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1 Introduction

Hydrodynamics involves the solution of a vec-
torial evolution equation, such as the parabolic 
Navier–Stokes equations for Newtonian fluids. Two 
main sources of difficulties are involved with the 
mathematical solution of hydrodynamic models: its 
nonlinear nature, owing to fluid inertia, and its vec-
torial character, as the velocity is a vector field [1]. 
Nonlinearities arise in many scalar transport mod-
els, such as reaction-diffusion equation in a chemi-
cal mixture involving N different chemical species: 
if �(�, t) = (c1(�, t),… , cN(�, t)) is the vector-valued 
function of their (molar) concentrations, the evolu-
tion of this chemical system in a quiescient liquid is 
described by the parabolic model

where D = diag (D1,… ,DN) is the diffusivity ten-
sor admitting diagonal form and constant entries (for 
simplicity of discussion), and �(�) is the contribution 
in the molar balance of the chemical reactions occur-
ring in the mixture. A mathematical analysis of these 
models has been extensively developed, as concerns 
their bifurcational properties, at least in some simple 
but paradigmatic cases [2].

The geometric vectorial nature of the 
Navier–Stokes equations copes with nonlinearities 
adding a further level of complexity to hydrodynamic 
problems. In point of fact, still limiting the analysis 

(1)
��(�, t)

�t
= D∇2�(�, t) + �(�(�, t))
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to flows characterized by small, and even vanishingly 
small Reynolds numbers,—occurring in the major-
ity of microfluidic applications or in the analysis 
of Brownian motion of colloidal particles—so that 
the Navier–Stokes equations can be conveniently 
approximated with reliable accuracy by means of the 
unsteady Stokes model

where � and � are respectively the fluid density and 
viscosity, and �(�, t) , p(�, t) the velocity and pressure 
field, the mere assumption of incompressibility,

changes completely the qualitative properties of the 
parabolic hydrodynamic model (2), determining the 
occurrence of novel (and sometimes unexpected) 
features that find no counterpart in the scalar, albeit 
vector-valued, model Eq. (1).

This is because, the vector Laplacian operator 
entering Eq. (2) does possess geometric properties 
that are absent for the Laplacian operator acting on 
scalar functions as in Eq. (1), which are related to the 
decomposition

 thus resulting in the double and repeated action of 
the curl operator with reversed sign when the incom-
pressibility condition (3) is enforced. The splitting of 
the Laplacian in two operators Eq. (4) is in one-to-
one correspondence with the Helmholtz decomposi-
tion of the space of square summable vector fields in 
ℝ

3 into two orthogonal subspaces possessing respec-
tively vanishing divergence and vanishing curl. This 
issue and its physical implications are addressed 
in paragraph  4.1 in connection with the Helmholtz 
decomposition of vectorial impulsive functions.

This observation can be reformulated as follows: 
the vectorial nature of the Navier–Stokes equations, 
once coupled with the constraint associated with the 
solenoi-dal nature of the velocity field, determines 
long-distance spatial correlations that have no coun-
terpart in any parabolic scalar model such as Eq. (1). 
We refer to Sect.  4 for a thorough analysis of this 
issue.

Two milestones have marked the birth of the 
hydrodynamic theory of low Reynolds number flows: 

(2)�
��(�, t)

�t
= �∇2�(�, t) − ∇p(�, t)

(3)∇ ⋅ �(�, t) = 0

(4)∇2�(�, t) = −∇ × [∇ × �(�, t)] + ∇[∇ ⋅ �(�, t)]

the introduction and explicit derivation of the hydro-
dynamic Green function for the Stokes flow due to 
Oseen in the three-dimensional free propagation 
(i.e., the derivation of the Oseen tensor) [3], and the 
mathematical formulation of the hydrodynamic the-
ory due to Olga Ladyzhenskaya, which highlighted 
in its seminal contribution to the field [4] the math-
ematical consequences of the vectorial nature of the 
Navier–Stokes equations, the relationship with the 
Helmholtz decomposition of a vector field, and the 
necessity of a pressure gauge in order to properly 
define the spectral properties of the vector Laplacian 
in incompressible flows (i.e., the so called Ladyzhen-
skaya theorems).

The derivation of the Oseen tensor and the sub-
sequent analysis on the singularity representation of 
Stokes flows paved the way towards a robust theory of 
low-Reynolds number hydrodynamics, leading natu-
rally to the formulation of efficient boundary element 
methods for the numerical solution of low-Reynolds 
number problems [5–7].

The aim of the present article is to provide a sim-
ple method for deriving the hydrodynamic Green 
function for unsteady incompressible Stokes flows—
which of course can be applied under steady Stokes 
conditions—and derive its physical consequences. 
The method is essentially based on the resolution of 
two scalar problems, although one of which involves 
vector-valued functions. The leading idea is very sim-
ple as it involves the free propagation of the velocity 
field without any vectorial condition, as Eq. (2), on 
its solenoidal nature, restoring this property upon a 
gradient gauge. This way of approaching the hydro-
dynamic problem permits to highlight the nonlocal-
ity of the incompressibility constraint (3) in unsteady 
Stokes regime, deriving from the solution of a Pois-
son equation in which time enters solely as a param-
eter. The application of this method to the unsteady 
Stokes equation is particularly interesting, not only 
because it provides a simple and closed-form expres-
sion for the Green function, which has been already 
studied in several articles [6, 8–10], but mainly 
because the application of the gradient gauge, char-
acterizing this formulation, permits to understand 
the physical paradox associated with the large-scale 
power-law scaling of the Green function with the dis-
tance from the point source at any time t > 0 , and to 
relate it to the infinite velocity of propagation char-
acterizing any incompressible hydrodynamic models.
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The article is organized as follows. Section 2 intro-
duces the method using the derivation of the Oseen 
tensor as a test case. The same approach is applied to 
the unsteady Stokes equation in Sect.  3, and a sim-
ple closed-form expression for the Green function 
obtained. Section 4 develops the qualitative analysis of 
the functional form of the hydrodynamic Green func-
tion in unsteady Stokes conditions, its regularity struc-
ture at infinity and the role of incompressibility on the 
unbounded propagation velocity of stresses (Stokesian 
propagation paradox). The propagation paradox asso-
ciated with incompressibility is also explained directly 
from the nature of the forcing term defining the hydro-
dynamic Green functions, by considering the Helm-
holtz decomposition of an impulsive vector-valued 
Dirac’s delta function. Section 5 develops the boundary 
integral formulation deriving from the gradient gauge 
approach for hydrodynamic problems in the presence of 
solid boundaries.

