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Abstract A different version of the classic proper

orthogonal decomposition (POD) procedure introduc-

ing spatial and temporal weighting matrices is pro-

posed. Furthermore, a newly defined non-Euclidean

(NE) inner product that retain similarities with the

POD is introduced in the paper. The aim is to

emphasize fluctuation events localized in spatio-

temporal regions with low kinetic energy magnitude,

which are not highlighted by the classic POD. The

different variants proposed in this work are applied to

numerical and experimental data, highlighting analo-

gies and differences with respect to the classic and

other normalized variants of POD available in the

literature. The numerical test case provides a noise-

free environment of the strongly organized vortex

shedding behind a cylinder. Conversely, experimental

data describing transitional boundary layers are used

to test the capability of the procedures in strongly not

uniform flows. By-pass and separated flow transition

processes developing with high free-stream distur-

bances have been considered. In both cases streaky

structures are expected to interact with other vortical

structures (i.e. free-stream vortices in the by-pass case

and Kelvin–Helmholtz rolls in the separated type) that

carry a significant different amount of energy. Modes

obtained by the non-Euclidean POD (NE-POD) pro-

cedure (where weighted projections are considered)

are shown to better extract low energy events sparse in

time and space with respect to modes extracted by

other variants. Moreover, NE-POD modes are further

decomposed as a combination of Fourier transforms of

the related temporal coefficients and the normalized

data ensemble to isolate the frequency content of each

mode.

Keywords POD � Frequency content � Weighting

matrices � Boundary layers-free stream interaction

1 Introduction

Modal decomposition techniques represent nowadays

fundamental tools for data analysis and construction of

reduced order models (ROMs) of complex systems. In

this context, POD represents an energy-ranked decom-

position technique, looking for the basis maximizing

the projection of the entire ensemble of data ([24]). In

its classic formulation, POD solves the eigenvalue

problem for the positive-defined spatial correlation

tensor, or, in the successive snapshot POD of Sirovich

[39], for the computationally more convenient tem-

poral cross-correlation matrix. Recent applications of

POD to Particle Image Velocimetry (PIV) data clearly

highlight the ability of POD in tracking vortices shed

in the wake of cylinders ([31]), blunt bodies ([34]) as
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well as in the case of boundary layer separation ([19]).

The POD modes and related temporal coefficients

constitute two orthonormal basis for their own vector

space, and can be consequently adopted for the

projection of each other quantity of interest. Indeed,

following the extended POD procedure proposed by

Borée [3], the spatial POD modes of a given field can

be computed as projection on the temporal coefficients

obtained by solving the POD problem in a different

spatial domain, or with different quantities used for the

definition of the POD kernel. Among others, Antoranz

et al. [1] used extended POD to inspect the evolution

of coherent motions due to thermal gradients in

turbulent pipe flow, highlighting the quota of velocity

fluctuations correlating with the temperature ones (see

also the works of [8, 14]). The orthogonality condition

of the POD modes and the related temporal coeffi-

cients gives also the attractive advantage of splitting

Reynolds normal and shear stresses ([24]), as well as

the contributions to the production of TKE of the flow

and the corresponding dissipation, as shown in recent

authors’ publications ([20, 37] and [22]). However, as

stated in Sieber et al. [35], POD is not useful when the

dominant structures appear at multiple frequencies or

spatial wavelengths. The procedure proposed by

Sieber et al. [35] basically consists of filtering the

convolution matrix and successively applying the

POD to the filtered kernel. The filter width, accounting

for the overall scale of the dominant structures,

switches the procedure from a classic POD to a

descrete Fourier transform (DFT). The cost to be paid

is the loss of orthogonality of the spatial modes and a

higher dispersion of the POD spectrum. A similar

filtering procedure has been introduced into the works

of Iudiciani et al. [16] and Bourgeois et al. [4] to

develop a generalized phase-averaging procedure

based on the POD. In Bourgeois et al. [4] the snapshot

matrix was filtered by means of the convolution with a

Gaussian window to detect the base flow variation

characterizing the transient vortex shedding behind a

cylinder, that appears captured by the most energetic

POD modes of the filtered kernel. The successive

decomposition of the residual allows maximizing the

energy captured by the POD of the residual cross-

correlation matrix, thus maximizing the energy cap-

tured by the phase-averaged field. In the more recent

work of Mendez et al. [28] a different approach named

multi-scale POD was introduced to overcome the

limitation of the classic PODwhen this latter is applied

in the case of flow with multiple frequencies. The

authors apply a filter on the convolution matrix based

on multi-resolution analysis. POD therefore provides

statistics for each frequency bands considered, which

can be combined afterwords for the characterization of

the overall fluctuations embedded within the flow.

Differently from the spectral POD method of Sieber

et al. [35], the stationarity of the data set is not forced

since the variance of each diagonal of the convolution

matrix is not modified.

