxed fragments. The relaxation 
has to be chosen with care.

Lemma 7 Provided �� is small enough, cracking 
always occur on the longest piece, at least till rank N0.

Proof Lets us consider two angles T1 > T2 defining 
two ring fragments with respective relaxation values 
�(kN

i
),�(kN

j
) . A linear change of variables allows to 

bring the integrals defining the coefficients on the 
same interval:

(68)min
0<x<1

a(T , kN+1
i+1

) − a(T , kN
i
).

Now T1 > T2 and the terms on the first four lines are 
negative after minimizing. Pick �� small enough 
according to (69) to set N0 .   ◻

Finally, we ensure that the cracking is progres-
sive. The relaxation induces energy dissipation, and 
we want to avoid the undesirable behavior where 
the relaxation dissipate so much energy that the sys-
tem becomes unstable and cracks forever. We show 
that if the relaxation parameter is small enough, 
then this behavior can be prohibited.

Lemma 8 (Monotonicity of the cracking pressure) If 
�� is small enough, then the sequence (aN − aN+1) is 
decreasing at least till some rank N0 i.e. the sequence 
of the cracking pressures �N,N+1 is increasing till rank 
N0.

Proof Denote by TN , xN the length and relative posi-
tions that define aN − aN+1 as in the proof of 
Lemma  6. From our definition of the cracked set, 
TN+1 < TN , as the cracking reduces the size of the 
longest fragment, and the cracking takes place on this 
longest fragment. Now we use the fact that aN − aN+1 
and aN+1 − aN+2 solve the same variational problem. 
From the definition of the coefficients (39) and an aff-
ine variable change � =

T

TN
� in the definition of the 

coefficients we see

(69)

a(T1x, k
N+1
i+1

) + a(T1(1 − x), kN+1
i+1

) − a(T1, k
N
i
)

=
T1

T2

(
a(T2x, k

N+1
j+1

) + a(T2(1 − x), kN+1
j+1

) − a(T2, k
N
j
)
)

+
(j − i)��T1

T2

(
∫

T2x∕2

−T2x∕2

�N
j−i
(wT2x

,wT2x,��
)d�

+ ∫
T2(1−x)∕2

−T2(1−x)∕2

�N
j−i
(wT2(1−x)

,wT2(1−x),��
)d�

− ∫
T2∕2

−T2∕2

�N
j−i
(wT2

,wT2,��
)d�

)
.

Fig. 8  Plot of the difference of the ener-
gies E

N+1 − E
N , 0 ≤ N ≤ 4 for the parameter set 

� = 10, � = 1e−8, � = 1e−4, �� = 1e−3 on the range 
� ∈ [0, 8e−3] . The cracking pressures can be seen from the 
intersections of the plotted curves with the abscissas (black 
curve). The numerical result in in accordance with Lemma 8: 
the sequence of the cracking pressures increases
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From Lemma 6, (aN) is decreasing so by picking �� 
small enough according to  (70), we can ensure that 
the right hand side is negative.   ◻

Summing up everything about the evolution of 
the system in the � − E space is straightforward 
using lemmas 6, 7, 8.

Theorem 4 (System evolution) Consider the problem 
of cracking of the brittle ring in the quasistatic frame-
work, with energy functional given (16). A (N + 1)th 
crack occurs every time the parameter � reaches the 
value �N,N+1 given (67).

The evolution of the energy on the range 
]�N−1,N , �N,N+1[ is given by following the curve EN.

4  Numerical simulations

We now turn to numerical implementations of the 
model and compute the cracking pattern of the brittle 
ring through the minimization. In order to verify our 
theoretical results, we perform the calculations as fol-
lows. We start with a ring with a single crack at 0 and 
specify the number of cracks we would like to see at 
the end of the calculation. From then on, we compute 
the add-crack energy function given  (41) for each 
piece, compute its minimum for each piece, and open 
the crack according to the global minimization on all 
the fragments. We verify that the cracking occurs on 
the longest piece and undergoes bifurcation.

With our range of parameters 
� ∈ {5, 10, 20}, � = 1e−8, �� = 1e − 3 and the 

(70)

(aN+1 − aN+2) − (aN − aN+1)

= −
��TN+1

TN

(
∫

TNx∕2

−TNx∕2

�N
i
(wTNx

,wTNx,��
)(
TN�

TN+1
)d�

+ ∫
TN (1−x)∕2

−TN (1−x)∕2

�N
i
(wTN (1−x)

,wTN (1−x),��
)(
TN�

TN+1
)d�

− ∫
TN∕2

−TN∕2

�N
i
(wTN

,wTN ,��
)(
TN�

TN+1
)d�

)

−
TN − TN+1

TN
(aN − aN+1).

number of cracks considered N < 10 , we have 
(1 + 12𝜆2) ≫ (12𝜆4∕𝜒) , hence existence zone of the 
minima in green in Fig. 6 is practically reduced to a 
line.

We plot the computed cracking positions on one 
bifurcation diagram to verify that they agree. Finally, 
we plot the cracking pattern as it sequentially appears 
on the ring.

4.1  Some patterns with the relaxed brittle model, 
constant spring rigidity

From all the previous results we can readily compute 
the cracking patterns and verify that they match our 
expectations.

As expected from Theorem  3, the bifurca-
tion point is displaced to the left when � increases. 