2  Explanation of the method: calculation 
of the Oseen tensor

Although it is possible to derive the Oseen tensor for 
Stokes flows in several different ways [6, 7, 12, 13], at 
least four as observed by Lisicki [14], we use this proto-
typical problem to set up a simple and general approach 
for deriving hydrodynamic Green functions which can 
be easily extended to more complex and interesting 
problems.

Consider the Green function for the Stokes problem 
in an incompressible flow

� ∈ ℝ
3 , where �0 is a vector-valued constant. This 

set of equations is equipped with the regularity con-
dition at infinity, � → 0 for |�| → ∞ , and with some 
regularity constraints in ℝ3 . From summability condi-
tions, we have to enforce that �(�) should diverge in 
the neighbourhood of any point �� ∈ ℝ

3 slower than 
1∕|� − ��|� with 𝛼 < 2 [15].

The main idea is to decompose the velocity �(�) into 
two contributions

(5)�∇2�(�) − ∇p(�) + �0 �(� − �0) = 0

(6)∇ ⋅ �(�) = 0

(7)�(�) = ��(�) + ∇�(�)

The vector ��(�) accounts for the viscous dynamics, 
i.e., it is the solution of the equation

without imposing any further condition on its diver-
gence. From what discussed in the Introduction, Eq. 
(8) corresponds to a scalar Poisson equation applied 
to the vector-valued quantity ��(�) . The velocity field 
��(�, t) in itself does not have a direct hydrodynamic 
meaning.

Conversely, the gradient gauge ∇�(�) takes care 
of Eq. (6), implying, from Eq. (7), that

The hydrodynamic problem is completely solved by 
determining ��(�) and ∇�(�) from Eqs. (8–9), and the 
value of the pressure p(�) follows from Eqs. (5) and 
(7) as

where p0 is any constant value.
Consider Eq. (8). This is a Poisson equation in 

the free space ℝ3 , thus admitting E(�) = −1∕4�|�| 
as its fundamental solution, ∇2E(�) = �(�) , (Green 
function). Consequently, the solution of Eq. (8) 
takes the form

where ��
hom

(�) is any solution of the Laplace equation 
in the free space. These homogeneous solutions of the 
Laplace equation can be written as the combination 
of the elementary solutions ��

hom
(�) = A∇(|� − ��|−1) 

for generic �′ , where A is an arbitrary constant. Spe-
cifically, for �� = �0 , this homogeneous solution pro-
vides the velocity source singularity ∇(|� − �0|−1) . 
However, these contributions do not possess the 
required regularity properties near �′ (as the velocity 
diverges as |� − ��|−2) , and consequently they should 
be discarded, i.e., the multiplicative constant A should 
be vanishing.

The calculation of the divergence of ��(�) 
provides

(8)�∇2��(�) + �0 �(� − �0) = 0

(9)∇2�(�) = −∇ ⋅ ��(�)

(10)p(�) = p0 + �∇2�(�)

(11)
��(�) =

�0

4� � ∫
ℝ3

�(� − �0)

|� − �|
d� + ��

hom
(�)

=
1

4� �

�0

|� − �0|
+ ��

hom
(�)
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Equation (9) is again a free-space Poisson equation, 
the solution of which, making use of Eq. (12) reads

Equations (11) and (13) formally solve the mathemat-
ical problem of estimating the Stokes Green function. 
Nevertheless, it is convenient to explicit further the 
formal solution for �(�) . Set � = � − �0 . The scalar 
gauge �(�) can be written as

where u(�) is the solution of the Poisson equation

where r = |�| , that can be sought in the form

with constants b and � to be determined. Substituting 
the functional form (16) into Eq. (15) and develop-
ing elementary operations, one gets � = 1 , b = −1∕2 . 
These calculations involve essentially the properties: 
∇r = �∕r , ∇ ⋅ � = 3 , ∇

(
� ⋅ �0

)
= �0 . Therefore, the 

scalar gauge �(�) takes the simple form

Considering that

the velocity field �(�) is given by

Equation (19) permits to defines the entries Gi,j(�) of 
the tensorial Green function (the Oseen tensor), as

(12)∇ ⋅ ��(�) =
1

4� �
∇x

(
1

|� − �0|

)
⋅ �0

(13)

�(�) = −
1

16�2 � ∫
ℝ3

1

|� − �|
∇�

(
1

|� − �0|

)
⋅ �0 d�

(14)�(�) =
1

4� �
u(�)

(15)∇2u(�) =
� ⋅ �0

r3

(16)u(�) = b
� ⋅ �0

r�

(17)�(�) = −
1

8� �

(
� ⋅ �0

)

r

(18)∇

(
(� ⋅ �0)

r

)
=

�0

r
−

�
(
� ⋅ �0

)

r3

(19)
�(�) =

1

4� �

�0

r
−

1

8� �
∇

(
(� ⋅ �0)

r

)

=
1

8� �

(
�0

r
+

� (� ⋅ �0)

r3

)

with

where � =
∑

i xi�i , {�i}
3
i=1

 is an orthonormal Carte-
sian base, r = |�| , and �i,j are the Kronecker symbols. 
From Eqs. (10) and (12) the pressure is given by

where p0 is any constant.
The above analysis is independent of the coordi-

nate system chosen to represent the spatial variable � . 
Nevertheless, Eqs. (5), (8), as well as all the equations 
of hydrodynamic Green function theory (see e.g. the 
monographs [5–7]) are not written in a fully consist-
ent covariant way, and this may generate confusion 
whenever a reference system different from a Carte-
sian one is chosen to represent componentwise the 
velocity field � . A fully covariant generalization of 
hydrodynamic Green function theory can be achieved 
by applying to it the methods of bitensor analysis 
originally developed by Synge [16] introducing the 
concept of world-function in general relativity [17]. 
This extension will be addressed in a future work.