In case of phase-dependent flows, like in internal

combustion engine or turbomachinery applications

(see e.g., [7, 11, 21, 33, 42]), data snapshots are

characterized by significant energy variation (between

the phases), and events occurring at low energetic

phases are barely captured by the classic POD

methods. The phase-invariant POD proposed in

Fogleman et al. [10], and adopted in engine applica-

tions in Voisine et al. [42], normalizes each snapshot

by its own norm prior to construct the cross-correla-

tion matrix. This provides the attractive advantage of

highlighting low energy events sparse in phase, or

more generally in time (i.e. each time/phase is treated

in the same way, being normalized). This normaliza-

tion process can be generalized introducing a weight-

ing matrix into the scalar product providing the

projection of the data ensemble on the optimum basis

obtained by the POD method, similar to the problem

formulated in Sarmast et al. [32] to account for not

uniform spatial grids.

From this perspective, the classic POD procedure

and other variants known in the literature are refor-

mulated in the present work in terms of weighting

matrices, providing a more general formulation. The

adaptation of particular choices for these matrices

allows highlighting turbulent events embedded in

spatio-temporal regions with low kinetic energy.

Based on the approach of Sarmast et al. [32], we first

consider a spatial normalization of the snapshot matrix

to make turbulent events occurring at different posi-

tions more comparable in terms of energy. Then, we

introduce a non-Euclidean scalar product into the

classic POD procedure to consider a not uniform

distribution of the flow kinetic energy in both space

and time. This is the main feature characterizing the

present work with respect to other variants available in

the literature. It is pointed out here that the coexistence

of correlating events in spatial regions with different

energy of fluctuations could be exploited also by
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means of the aforementioned extended POD method.

However, this would require to split the available data

set beforehand, based on the previous knowledge of

the regions where correlating events may occur.

Additionally, extended POD modes provide the

statistical representation of such dynamics separately.

The aim of the present method is to provide evidence

of the simultaneous occurrence of velocity fluctua-

tions with different energy content, without introduc-

ing a priori any split of the particular data set at hand.

The application of the procedures here examined to

different test cases show that the introduction of a non-

Euclidean inner product allows keeping the benefits of

previous methods and further highlighting flow oscil-

lations sparse in time.

The procedures are applied to both numerical and

experimental data. The first concerns with literature

data obtained from direct numerical simulation (DNS)

describing the vortex shedding behind a circular

cylinder (see the book of Kutz et al. [18] for the

reference to the link for downloading and Brunton

et al. [5] for the POD analysis of these data). This test

case actually describes a strongly periodic flow

pattern, with structures that are equally distributed in

the different snapshots, but appearing in different

spatial positions. Once applied to flow fields with

significant energy variation on both time and space,

the POD variants presented provide different modal

representation of turbulent events occurring in spatio-

temporal regions at different energy.

Two experimental test cases have been also

considered in this work. A by-pass like transition

process forced by homogeneous free-stream turbu-

lence provides a test case where free-stream vortices

are energetically decoupled by the more energetic

boundary layer streaks (see [17, 45]). The second data

set concerns a pressure induced laminar separation

bubble undergoing laminar-turbulent transition. Due

to the elevated homogeneous free-stream turbulence

characterizing also this condition, streaky structures

are expected to influence the shear layer dynamics,

prior to the formation of the most energetic Kelvin–

Helmholtz (K–H) rolls at the bubble maximum

displacement position (see [15, 25, 27, 38, 44]). These

experimental cases are discussed in order to empha-

size the capability of the weighted scalar product to

highlight spatio-temporal regions with low kinetic

energy with respect to a symmetric normalization of

the snapshot matrix. Moreover, the NE-POD modes

are further decomposed as a combination of Fourier

transforms of temporal coefficients and velocity maps,

thus better highlighting flow regions with different

energy and frequency content. This is something

similar to what applied by Glauser and George [12],

Arndt et al. [2] and Liu et al. [23] in homogeneous

spatial directions.

The paper is organized as follows: in Sect. 2 the

mathematical formulation providing a rational gener-

alization of the different methods is presented. In Sect.

3 the different procedures are applied to the DNS data.

In Sect. 4.1 the by-pass transition case will be

discussed, while in Sect. 4.2 the separation-induced

transition process is presented. Finally, concluding

remarks on the advantages of the present techniques

are synthesized in Sect. 6.