Fig. 9  Bifurcation diagram and first 8 cracks appearing on a 
brittle ring with parameter � = 5 , � = 1e−8 , �� = 1e−3 . On the 
crack map, the crack that opens is in red, and its label matches 
that seen on the bifurcation diagram. Notice the bifurcation 
and the beginning of the evolution according to the halving 
rule starting from the 6th crack
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A remarkable feature is that the cracks seem to be 
equally spaced on the ring, as showed in Figs. 9 and 
10. A thorough investigation however shows that the 
cracking positions are not equally spaced, but almost 
equally spaced.A plausible culprit is the relaxation, 
that slightly modifies the position of cracking at every 
step.

4.2  Some patterns with the relaxed brittle model, 
varying spring rigidity

In practice, we expect the strength of the support, 
hence � to vary around the circumference of the 
ring. Such a variation can be used to model various 
supports for the ring. A simple model for a rigidity 

function � can be the sum of a constant and a periodic 
sine wave function:

Our model allows for the computation of the crack-
ing pattern with such an � , but our theoretical results 
only partially preserved. We show that some of the 
pattern properties are shared between the models 
with constant or periodic � . It is however not so easy 
to describe how the cracks will arrange as a pattern, 
as the location of the critical points of � essentially 
influences the emerging pattern. Nonetheless, small 
variation in � keeps the qualitative picture outlined 
above, see Fig. 11. A significant perturbation, on the 
other hand, leads to a more sophisticated evolution 
(see Fig.  12), as at the maxima of � cracks tend to 
appear. This numerical example highlights the need 

(71)�(�) = �0 + �k sin(k�).

Fig. 10  Bifurcation diagram and first 8 cracks appearing on 
a brittle ring with parameter � = 20 , � = 1e−8 , �� = 1e−3 . 
On the crack map, the crack that opens is in red, and its label 
matches that seen on the bifurcation diagram. Notice the bifur-
cation and the beginning of the evolution according to the 
halving rule starting from the 12th crack

Fig. 11  Plot of the crack map obtained with a rigidity function 
�(�) = 1e−8(1 + cos(3�)) and parameters � = 20, �� = 1e−3 . 
Notice that the evolution is similar to that with a constant 
rigidity: cracks appear regularly spaced

Fig. 12  Plot of the crack map obtained with a rigidity function 
�(�) = 1e−4(1 + cos(3�)) and parameters � = 20, �� = 1e−3 . 
Cracks 2 and 3 appear at maxima of the rigidity, then start to 
appear at regular distances
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for extra care, either the crack evolution in an experi-
ment, or an existing monument is analyzed.

5  Conclusion

A simple, quasi-static model to investigate the evo-
lution of the cracking pattern of brittle, pressurized 
rings constrained by radial elastic springs in the plane 
is introduced. The elastic energy of the fragments 
are relaxed upon a cracking event. The minimization 
of the Griffith energy functional associated with the 
problem leads to a simultaneous solution of Bound-
ary Value Problems associated with the minimal 
energy of the unbroken fragments.

The existence of solutions in the framework of Γ
-convergence is proved. The problem is then inves-
tigated with a constant spring rigidity as a sequence 
of minimizations leading to a sequential cracking. 
We find, that the location of the emerging cracks is 
eminently driven by internal bending, whereas the 
load level, at which a cracking event occur is due to 
the dominant tension in the ring. The main finding 
of the paper is the identification of a codimension-
one bifurcation in the location of the cracking posi-
tions. In specific, we show that sufficiently short 
fragments follow a halving rule, whereas for long 
fragments the model predict cracking in the vicinity 
of an existing crack. The sizes at which this bifurca-
tion in the behavior of the system occurs is investi-
gated and bounds on the size of the piece at which 
the bifurcation occurs are given.

Considering an energetic vantage point, the order 
of the cracking sequence is investigated. The crack-
ing pressure allowing to open a new crack is com-
puted and under mild assumptions on the relaxa-
tion parameter, the model is proved to be consistent 
with the natural expectation that cracking events are 
driven by an increase in the internal pressure.

Finally, numerical simulations comfort the find-
ings and reveal that the pattern formation consists 
of two phases, as it is predicted by the bifurcation in 
the behavior of the system. In a first phase, cracks 
develop at a regular (but not equal) distance from 
each other till all the fragments of the ring are uni-
formly small, after what they follow a halving rule. 
Additional simulations with periodic spring rigid-
ity show that the behavior in this more general 
case partially share features of the constant spring 

model, although the cracking pattern inherits some 
properties of the rigidity function.

The presented model can serve as a simple expla-
nation for the crack evolution in vertically loaded, 
symmetric hemispherical domes, a distinguished 
problem of structural mechanics. One might argue 
that, in principle, the dome cracking happens due to 
the tensile hoop stress apparent at the lower regions 
of the dome, which can be modeled with the pres-
surized brittle ring. The predicted crack evolution in 
our model, namely the tendency of cracks appear-
ing close to each other as long as there are a few of 
them, and the tendency to follow the halving rule 
in the presence of more than 5–7 cracks, apart from 
stochastic noise, is in accordance with experimental 
data [24]. There, the crack evolution of hemispheri-
cal specimens is reported. The applicability and the 
limitations of the presented model for the study of 
hemispherical domes hence is a promising topic for 
future research.
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