3  Green function for the unsteady Stokes problem

The approach outlined in the previous section can be 
applied on equal footing to determine analytically, 
and in a very simple way, the Green function for the 
unsteady Stokes problem in the free space. In this 
case, instead of Eq. (5) one has

while incompressibility condition Eq. (6) still holds 
for the unsteady velocity field �(�, t) . The initial con-
dition is �(�, 0) = 0 . Enforcing the decomposition (7), 
where in the present case all the field �(�, t) , ��(�, t) , 
�(�, t) depends explicitly on time t, the viscous com-
ponent ��(�, t) is the solution of equation

(20)�(�) = �(� − �0) ⋅ �0 =

3∑

j=1

Gi,j(� − �0) f0,j,

(21)Gi,j(�) =
1

8� �

(
�i,j

r
+

xi xj

r3

)

(22)p(�) − p0 = �(� − �0) ⋅ �0;withgi(�) =
xi

4� r3

(23)

�
��(�, t)

�t
= �∇2�(�, t) − ∇p(�, t) + �0 �(� − �0) �(t)
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with ��(�, 0) = 0 , while �(�, t) solves the Poisson 
problem (9) by accounting the explicit dependence on 
time t of ��(�, t) . In this elliptic problem time t plays 
the role of a parameter.

As regards the boundary conditions, regularity at 
infinity implies that �(�, t) should decay to zero for 
|�| → ∞ . A further discussion on the regularity condi-
tion at infinity is addressed in the next section.

The solution of Eq. (24) involves the classical scalar 
Gaussian heat kernel,

where � = � − �0 , r = |�| and � = �∕�

where �̃0 = �0∕� . Conversely, �(�, t) is the solution of 
the equation,

Consider a function f (y) = erf (y)∕y , of the radius 
y = |�| , erf (y) = 2√

�
∫ y

0
e−�

2

d� being the error func-
tion, where � is a normalized position vector to be 
specified below. It satisfies the property

where the Laplacian ∇2
y
 refers to the �-coordi-

nates. Applying this last equality to Eq. (27), with 
� = �∕

√
4�t , we find:

Therefore, we may conclude that the velocity field 
reads:

(24)�
���(�, t)

�t
= �∇2��(�, t) + �0 �(� − �0) �(t)

(25)GD(r, t) =
e−r

2∕4 � t

(4� � t)3∕2

(26)��(�, t) = GD(r, t) �̃0 =
1

(4� � t)3∕2
e−r

2∕4 � t �̃0

(27)
∇2�(�, t) = − ∇ ⋅ ��(�, t)

= − ∇

[
1

(4� � t)3∕2
e−r

2∕4 � t

]
⋅ �̃0

(28)∇2
y

�
1

y
erf (y)

�
= −

4
√
�
e−y

2

(29)�(�, t) =
1

16��t
∇y

�
1

y
erf (y)

�
⋅ �̃0

������=(�−�0)∕
√
4�t

which coincides with Ladyzhenskaya’s solution [4], 
as it has been expressed in Mauri and Rubinstein [9] 
(see also [10], and the solutions in [8] and [11]).

This expression for the velocity field can be 
written in an alternative form applying the identity

to f (y) = erf (y)∕y - in Eq. (31), � is the identity oper-
ator and �� the dyadic tensor, the entries of which are 
yi yj , often referred as �⊗ � -, obtaining

where the auxiliary scalar functions a(y) and b(y) are 
defined as:

where

Observe from Eqs. (33–34), the short-time and long-
distance scaling a(y) ∼ b(y) ∼ 1∕y3 corresponding to 
the terms involving the error function.

As for the pressure field, referred to a constant 
reference value, as in Eq. (10), from the governing 
equations we obtain:

which generalizes Eq. (10). Considering that from 
Eq. (27), we have:

from Eq. (35) we obtain:

(30)

�(�, t) =��(�, t) + ∇�(�, t) =
1

(4��t)3∕2

�
e−y

2

�

+

√
�

4
∇y∇y

�
1

y
erf (y)

��
⋅ �̃0

�������=(�−�0)∕
√
4�t

(31)∇y∇yf (y) =
1

y

df (y)

dy
� +

1

y

d

dy

(
1

y

df (y)

dy

)
��

(32)

�(�, t) =
1

(4��t)3∕2

�
a(y) � + b(y)

��

y2

�
⋅ �̃0

������=(�−�0)∕
√
4�t

(33)a(y) = e−y
2

− h(y) , b(y) = −e−y
2

+ 3 h(y)

(34)h(y) =

√
� erf (y)

4y3
−

1

2y2
e−y

2

(35)p(�, t) = �∇2�(�, t) − �
��(�, t)

�t

(36)∇2�(�, t) = −∇GD(y, t) ⋅ �̃0
���y=r∕√4�t
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This result can also be obtained directly by tak-
ing the divergence of Eq. (23). Now, consider-
ing that by symmetry the solution must be of the 
form p(�, t) = �(�) ⋅ �̃0�(t) with ∇2�(�) = ∇�(�) , 
and reminding that the Green function of the Pois-
son equation in the free space, ∇2E(�) = �(�) , is 
E(�) = −(4�r)−1 , we find: �(�) = ∇E(�) , that is �(�) 
is a dipole distribution, thus leading to Ladyzhens-
kaya’s solution:

with

3.1  Laplace domain solution

The gradient gauge can be applied on equal footing 
to the solution of the unsteady Stokes problem in the 
Laplace domain. Indicating with s the Laplace variable, 
and with a hat the Laplace transform of the correspond-
ing quantity, Eq. (23) becomes

where a =
√
s∕� , and the functional dependence on 

s as been omitted for notational simplicity. Equation 
(7) transforms into v̂(�) = v̂ �(�) + ∇�̂(�) , where the 
freely evolving term v̂ �(�) is a solution of the Helm-
holtz equation

From the expression of the fundamental solution of 
the Helmholtz problem one obtains

where � = � − �0 . The gradient gauge field �̂(�) is the 
solution of the equation

(37)∇2p = ∇

[
�
�GD

�t
− �∇2GD

]
= ∇�(�)�(t) ⋅ �̃0.

(38)p(�, t) = �(x, t) ⋅ �̃0,

(39)gi(�, t) = −
1

4�

�

�xi

(
1

r

)
�(t) =

xi

4�r3
�(t)

(40)a2�̂(�) = ∇2�̂(�) −
1

�
∇p̂(�) +

�0

�
�(� − �0)

(41)∇2v̂ �(�) − a2 v̂ �(�) = −
�0

�
�(� − �0)

(42)v̂ �(�) =
e−ar

4��r
�0

(43)∇2�̂(�) = −
1

4��r

d

dr

(
e−ar

r

)
(� ⋅ �0)

that can be expressed as

Substituting the latter expression into Eq. (43), after 
simple but tedious calculations, the expression for 
u(r) follows

and the final expression for the Oseen tensor Ĝi,j(�) , 
v̂i(�) =

∑
j Ĝi,j(� − �0) f0,j , is given by

where, in Eq. (46) we have indicated r = |�|.