2 Mathematical framework

2.1 Classic snapshot POD

For all the methods presented here, we consider U to

be the snapshot matrix containing a set of observations

of the velocity field in the spatio-temporal domain. Let

x ¼ ðx; yÞ be the spatial coordinates and ui ¼ uðx; tiÞ
be the velocity field at the point x and time ti for

i ¼ 1; � � � ;N. The experimental values are obtained in

space with a uniform mesh xj ¼ jDx for j ¼ 1; . . .;M

and discrete time interval with constant step size Dt.
The vectors ui have then dimension M and form the

columns of U. We instead denote the rows of U by uj,

having dimension N. Since in both DNS and PIV

applications the number of spatial points (M) is

typically much larger than the number of snapshots

collected (N), the snapshot POD method of Sirovich

[39] is here introduced for reference. This problem is

equivalent to find the coefficient vector v1 that

maximizes the projection of the row vectors of U,

and the POD algorithm corresponds to solve the

following constrained maximization problem:

max
kv1k2¼1

kU v1k2 ¼ max
kv1k2¼1

ðU v1;U v1Þ ð1Þ

where ð�; �Þ is the Euclidean inner product. Denoting

by T the matrix transpose, the problem (1) can be

rewritten as
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max
kv1k2¼1

vT1 U
T U v1 ¼ max

vT
1
v1¼1

vT1 C v1 ð2Þ

where C is the correlation matrix

C ¼ UT U ð3Þ

The constrained problem (2) can be solved using

Lagrange multipliers to transform it in an uncon-

strained problem. Let Lðv1; k1Þ ¼ vT1 C v1 þ k1ð1�
vT1 v1Þ be the Lagrangian functional with k1 2 R the

Lagrange multiplier, the solution of (2) satisfies

rv1Lðv1; k1Þ ¼ C v1 � k1v1 ¼ 0, i.e.

C v1 ¼ k1v1 ð4Þ

This shows that v1 is an eigenvector of the correlation

matrix C and k1 is the corresponding eigenvalue. The

first POD mode can be then easily obtained by

projection:

/1 ¼ U v1 ð5Þ

The second component /2 can be computed in

analogue way, by computing v2 as eigenvector of C

with eigenvalue k2 and so on, obtaining a set of N

orthogonal eigenvectors and sorted eigenvalues due to

the symmetry and positive definition of C. Since it is

convenient to work with an orthonormal basis, the

vectors /i for i ¼ 1; . . .;N are rescaled to have unitary

norm, i.e. the relation (5) is replaced by

/i ¼ U vi k
�1=2
i ; i ¼ 1; . . .;N ð6Þ

which is equivalent to compute a M � N matrix U
defined as

U ¼ U V Z ð7Þ

where V is the matrix with the eigenvectors vi on the

columns and Z the diagonal matrix having ðNkiÞ�1=2

on its diagonal. The column vectors ofU composed by

/i for i ¼ 1; . . .;N are the POD modes.

2.2 Time invariant POD (TI-POD)

Fogleman et al. [10] introduced a variant of the classic

POD with the aim of making events sparse in time

equally probable. In this paper, the authors refer to the

procedure as a phase-invariant method, being it

applied to phase-dependent flows. Here it is referred

as Time-Invariant POD (TI-POD), being applied with

the aim of normalizing each snapshot in not phase-

dependent applications. The procedure basically con-

sists in applying the POD algorithm not to the original

matrix U, but to the normalized snapshot matrix ~U
defined as

~U ¼ UWT ð8Þ

where WT is a diagonal N � N matrix of weights

chosen in order to make the columns ofU unitary. This

is obtained dividing each column by the Euclidean

norm of ui or in other words dividing by the spatial

root mean square (rms) of velocity fluctuations of each

observation:

WT ¼

1

ku1k
0

1

ku2k
. .
.

0
1

kuNk

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð9Þ

Then, the maximization problem (2) for the TI-POD

becomes:

max
kv1k2¼1

vT1 WT U
T U WT v1 ¼ max

vT
1
v1¼1

vT1 C v1 ð10Þ

where the correlation matrix C has in this case the

expression:

C ¼ WT U
T UWT ð11Þ

Note that the symmetry of the correlation matrix is

preserved. Then, the POD modes are computed as

U ¼ ~U V Z ð12Þ

where as before V is the matrix with the eigenvectors

of C and Z the diagonal matrix having ðNkiÞ�1=2
on its

diagonal. Note that Eq. (12) provides the modes for the

normalized snapshot matrix ~U, according to the

procedure described in the original work of Fogleman

et al. [10]. However, the original field can be easily

obtained as:

U ¼ U Z�1 VT W�1
T ð13Þ

Clearly, TI-PODmodes correspond to the definition of

the classic POD modes when WT ¼ I (where I is the

identity matrix).
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2.3 Space invariant POD (SI-POD)

In spatially inhomogeneous flows, both phase or not

phase dependent, velocity oscillations with different

energy content can coexist and even interact (e.g. K-H

rolls and free-stream vortices). With the aim of

making these turbulent events more comparable in

terms of energy, thus highlighting their coexistence by

the modal decomposition of the snapshot matrix, a

dual problem of the TI-POD is presented. Namely,

another variant of the POD called Space Invariant

POD (SI-POD) is proposed, where the normalization

of time-traces instead of snapshots is considered. A

similar approach was proposed by Sarmast et al. [32]

to take into account a space discretization with a non

uniform mesh, where the weights of the diagonal

matrix modifying U are the local cell volumes

corresponding to each grid point. Indeed, when the

spatial sampling of the correlation matrix defined in

(3) is not uniform, the scalar product between two

realizations has to be weighted to account for the

different weights linked to the non-uniform spatial

sampling, as described also in the previous work of

Antoranz et al. [1].

In the procedure proposed here, the POD algorithm

can be formulated considering a modified snapshot

matrix ~U, defined as

~U ¼ WS U ð14Þ

where WS is a diagonal M �M matrix of weights

chosen in order to make the rows of U unitary,

obtained dividing each row of U (denoted by uj for

j ¼ 1; . . .;M) by its Euclidean norm:

WS ¼

1

ku1k 0

1

ku2k
. .
.

0
1

kuMk

0
BBBBBBBBBB@

1
CCCCCCCCCCA

ð15Þ

Then, the maximization problem (2) becomes

max
kv1k2¼1

vT1 U
T WS WS U v1 ¼ max

vT
1
v1¼1

vT1 C v1 ð16Þ

where the correlation matrix C has in this case the

expression:

C ¼ UT WS WS U ¼ UT W2
S U ð17Þ

withW2
S :¼ WS WS. Note thatC is still symmetric, thus

its eigenvetors are orthogonal. Following the TI-POD

method previously described, the modes are computed

by projection of the normalized snapshot matrix ~U

U ¼ ~U V Z ð18Þ

where as before V is the matrix with the eigenvectors

of C and Z the diagonal matrix having ðNkiÞ�1=2
on its

diagonal. The original flow field is then reconstructed

as:

U ¼ W�1
S U Z�1 VT ð19Þ

Another possible interpretation of the space invariant

POD is to find v1 that maximizes the weighted norm of

the projectionUv1. From this perspective, the problem

(16) is therefore equivalent to

max
kv1k2¼1

ðU v1;U v1ÞW2
S
¼ max

kv1k2¼1

vT1 U
T W2

S U v1

¼ max
vT
1
v1¼1

vT1 C v1
ð20Þ

where C is defined as in (17). Also in this caseWS ¼ I

provides the classic formulation of Sirovich [39].

2.4 Time-space invariant POD (TSI-POD)

Starting from the TI-POD and SI-POD formulations

presented in the previous sections, one could think to

perform a Time-Space Invariant POD (TSI-POD)

including the advantages of both temporal (column)

and spatial (row) normalizations of the snapshot

matrix, thus defining a new normalized snapshot

matrix as:

~U ¼ WS UWT ð21Þ

In this context the correlation matrix would be defined

as:

C ¼ WT U
T WS WS UWT ð22Þ

with the TSI-POD modes being computed again by

projection of the normalized field ~U:

U ¼ ~U V Z ð23Þ
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As for the previous variants presented, V is the matrix

with the eigenvectors of C and Z the diagonal matrix

having ðNkiÞ�1=2
on its diagonal. However, it is easy

to prove that the simultaneous normalization of both

the rows and columns of U cannot be achieved by the

right and left multiplication with the weighting

matrices WS and WT .

2.5 Non-Euclidean POD (NE-POD)

A different approach is introduced in this section

considering weighted products and norms in the

optimization problem of the POD (Eq. 1). The

introduction of the weighting matrices WS and WT

into Eq. (1) makes the POD modes more sensitive to

temporal normalization with respect to the SI-POD,

still emphasizing oscillations occurring in spatial

region with low kinetic energy, as it will be shown

in Sect. 4. The modified version proposed here

consists in solving the following maximization

problem:

max
kv1k2WT

¼1

kðU v1ÞWT
k2W2

S
¼ max

vT
1
WTv1¼1

kUWT v1k2W2
S

ð24Þ

¼ max
vT
1
WTv1¼1

vT1 WT U
T W2

S U WT v1 ¼ max
vT
1
WTv1¼1

vT1 WT C v1

ð25Þ

where C is the weighted correlation matrix defined as

C ¼ UT W2
S U WT ð26Þ

Similar to what done with Eqs. (2), (25) can be solved

using Lagrange multipliers. Let Lðv1; k1Þ ¼
vT1 WT C v1 þ k1ð1� vT1 WTv1Þ be the Lagrangian

functional, then the solution of (25) satisfies

rv1Lðv1; k1Þ ¼ WT C v1 � k1 WT v1 ¼ 0, i.e.