4  Discussion: infinite‑propagation 
and the paradox of incompressibility

The results obtained in the previous section, coupled 
with the application of the gradient gauge, highlight 
the occurrence of a remarkable paradox in the hydro-
dynamic behavior of incompressible flows, which can 
be clearly appreciated from the regularity conditions 
at infinity satisfied by the solutions of the unsteady 
Stokes equation.

To clarify this issue, consider a scalar problem 
such as heat conduction described by the equation

in ℝ3 , starting from an impulsive initial condition 
T(�, 0) = T0 �(�) . Albeit, as for any parabolic models, 
the heat-conduction equation suffers of the problem 
of infinite propagation velocity [19, 20], its solutions 
satisfy nice regularity properties at infinity, namely 
that both T(�, t) and its gradient ∇T(�, t) vanish, at 
infinity, faster than any power of |�|,

for any m = 0, 1,… . Indeed, the solution of the above 
problem is given by T(�, t) = GD(�, t)T0 , where 
GD(�, t) is expressed by Eq. (25), with � substituted 
by � . Consequently, while its parabolic nature poses 
intrinsic problems associated with its relativistic 

(44)�̂(�) =
1

4��
u(r) (� ⋅ �0)

(45)u(r) = −
1

a2 r3
+

e−ar

a2 r3
+

e−ar

a r2

(46)Ĝi,j(�) =
1

4��

[
e−ar

r
+ u(r)

]
�i,j +

xixj

r

du(r)

dr

�T(�, t)

�t
= �∇2T(�, t)

(47)lim
|�|→∞

|�|m T(�, t) = lim
|�|→∞

|�|m |∇T(�, t)| = 0
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consistency, the regularity conditions (47) are suffi-
ciently strong to support the application of the para-
bolic approximation for low-energy applications, i.e., 
in classical heat trasport problems of common engi-
neering and physics interest.

Next, turn the attention to the correspond-
ing hydrodynamic solution in the unsteady Stokes 
regime. In this case, the velocity field �(�, t) , solu-
tion of Eq. (23), does not possess the same regu-
larity conditions at infinity observed in the scalar 
problem, but a much weaker condition, namely that 
�(�, t) should vanish as |�| → ∞ . The explicit calcu-
lation of the Green function provides the large-scale 
property

for large |�|.
In the light of the manifold of hydrodynamic par-

adoxes involving Stokesian flows [18], such as those 
occurring in two-dimensional models for which 
a hydrodynamic solution consistent with the pre-
scribed, and physically reasonable, boundary condi-
tions does not exist, this result could be viewed as 
a mild inconsistency. At a more careful investiga-
tion, Eq. (48) determines an intrinsically paradoxi-
cal behavior of the incompressible time-dependent 
Stokes equation, in which the effect of unbounded 
propagation typical of parabolic models is ampli-
fied by the vectorial nature of the problem. This 
phenomenon can be clearly appreciated by adopting 
the decomposition (7), as the velocity field �(�, t) is 
the superposition of the vector ��(�, t) that propa-
gates as a scalar field fulfilling a parabolic equation 
(24), and of the gradient gauge �(�, t) , that is the 
responsible for the “unphysical” scaling Eq. (48), 
associated with the solution of the elliptic equation 
(27). Indeed, the physical reason for this behavior 
is elementary: the gradient gauge, that is the basic 
ingredient in assessing incompressibility, does not 
propagate, it simply satisfies a Poisson equation, in 
which time enters as a mere parameter, and owing 
to the long-term scaling of its fundamental solution, 
determines the power-law scaling (48). Another 
view to the scaling relation (48) is presented in the 
next paragraph.

Therefore, while in scalar parabolic models, 
the paradox of infinite propagation velocity stems 

(48)|�(�, t)| ∼ 1

|�|3

exclusively from the simplifications underlying 
the use of a Fickian constitutive equation for the 
fluxes proportional to the concentration gradients 
(determining the occurrence of a Laplacian opera-
tor in the balance equations, and thus the parabolic 
character of the evolution operator), in transport 
equations for vector fields (the velocity field) in the 
presence of dynamic constraints (such as incom-
pressibility), the steady and timeless representation 
of these constraints, leads to an unphysical behavior 
in the large-distance limit.

This phenomenon can be further argumented by 
considering a simple example. Let us suppose to cure 
the unphysical unbounded propagation of viscous 
flows by generalizing the linearized Navier–Stokes 
equation by means of an operator Lfp possessing 
finite propagation c, in the meaning that any initially 
compactly supported velocity field is mapped into a 
compactly supported velocity field at any later time 
t > 0 . For example one can choose a Cattaneo-type 
equation [19–21] to describe this property

where

and �c is some constant characteristic time. It is 
important to observe that, albeit the Cattaneo model 
possesses some intrinsic inconsistencies for spatial 
dimensions greater than one (lack of positivity) [22, 
23], it can fit the purposes of the present analysis 
in which solely the condition of finite propagation 
velocity is required.

Therefore,   the hydrodynamic problem considered 
consists in the Eq. (50), equipped with the incom-
pressibility condition, and with vanishing initial con-
ditions. To Eq. (50) the gauge decomposition (7) can 
be applied, and the �′-component satisfies the scalar 
equation

The corresponding solution is thus given by

(49)�
��(�, t)

�t
= Lfp[�(�, t)]

(50)

Lfp[�(�, t)] = �∇2�(�, t) − � �c
�2�(�, t)

�t2
− ∇p(�, t)

+ �0 �(� − �0) �(t)

(51)
�

[
���(�, t)

�t
+�c

�2��(�, t)

�t2

]
= �∇2��(�, t)

+�0 �(� − �0) �(t)
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where GCat(�, t) is the scalar Green function for the 
three-dimensional Cattaneo equation, that can be 
found e.g. in [24], which is compactly supported 
and vanishing, in the present case, outside the ball 
B(R(t), �0) of radius R(t) centered at �0 , where