C v1 ¼ k1v1 ð27Þ

Since in this case the matrix C is not symmetric, its

eigenvectors are not orthogonal with respect to the

Euclidean product, but they are orthogonal with

respect to the weighted product ð�; �ÞWT
. At the same

time, the resulted modes are orthogonal with respect to

the weighted product ð�; �ÞW2
S
. The non-orthogonality

of the NE-POD temporal coefficients implies that the

contributions of the modes to the energy of the

reconstructed field are not independent to each others

and modal interaction exists. The NE-POD modes are

obtained as

/i ¼ ðU; viÞWT
k�1=2
i ¼ UWT vi k

�1=2
i ; i ¼ 1; . . .;N

ð28Þ

or in matrix notation as

U ¼ UWT V Z ð29Þ

where as before V is the matrix with the eigenvectors

of C and Z the diagonal matrix having ðNkiÞ�1=2
on its

diagonal. Note that the equation above is the same as

(12), even if Eq. (29) provides the modes for the

original snapshot matrix U, differently from (12).

Hence, the original flow field is directly obtained by

the combination of the modes computed from (29)

with the corresponding eigenvectors of the cross

correlation matrix defined in (26). Moreover, the total

kinetic energy (TKE) of the data set is preserved, even

if the energy of the modes is redistributed with respect

to the previous variants presented.

2.6 Mixed Fourier-Empirical decomposition

The introduction of temporal and spatial normaliza-

tion terms in the NE-POD procedure enables a

corresponding Fourier-based decomposition of the

modes, as in the classic POD (see e.g. [6, 23]).

Denoting by ~U ¼ UWT and by ~V ¼ V Z, with U, V, Z

defined in the Eq. (29), let ~ui be the i-th column of ~U

(corresponding to the PIV data at the time instants ti)

and ~vik be the value contained in the i-th row and k-th

column of ~V . Writing the relation (29) in the index

notation, the k-th NE-PODmode (contained in the k-th

column of the NE-PODmode matrixU) can be written
in the following way

/k ¼
XN
i¼1

~ui ~v
i
k ¼

XN
i¼1

XN
n¼1

cð~uÞnejxn ti

 !
~vik ð30Þ

where j is the imaginary number. The discrete values

~ui have been decomposed in time using the discrete

Fourier transform with Fourier coefficients cð~uÞn and

angular frequency xn. Exchanging the two summa-

tions, we obtain
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/k ¼
XN
n¼1

cð~uÞn
XN
i¼1

~vike
jxn ti

 !
ð31Þ

Finally, since the second summation in (31) corre-

sponds to the conjugate of Fourier coefficients of ~vik,

we have

/k ¼
XN
n¼1

cð~uÞn dð~vkÞ�n ð32Þ

Equation (32) shows that each NE-POD mode can be

obtained as a combination of orthogonal functions that

provides the sinusoidal content of each dynamics and

the related temporal coefficients. Note that the energy

of each mode is preserved if the whole spectrum is

considered for the mode reconstruction. The proce-

dure proposed here differs from the multi-scale POD

approach of Mendez et al. [28]. In the multi-scale

POD, the cross-correlation matrix defined in Eq. (3) is

filtered a priori based on multi-resolution analysis.

Then, PODmodes are computed providing statistics of

each frequency band considered. In the present

method, the Fourier contributions to the modes are

obtained combining the filtered snapshots and tempo-

ral coefficients obtained from the original not-filtered

cross-correlation matrix. The capability of this tech-

nique to further highlight and isolate turbulent events

not directly observed in the NE-POD modes will be

further pointed out in the following sections.

3 Application to numerical data

The different POD variants presented in the previous

sections were first applied to DNS data describing the

organized vortex shedding behind a circular cylinder

at a flow Reynolds number of 100. The data set

consists of 150 snapshots sampled at 10 times the

temporal resolution of the simulation, describing 5

shedding periods. The spatial domain has been solved

with 450� 200 spatial points with the numerical

scheme described in the work of Taira and Colonius

[40]. The time-mean velocity and the rms distributions

are reported in Fig. 1 with the aim of showing the

spatial region interested by the cylinder wake, and the

magnitude of velocity rms into this flow region.

Further details on the boundary conditions and grid

refinement can be found in the works of Kutz et al. [18]

and Brunton et al. [5], where the POD modes for this

ensemble of data are also presented.