Next, consider the gradient gauge �(�, t) , that 
is the solution of the equation deriving from 
incompressibility

and thus

Independently of the fact that the viscous propa-
gation described by Eq. (51) possesses finite 
propagation velocity, the gauge field scales for 
large |� − �0| as �(�) ∼ 1∕|� − �0|2 , and since 
�(�, t) = ��(�, t) + ∇�(�, t) , Eq. (48) follows for large 
|�| and for any t > 0 . This result is a direct conse-
quence of the gradient gauge, forcing the scalar field 
�(�, t) to satisfy an elliptic problem. It indicates that 
the power-law tail characterizing the Green function 
of linear unsteady hydrodynamic problems is related 
to the incompressibility assumption that generates 
non-local effects and unbounded propagation even 
in the presence of hyperbolic operators for describ-
ing the internal viscous stresses. In other words, any 
physically consistent model providing the bounded 
propagation of the viscous stresses necessarily 
implies the removal of the unphysical condition of 
incompressibility, which can be viewed as an equilib-
rium approximation, i.e. valid for liquids at rest. Said 
in different words, even for liquids, the large-distance 
propagation of any disturbance no matter how small 
it is, should necessarily imply compressibility effects, 
which does not mean that the fluid should behave as 
inviscid, but solely that the assumption of a solenoidal 
velocity field is not compatible with the finite propa-
gation of the internal disturbances. This observation 
is relevant in the hydrodynamic theory of Brownian 

(52)��(�, t) = GCat(� − �0, t) �̃0

(53)R(t) = c t , c =

√
�

�c

(54)∇2�(�, t) = −∇xGCat(� − �0, t) ⋅ �̃0

(55)�(�, t) =
1

4� ∫B(R(t),�0)

∇�GCat(� − �0, t) ⋅ �̃0

|� − �|
d�

motion, and in the analysis of transient properties of 
colloidal suspensions.

The hydrodynamic theory of Brownian motion [25, 
26] extended the original approach due to Einstein 
and Langevin [27, 28] based on the instantaneous 
Stokes equation, by considering fluid-particle inter-
actions in the time-dependent incompressible Stokes 
regime, thus including the inertial effects in the fluid. 
As a result of this improvement, in has been shown 
that the velocity autocorrelation of a Brownian parti-
cle deviates from the exponential relaxation predicted 
by the Einstein-Langevin model, displaying long-
term power law decay with time characterized, for 
Newtonian fluids, by the exponent 3/2, deriving from 
the presence of the Basset force. Moreover, as regards 
the mean square deviation of velocity fluctuations, 
the incompressible hydrodynamic theory predicts, 
at constant temperature T, the value kB T∕(m + ma) , 
where m is the particle mass, ma the hydrodynamic 
added mass, and kB the Boltzmann constant, provid-
ing a qualitative different prediction from the classi-
cal result kB T∕m of classical statistical physics (law 
of energy equipartition). In order to resolve this con-
tradiction, Zwanzing and Bixon [29, 30] and Chow 
and Hermans [31] showed that if incompressibility is 
removed, by assuming an equation of state for pres-
sure proportial to the density (through the square of 
the velocity of sound), the classical statistical physi-
cal predictions are recovered. Recent experimental 
works on the fine structure of Brownian fluctuations, 
resolving time scales below the characteristic dissipa-
tion time (order of 10−7 s for micrometric particles in 
water at room temperature) have shown not only the 
quantitative agreement with the hydrodynamic theory 
of Brownian motion as regards the temporal behav-
ior of the velocity autocorrelation function, but also 
the violation of energy equipartition predicted by the 
added-mass effect [32–34]. These experiments and 
their physical relevance suggest for an improvement 
of the present description of low-velocity hydrody-
namics at microscale, in which not only the incom-
pressibility assumption is removed, but also such that 
it should be able to predict fluid-particle interactions 
in any experimental conditions involving pressure-
driven flows in microchannels, still satisfying the 
physical requirement of a correct description of the 
acoustic propagation. The existing weak-compress-
ibility models, essentially based on the perturbative 
expansion of the acoustic contributions around an 
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incompressible leading-order term [35] do not fulfil 
this program. A discussion on this issue is posponed 
to paragraph 4.2.

4.1  Helmholtz decomposition of the vectorial Dirac’s 
�

There is a simple and striking proof that the Stokesian 
paradox associated with incompressibility is a con-
sequence of the vectorial nature of the velocity field, 
owing to the Helmholtz decomposition in ℝ3 . Con-
sider again the unsteady Stokes equation (24) in the 
presence of an impulsive forcing, setting �0 = � for 
notational simplicity. To this forcing field, Helmholtz 
decomposition can be applied, i.e.,

where ��(�) and ��(�) are the scalar and vector 
potentials of a vectorial Dirac’s � of intensity |�0| and 
oriented in the direction of �0,

where ∇� indicates the nabla operator acting on the �′
-coordinates. To begin with, consider ��(�) . Differen-
tiating by parts the integrand at the r.h.s. of the Helm-
holtz representation of ��(�),

in which the property ∇h(�) = −∇�h(�) for any func-
tion h(�) of argument � = |� − ��| has been applied. 
The first integral at the r.h.s. of Eq. (58) can be trans-
formed by the Gauss divergence theorem into a sur-
face integral on the spherical surface at infinity, and is 
identically vanishing, owing to the localization prop-
erties of �(��) . Thus Eq. (58) simplifies as

Analogously for the vector potential, reworking by 
parts the integrand, one obtains

(56)�0 �(�) = −∇��(�) + ∇ × ��(�)

(57)
��(�) =

1

4� ∫
ℝ3

∇�
⋅

(
�0�(�

�)
)

|� − ��|
d��

��(�) =
1

4� ∫
ℝ3

∇� ×
(
�0�(�

�)
)

|� − ��|
d��

(58)
��(�) =

1

4� ∫
ℝ3

∇�
⋅

(
�0�(�

�)

|� − ��|

)
d��

−
1

4� ∫
ℝ3

�(��)

|� − ��|2
�0 ⋅ ∇(|� − ��|) d��

(59)��(�) = −
1

4� |�|2
�0 ⋅ ∇(|�|) = −

� ⋅ �0

4�|�|3

The first integral at the r.h.s of Eq. (60) is identically 
vanishing, as it can be transformed using the curl-
version of the Gauss theorem into a surface integral 
on the spherical surface at infinity. Consequently, the 
second term at the r.h.s. of Eq. (60) yields

The physical implications of the decomposition 
(56) and of the expressions for ��(�) and ��(�) 
given by Eqs. (59) and (61) are evident, by consid-
ering that the functional space L2

vec
(ℝ3) of vectorial 

square summable functions in ℝ3 is the direct sum 
L2
vec

(ℝ3) = L2
sol
(ℝ3)⊕ L2

irr
(ℝ3) , where

and that L2
sol
(ℝ3) ⟂ L2

irr
(ℝ3) , in the meaning that 

if ��(�) ∈ L2
sol
(ℝ3) and ��(�) ∈ L2

irr
(ℝ3) , then 

∫
ℝ3 �s(�) ⋅ �i(�) d� = 0 [4].

The decomposition (56), substituted into Eq. 
(24), provides (with �0 = �),

that, owing to the incompressibility of �(�) , and to the 
orthogonality of L2

sol
(ℝ3) and L2

irr
(ℝ3) , decouples into 

two equations, one for each subspace of L2
vec

(ℝ3) : (i) 
in L2

irr
(ℝ3) , it provides direcly the equation for pres-

sure (modulo an additive constant),

coinciding with Eq. (39), (ii) in L2
sol
(ℝ3) , it yields the 

evolution equation of the divergence-free velocity 
field

(60)
��(�) =

1

4� ∫
ℝ3

∇� ×

(
�0�(�

�)

|� − ��|

)
d��

−
1

4� ∫
ℝ3

�(��)

|� − ��|2
∇(|� − ��|) × �0 d�

�

(61)��(�) = −
1

4� |�|2
∇(|�|) × �0 = −

� × �0

4�|�|3

(62)

L
2

sol
(ℝ3) =

{
� (�)

||||�ℝ3

|� (�)|2 d� ,∇ ⋅ � (�) = 0

}

L
2

irr
(ℝ3) =

{
� (�)

||||�ℝ3

|� (�)|2 d� ,∇ × � (�) = 0 ,

∇ ⋅ � (�) ≠ 0

}

(63)
�
��(�, t)

�t
= �∇2�(�, t) − ∇p(�, t)

+
[
−∇��(�) + ∇ × ��(�)

]
�(t)

(64)p(�, t) = −��(�)�(t)
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It follows from Eqs. (56) and (64) that in the unsteady 
Stokes problem with impulsive forcing, the pressure 
should be also impulsive in time, corresponding to an 
instantaneous acoustic propagation (ipso facto a kind 
of “teleportation”). If pressure, as it is, is a physical 
variable related to the propagation of material fluid 
elements, the impulsive response of p(�, t) , that fol-
lows from the geometry of L2

vec
(ℝ3) is the most strik-

ing manifestation of the teleportation paradox implied 
by incompressibility. Equation (65) indicates that an 
impulsive perturbation, once projected onto L2

sol
(ℝ3) 

provides an effective forcing decaying with |�| as 
1∕|�|2 , and this is the geometric reason for the anom-
alous long-term scaling expressed by Eq. (48).

To conclude, consider the Helmholtz decomposi-
tion of the vector field ��(�, t) solution of Eq. (24): 
��(�, t) = ��

s
(�, t) + ��

i
(�, t) , where ��

s
(�, t) ∈ L2

sol
(ℝ3) , 

and ��
i
(�, t) ∈ L2

irr
(ℝ3) . Because of the mutual orthog-

onality of these subspaces, the problem is split into 
two separate equations

and

Since ��
s
(�, t) = ∇ × �v(�, t) , ��

i
(�, t) = ∇�v(�, t) , 

the vector and scalar velocity potentials �v(�, t) and 
�v(�, t) satisfy the equations

From the functional form of the forcing terms ��(�) 
and −��(�) , see Eqs. (59) and (61), corresponding 
to the projection in the two Helmholtz subspaces of 
an impulsive vectorial perturbation, both ��

s
(�, t) and 

��
i
(�, t) are characterized, at any time t > 0 , by long-

distance power-law tails Eq. (48), that mutually can-
cel out once their superposition ��(�, t) is considered 
(providing in the large-distance limit the typical scal-
ing of a heat kernel, i.e. ��(�, t) ∼ e−|�−�0|

2∕4 � t ). It 
can be concluded that the Helmholtz decomposition 

(65)�
��(�, t)

�t
= −�∇ × ∇ × �(�, t) + ∇ × ��(�)�(t)

(66)

�
���

s
(�, t)

�t
= −�∇ × ∇ × ��

s
(�, t) + ∇ × ��(�) �(t)

(67)�
���

i
(�, t)

�t
= �∇2��

i
(�, t) − ∇��(�) �(t)

(68)
�
��v(�, t)

�t
= �∇2�v(�, t) + ��(�, t) �(t)

�
��v(�, t)

�t
= �∇2�v(�, t) − ��(�) �(t)

itself generates at any time t > 0 large-distance effects 
as regards the projection of ��(�, t) onto the subsets 
L2
sol
(ℝ3) and L2

irr
(ℝ3) , and these effects vanish once 

��(�, t) is considered in its unconstrained evolution.

4.2  Gradient-gauge decomposition and the role of 
pressure

The gradient-gauge formulation of incompressible 
Stokesian dynamics is essentially aimed at showing 
the inescapable paradoxes in the instantaneous prop-
agation of hydrodynamic fields associated with the 
assumption of incompressibility. But the origin of the 
gradient-gauge formulation stems from the ancillary 
role of the pressure in incompressible hydrodynam-
ics, that albeit in a slightly different mathematical set-
ting, plays the role of a gradient-gauge variable, just 
to enforce incompressibility. The existing pertubative 
expansions of weak-compressible theory [35] do not 
resolve the above mentioned paradoxes in the most 
general setting of an isothermal pressure-driven flow 
interacting with a micrometric particle, as shown by 
the recent literature on Brownian motion fluctuations. 
A more accurate description of fluid-particle interac-
tions at the microscale is thus required in the analy-
sis of hydrodynamic processes below the dissipation 
timescale (order of 10−7 s, for a micrometric particle 
in water at room temperature).

The analysis of the Helmholtz decomposition of a 
vectorial impulsive perturbation addressed in the pre-
vious paragraph, and of its consequences as regards 
the large-distance scaling of the two orthogonal con-
tributions lying in the two subspaces L2

sol
(ℝ3) and 

L2
irr
(ℝ3) , paves the way towards the improvement of 

the actual hydrodynamic formulation of low-velocity 
flows able to account for the phenomenologies occur-
ring at microscale (Brownian motion and motion of 
particles in microchannels).