The different variants of POD discussed in the

previous section are applied to the present data set to

highlight the role of the different weights and scalar

product applied to a well known, established, noise

free case, where only the large scale rolls in the

cylinder wake are present. The distribution of the

normalized energy of the original field reconstructed

with the first 10 modes for the different cases are

reported in Fig. 2. Since the classic POD, TI-POD , SI-

POD and TSI-POD are all characterized by a sym-

metric cross-correlation matrix, i.e. their modes are

orthogonal with respect to the Euclidean norm, the

sum of the eigenvalues directly provides the percent-

age of kinetic energy associated with the related

modes. However, based on the definition of the POD

2 3 4 5
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x/D
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y/D

Fig. 1 (Left) time-mean normalized velocity u=U0 and (right)

rms of velocity fluctuations u0rms=U0. Streamwise and cross-flow

coordinates are scaled with the cylinder diameter D
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E
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Fig. 2 Energy content of reconstructed fields obtained with the

different procedures
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kernel of the different variants, the summation of the

eigenvalues provides the real kinetic energy of the

flow only for the classic POD, since in the other cases

the sum of the eigenvalues corresponds to the kinetic

energy of the normalized field ~U. Additionally, for the

NE-POD, due to the not-symmetric correlation matrix,

the energy content of the fields reconstructed with a

specific number of NE-POD modes differs from the

sum of the energy captured by the same modes (i.e. the

sum of the corresponding eigenvalues). Figure 2

shows that for this organized flow pattern, the second

order truncation accounts for an overall energy in the

surround of 95% for all the procedure except for the

SI-POD, that recovers the others after the fourth mode.

The spatial distributions of the first mode obtained

with the 5 different procedures are shown in Fig. 3.

These modes are obtained by projection of the

weighted snapshot matrix ~U, which is defined depend-

ing on the different variants. The first mode provides

the statistical representation of the largest scale rolls

dominating the instability of the cylinder wake (see for

example [18, 31]). The classic POD and the TI-POD

exhibit practically identical results in this particular

case concerning a strong statistically stationary flow

(i.e. the diagonal of WT is almost constant and the

normalization step provided by the TI-POD does not

redistribute the energy of the different snapshots).

Conversely, the SI-POD and the TSI-POD provide

substantially different modal representations. The

cylinder vortices appear significantly enlarged with

respect to the POD modes, extending also outside of

the wake region. This is due to the spatial normaliza-

tion introduced in these two procedures. The spatial

weighting matrix introduced in TSI and SI-POD

methods may therefore lead to a wrong estimation of

the main scales embedded within the flow, which

represents a significant shortcoming when they would

be used to construct reduced order models. The

increased optimality of the present methods with

respect to the classic POD are ascribed here to the

fictitious enlargement of the finer scales, acting re-

distributing the overall energy of fluctuations toward

the lower order modes (describing large scale coherent

structures). It shoukd be noted also that the TSI and the

SI-POD methods show the same results due to the low

variance of the diagonal entries ofWT appearing in the

TSI-POD, where the spatial normalization clearly

dominates. On the other hand, the last plot of Fig. 3

shows that the inclusion of a different definition of the

scalar product in the NE-POD procedure does not

introduce significant modification of the main scales

embedded within the flow, showing the same results

provided by the classic POD and TI-POD. In the

following experimental cases the NE-POD procedures

will be shown to provide different modal representa-

tions of the data ensembles, since information into the

snapshots includes a multitude of turbulent events.

4 Application to experimental data

In order to better highlight the peculiarities of the

different methods, experimental data describing lam-

inar to turbulent transition for attached and separated

flows developing on a flat plate under high free-stream

turbulence intensity (FSTI) level are considered in this

section. The chosen conditions provide evidence of the

capability of the different procedures in case of strong

not uniform flows (in space), and with a more sparser

occurrence of turbulent events in time with respect to

the organized vortex shedding previously discussed.

Basically, also for the following applications the TI-

POD shows the same results of the classic POD. This

is because the normalization matrix WT in Eq. (9) has

diagonal entry elements that are almost constant (the

variance normalized by the mean value is 0.1). A

significant energy redistribution between the rows of

POD TI-POD SI-POD TSI-POD NE-POD

Fig. 3 Vector fields of the first mode obtained by the different procedures
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the snapshots matrix is instead done by the spatial

weighting matrix WS, due to the high spatial non-

homogeneity of the flows at hand (the rms of the

diagonal entry elements of WS is significantly greater

than that of WT ). This means that also in these cases,

the effects of the weighting matrix WS dominate, thus

the TSI-POD and the SI-POD provide the same modal

representation of the flow. Then, only the modes of the

POD, SI-POD and NE-POD are presented in this

work. Application of the TI-POD would be of great

interest in the case of phase dependent data such as

those of Lengani et al. [21], providing different modal

representations.

The experimental data were acquired in a double

contoured test section producing a strong adverse

pressure gradient (APG) to the flow, typical of ultra

high lift blade profile (Fig. 4, see [38] for further

details). The plate is 200 mm long and 300 mmwide to

ensure two dimensional time-mean flow at midpsan of

the plate. An elliptic leading edge has been used to

avoid flow separation in this part of the plate. Data

have been acquired in the meridional plane by means

of a DANTEC time resolved PIV system (with a

sampling of frequency 3168 Hz) for about 1s, collect-

ing sequences of 3100 evenly time spaced instanta-

neous PIV snapshots. Such amount of data provides a

good statistical convergence for the most energetic

POD modes. The instrumentation is constituted by a

dual-cavity Nd:YLF pulsed laser Litron LDY 300

(maximum energy per pulse 30 mJ at 1000 Hz

repetition rate, 527 nm wavelength). The adaptive

cross-correlation algorithm has been used with a finer

interrogation area of 16x16 pixels and 50% overlap.