The first prerequisite is that the unphysical incom-
pressibility assumption should be removed, permit-
ting a correct description of acoustic perturbations 
below the dissipation timescale. From the analysis 
developed at the end of paragraph 4.1, such formula-
tion should involve the free propagation of the veloc-
ity field, not subjected to any constraints associated 
with the Helmholtz decomposition. A way for achiev-
ing this program, without altering the structure of the 
Stokes or Navier–Stokes equations (that provide an 
excellent description of macroscopic flows) is: (i) to 
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restore to pressure its full nature of physical variable 
accounting for the internal compression stresses in 
a liquid far from mechanical equilibrium, and (ii) to 
derive for it an evolution equation that, in the limit 
case of steady flows should recover incompressibility 
as a limit case. This approach is outlined in [36] and 
does not lead neither to conceptual or structural modi-
fications of the Navier–Stokes equations, but rather to 
their completion via the introduction of a physically-
derived evolution dynamics for the pressure variable.

5  Hydrodynamic Green functions in the presence 
of boundaries

Apart from the analysis of the paradoxes associated 
with incompressible unsteady Stokes flows, the gra-
dient gauge can be used to obtain a formal solution 
(in the form of an integral equation) for the hydro-
dynamic Green functions in the presence of solid 
boundaries. Henceforth, no-slip boundary conditions 
are assumed. This section addresses the mathemati-
cal structure of the integral equations for the hydro-
dynamic Green function in Stokes and time-depend-
ent Stokes regimes, emerging from the gradient 
gauge approach, for flows defined on Ω ⊆ ℝ

n , where 
n = 2, 3 , in the case Ω possesses a solid boundary �Ω 
at which the velocity vanishes. In virtue of the dis-
cussion of the previous section, in order to avoid the 
classical Stokesian paradoxes [18], the two-dimen-
sional case, n = 2 , is limited to bounded domains Ω.

To begin with, consider the Stokes problem for the 
hydrodynamic Green functions, defined by Eqs. (5–6) 
for �, �0 ∈ Ω , and such that for any � ∈ �Ω,

In the presence of solid boundaries, the decomposi-
tion (7) valid for the free-space propagation should be 
generalized as

where ��(�) is the solution of the elliptic problem Eq. 
(8), defined in Ω with the boundary condition at �Ω,

 and ���(�) is the solution of the vector-valued Laplace 
equation in Ω

(69)�(�) = 0 , � ∈ �Ω

(70)�(�) = ��(�) + ���(�) + ∇�(�)

(71)��(�) = 0 � ∈ �Ω

equipped with generic Dirichlet boundary conditions,

The boundary function �b(�) , is the extra degree of 
freedom introduced in order to match the no-slip 
boundary conditions at �Ω , and it will be determined 
subsequently. From Eqs. (8) and (72) it follows that 
the gradient gauge �(�) satisfies in Ω the Poisson 
equation

For this equation, assume at �Ω homogeneous Dir-
ichlet conditions

Also in this case the pressure p(�) is defined by Eq. 
(10). Consider the boundary condition at �Ω induced 
by the decomposition (70). Because of Eqs. (71), 
(73), it reduced to

Let �(�) be any tangent unit vector on the boundary 
manifold �Ω , and �e(�) the outer normal unit vector 
at � ∈ �Ω . Because of Eq. (75), �(�) ⋅ ∇�(�)|�=� = 0 
identically, so that Eq. (76) reduces to

for any � ∈ �Ω . Condition (77) indicates that �b(�) is 
purely normal to �Ω . Consequently, it is sufficient to 
introduce the scalar function �(�) at �Ω , such that

This auxiliary boundary function �(�) is determined 
by the remaining boundary condition (78), dictating

The mathematical structure of the problem is set, and 
its solution involves solely the fundamental solutions 
of the scalar Poisson and Laplace equations in Ω . 

(72)∇2���(�) = 0

(73)���(�) = �b(�) , � ∈ �Ω

(74)∇2�(�) = −∇ ⋅ ��(�) − ∇ ⋅ ���(�)

(75)�(�) = 0 , � ∈ �Ω

(76)���(�) + ∇�(�)|�=� = 0 , � ∈ �Ω

(77)�b(�) ⋅ �(�) = 0

(78)�b(�) ⋅ �e(�) +
��(�)

�ne

||||�=�
= 0

(79)�b(�) = �(�)�e(�)

(80)�(�)
��(�)

�ne

||||�=�
= 0 , � ∈ �Ω
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More precisely, let G(�, �0) the Green function for the 
scalar elliptic problem

equipped with the homogeneous Dirichlet condition

and introduce further the fundamental solution E(�, �) 
for the scalar Laplace equation in Ω

Next, consider the determination of ��(�) , ��,�(�) and 
�(�).

From Eq. (8) and (81–82) it follows that ��(�) is 
given by

As regards ���(�) , Eqs. (79) and (83) provide

where dS(�) indicates the surface element on �Ω . 
Finally, the formal solution of the gradient gauge Eq. 
(74) is given by

It remains to determine �(�) . Enforcing the represen-
tations (84–86) within the boundary condition (80), 
one finally obtains for �(�) the Fredholm integral 
equation of the second kind

where

(81)∇2G(�, �0) = −�(� − �0)

(82)G(�, ��) = 0 , � ∈ �Ω

(83)
∇2E(�, �) = 0 , � ∈ Ω , � ∈ �Ω

E(�, �) = �(� − �) , � ∈ �Ω

(84)��(�) =
G(�, �0) �0

�

(85)���(�) = ∫�Ω

E(�, �)�(�)�e(�) dS(�)

(86)

�(�) = ∫Ω

G(�, �) ∇y ⋅ �
�(�) d� + ∫Ω

G(�, �) ∇y ⋅ �
��(�) d�

(87)�(�) + m(�) + ∫�Ω

K(�, �)�(�) dS(�) = 0

(88)

m(�) =
1

� ∫Ω

�e(�) ⋅ ∇xG(�, �)|�=� ∇yG(�, �0) ⋅ �0 d�

(89)

K(�, �) = ∫Ω

�e(�) ⋅ ∇xG(�, �)|�=� ∇yE(�, �) ⋅ �e(�) d�

The same approach can be transferred to the analysis 
of the time-dependent Stokes problem Eq. (23) on Ω , 
where in the present case the boundary condition on 
�Ω reads as

and �(�, 0) = 0 . Enforcing the same decomposition, 
introduced for the steady Stokes problem,

the component ��(�, t) is the solution of Eq. (24) with 
��(�, t) = 0 for � ∈ �Ω and ��(�, 0) = 0 , while ���(�, t) 
is the solution of the homogeneous vector-valued dif-
fusion equation

equipped with vanishing initial conditions 
���(�, 0) = 0 and with the Dirichlet boundary 
condition

The gradient gauge �(�, t) satisfies Eq. (74), where all 
the fields entering this equation explicitly depend on 
time t, equipped with the homogeneous Dirichet con-
dition at �Ω.