This gives a uniform spatial measuring grid with a

distance between adjacent vectors of 0.43 mm. This

measuring grid allows solving with at least 10

measuring points the large scale structures originating

in both the conditions tested, thus ensuring a good

convergence of the most energetic POD modes

according to Tinney et al. [41]. A peak validation

has been used to discriminate between valid and

invalid vectors.

4.1 Bypass transition

The first experimental condition examined concerns

an attached flow undergoing laminar to turbulent

transition beneath high FSTI level (2.87%). In this

context, boundary layer streaks are known to drive the

transition process. The Reynolds number based on the

inlet velocity and the plate length L is 100,000. At this

Reynolds number the boundary layer did not separate

despite the strong APG imposed to the flow, as further

documented in the previous authors’ work Simoni

et al. [38]. The normalized streamwise velocity u=U0

and velocity rms u0rms=U0 distributions are reported in

Fig. 5, with U0 the free-stream velocity at the

measuring domain inlet. The boundary layer thickness

sensibly grows in the downstream direction as a

consequence of the strong APG. Moreover, the

increase of u0rms=U0 (right plot of Fig. 5) and its

further reduction suggest that the flow undergoes

laminar to turbulent transition. The boundary layer is

in a fully turbulent condition downstream of

x=L ffi 0:58, as shown by the intermittency function

distribution reported in Simoni et al. [36].

The energy content of reconstructed fields obtained

from an increasing number of modes for the classic,

the SI-POD and the NE-POD procedures is presented

in Fig. 6. In this case both SI-POD and NE-POD

methods lose optimality with respect to the classic

POD, with the NE-POD energy distribution relaying

in between the other two curves. After the first 10

modes the curves do not differ by more than 10% and

by no more than 2% after 100 modes. Note that in

simple or at least slightly complex flows, like in the

wake of the circular cylinder of the previous example,

a small number of modes well reproduce the flow field

dynamics. However, for strongly inhomogeneous

flows (as that of the present data-set) a higher number

of modes are typically required to capture a significant

amount of energy of the flow, as also discussed in

Glauser and George [13].

The most energetic modes provided by the POD,

SI-POD and NE-POD are described in Figs. 7, 8 and 9,

respectively. These figures show the odd modes of the

first 12, carrying an overall energy between 43% (SI-

POD) and 50% (POD) for the different procedures.

x/L=0
x/L=1PIV field of view

Fig. 4 Test section and PIV field of view
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The POD modes shown in Fig. 7 clearly show large

streamwise fluctuations in the boundary layer typical

of by-pass transition. The first classic POD mode

shows streamwise velocity fluctuations within the

boundary layer region where the highest values of

u0rms=U0 are observed in Fig. 5. This is a typical

statistical representation of elongated boundary layer

streaks. Conversely, the third mode shows vectors

pointing upstream close to the transition end position

(x=L ¼ 0:6), and a perturbation velocity vortex is

recognizable at the edge of the boundary layer. In

these modes, the classic PODmethod isolates the most

energetic boundary layer fluctuations from the free-

stream turbulence, as a consequence of their signifi-

cantly different energy content. Events resembling

free-stream vortices are only observable in modes 7

.05 .07 .08 .10 .12 .13 .15 .17 .18 .20

x/L0.4 0.45 0.5 0.55 0.6 0.65

u’rms/U0

x/L0.4 0.45 0.5 0.55 0.6 0.65
0

0.02

0.04

0.06

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.8 0.9
y/L

u/U0

Fig. 5 (Left) time-mean normalized streamwise velocity u=U0 and (right) rms of velocity fluctuations u0rms=U0. Streamwise and the

normal to the wall coordinates are scaled by the plate length L
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Fig. 6 Energy content of reconstructed fields obtained from an

increasing number of POD, SI-POD and NE-PODmodes for by-

pass transition case
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Fig. 7 Vector fields of the first odd 12 classic POD modes. Mode number and corresponding eigenvalue is indicated in the upper-left

corner of each plot. Mean boundary layer thickness is indicated by red line

123

2206 Meccanica (2021) 56:2197–2217



and 11, where boundary layer fluctuating activities are

less pronounced.

The spatial normalization introduced into the SI-

POD makes free-stream oscillations more evident than

in the snapshot POD modes. Indeed, all the modes of

Fig. 8 better highlight turbulent events in the free-

stream, resembling large scale vortices that are known to

play a crucial role in the breakup of streaky structures,

leading to the by-pass transition of the boundary layer

(e.g., [17]). Modes 5 and 9 clearly resemble a train of

vortices at the edge of the time-mean boundary layer.