As for steady Stokes flow, the scalar boundary func-
tion �(�, t) satisfies the boundary condition (80) for 
t > 0 , replacing �(�) and �(�) with �(�, t) and �(�, t) , 
respectively.

Let us indicate with GD(�, �0, t) the Green function 
for the parabolic scalar problem

with GD(�, �0, 0) = 0 and GD(�, �0, t) = 0 for � ∈ �Ω , 
and with Et(�, �, t) the fundamental solution of the 
parabolic scalar problem

and Et(�, �, 0) = 0 . Using these functions, the veloc-
ity field ��(�, t) can be expressed as

(90)�(�, t) = 0 , � ∈ �Ω

(91)�(�, t) = ��(�, t) + ���(�, t) + ∇�(�, t)

(92)
����(�, t)

�t
= �∇2���(�, t)

(93)���(�, t) = �(�, t)�e(�) , � ∈ �Ω

(94)
�GD(�, �0, t)

�t
= �∇2

x
GD(�, �0, t) + �(� − �0) �(t)

(95)

�Et(�, �, t)

�t
= �∇2

x
Et(�, �, t) � ∈ Ω , � ∈ �Ω

Et(�, �, t) = �(� − �)�(t) , � ∈ �Ω

(96)��(�, t) = GD(�, �0, t) �̃0
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with �̃0 = �0∕� , and

Consequently,

and the boundary equation determing �(�, t) is given 
by

for � ∈ �Ω , where

and

6  Concluding remarks

In this article we have presented a physical approach 
towards the determination of the hydrodynamic Green 
functions for steady and unsteady Stokes problems.

While in the case of steady flows, this analysis pro-
vides just “another” derivation of the Oseen tensor, 
the application to unsteady Stokes problems yields a 
simple and “physically readable” expression for the 
corresponding Green functions and, more impor-
tantly, new insights on the physics of the hydrody-
namic propagation.

The gradient gauge decomposition, representing 
the starting point of the present mathematical analy-
sis of the Green functions, is the simplest way to 

(97)

���(�, t) = ∫
t

0

d� ∫�Ω

Et(�, �, t − �)�(�, �)�e(�) dS(�)

(98)

�(�, t) = ∫Ω

G(�, �) ∇yGD(�, �0, t) ⋅ �̃0 d�

+ ∫Ω

G(�, �) d� ∫
t

0

d�

∫�Ω

�(�, �) ∇yEt(�, �, t − �) ⋅ �e(�) dS(�)

(99)

�(�, t) = mt(�, t) + ∫
t

0

d� ∫�Ω

Kt(�, �, t − �)�(�, �) dS(�)

(100)

mt(�, t) = ∫Ω

�e(�) ⋅ ∇xG(�, �)|�=� ∇yGD(�, �0, t) ⋅ �̃0 d�

(101)

Kt(�, �, t) =∫Ω

�e(�) ⋅ ∇xG(�, �)|�=�

∇yEt(�, �, t) ⋅ �e(�)d�

decouple the various agents determining the space-
time properties in the solution of the unsteady Stokes 
equations. The latter can be always viewed as the 
superposition of a vector field ��(�, t) , the properties 
of which are those of any scalar field evolving accord-
ing to a parabolic equation in space and time, and of 
a gradient gauge, that instantaneously enforces the 
condition of vanishing divergence. Even for unsteady 
Stokes flows, the equation for the gradient gauge 
�(�, t) is timeless, leading to a Poisson equation, the 
fundamental properties of which determine at any 
time t > 0 a non-vanishing velocity field �(�, t) that 
decays as a power law of the distance from the point 
of application of the initial impulsive forcing. This 
phenomenon can be simply interpreted by resolving 
a vectorial impulsive forcing into its two, irrotational 
and solenoidal, Helmholtz components.

The power-law decay of the gradient gauge deter-
mines a physical inconsistency in the long-term prop-
erties of the velocity field in incompressible unsteady 
Stokes flow, and the paradoxical phenomenon of 
infinite propagation velocity of viscous stresses, the 
origin of which is twofold: (i) the Newtonian relation 
connecting the stress and the deformation tensors, 
leading to the parabolic evolution equation for ��(�, t) , 
and (ii) the incompressibility condition which, inde-
pendently of the evolution equation adopted for 
��(�, t) , generates the unphysical large-distance 
power-law scaling (48) for the velocity field �(�, t).

In the resolution of this paradox, the incompress-
ibility condition represents the unphysical constraint 
determining non-locality in the viscous stress propaga-
tion. In point of fact, the resolution of this paradox is 
not only of theoretical interest but admits many impor-
tant applications related to hydrodynamics at small 
lengthscales. The rapid progress in microfluidics and 
the detailed experimental and theoretical investiga-
tions on the motion of colloidal particles at microscale 
(Brownian motion) [32, 33] push the hydrodynamic 
theory towards a more physically consistent description 
of fluid-particle interactions, overcoming the manifestly 
paradoxical inconsistency in the large-scale behavior of 
the velocity fields. In this framework, the generalization 
of the evolution equation for the velocity field of a liq-
uid phase, possessing dissipative viscous propagation 
of the internal stresses, and a finite propagation velocity 
for the density and pressure fields, leading as a bypro-
ducing to a stress propagation with bounded velocity is 
the missing link in the formulation of a low-Reynolds 
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number hydrodynamics of “almost incompress-
ible” flows, in which incompressibility emerges as a 
steady-state property once dynamic wave-like motion 
in the liquid has been set down. A formulation of the 
Navier–Stokes equations resolving these problems can 
be found in [36]. This problem can also be tackled via 
experimental analysis, by considering e.g. the perturba-
tion induced by the motion of a micrometric particle, 
trapped in an optical trap or following a prescribed tra-
jectory using optical tweezers and analyzing via �-PIV 
equipment the resulting velocity profile in the interme-
diate and far fields.
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