However, the SI-POD procedure completely loses

information about boundary layer events (due to the

occurrence of streaky structures), since they are sparse

events occurring randomly in time, hidden by the

introduction of the spatial normalization in Eq. (18).

The possibility to take advantage of both spatial

normalization, without precluding the possibility to

0
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0.04
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Fig. 8 Vector fields of the first odd 12 SI-PODmodes. Mode number and corresponding eigenvalue is indicated in the upper-left corner

of each plot. Mean boundary layer thickness is indicated by red line
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Fig. 9 Vector fields of the first odd 12 NE-POD modes. Mode number and corresponding eigenvalue is indicated in the upper-left

corner of each plot. Mean boundary layer thickness is indicated by red line
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highlight sparse events embedded in the data ensem-

ble, is the main characteristic of the NE-POD method.

Large scale vortices at the edge of the boundary layer

are observable in the NE-POD modes 7, 9 and 11, but

in this case boundary layer fluctuations are also

represented by the modes. Particularly, the 3-rd and

5-th NE-POD modes show high fluctuations in the

boundary layer resembling boundary layer streaks

(similar to the first POD mode of Fig. 7), with also

free-stream oscillations. However, in these modes the

free-stream fluctuations do not assume the shape of

large scale vortices, even though the following ones

suggest their presence.

In order to further exploit the capability of the NE-

POD method to capture free-stream and boundary

layer related events, modes 3 and 5 of the NE-POD

were further decomposed as a linear combination of

pure sinusoidal contributions. This provides a further

split of the different fluctuations based on their

frequency content. The FFTs of the 3-rd and the 5-th

NE-POD temporal coefficients have been computed

first to highlight the frequency content of the turbulent

events captured by the corresponding modes (see

Fig. 10). A low frequency peak with rapid energy

decrease characterizes the spectrum of the third mode

(rhombus point symbols), while a broader band

spectrum characterizes the fifth mode (circle point

symbols). Thus, mode 3 mainly describes low-fre-

quency events while modes 5 is related to multiple

frequencies. Two bands have been therefore consid-

ered for the decomposition of the modes by Eq. (32).

More precisely, the frequency capturing similar

energy in both spectra (i.e. where the spectra intersect)

was chosen to distinguish between low and high

frequency contributions, as shown in Fig. 10. The low

frequency activity mostly characterizing the third NE-

POD mode is therefore isolated from the higher

frequencies animating the fifth mode. It should be

noted that the frequency bands used for the mode

decomposition are strictly related to the specific flow

configuration at hand.

The low frequency contributions to both NE-POD

modes are reported in Fig. 11 (top plots). They are

related to the occurrence of boundary layer fluctua-

tions for both the modes presented. On the contrary, in

the present case the higher frequencies contributions

(bottom plots of Fig. 11), mostly describe events

related to free-stream vortices which are located above

the boundary layer edge, showing similarities with the

shear sheltering mechanism well described by Jacob

and Durbin [17] and successively by Zaki and Saha

[46]. To the authors’ knowledge no evidence of this

phenomenon has been yet obtained from experimental

data by means of the existing modal decomposition

techniques. The weights introduced in the new proce-

dure act enhancing sparse events occurring in time (i.e.

boundary layer streaks) and turbulent events embed-

ded in low mean kinetic energy, like free-stream

vortices that are typically not captured by other

procedures. In the bottom-right plot of Fig. 11, Q2

events (i.e. u0\0 and v0 [ 0, according to [30]) around

x=L ¼ 0:6 are also more evident than in the original

NE-POD modes, coexisting with free-stream vortices

animated by the same frequencies. On the other hand,

bursting events are instead not observable in the

bottom-left plot of this figure, where free-stream

structures are evidently characterized by larger length

scale.

4.2 Separated flow transition

The second experimental data set concerns a pressure

induced laminar separation bubble. This transitional

environment shares a great not uniformity with the by-

pass case, jointly with an organized vortex shedding

phenomenon similar to the DNS data set. Measure-

ments have been carried out in the same test section

(Fig. 4) with the same inlet FSTI (2.87%) of the

previous data set. The Reynolds number based on the

inlet velocity and the plate length L is instead reduced

to 40,000. In this context a laminar separation bubble

occurs as a consequence of the strong APG imposed to

the flow. In such flow configuration, the amplification
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Fig. 10 FFTs of eigenvectors corresponding to NE-PODmodes

3 (rhombus point symbols) and 5 (circle point symbols)
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of velocity fluctuations due to the Kelvin–Helmholtz

instability process drives the formation of large scale

roll-up vortices forcing transition, thus reattachment,

as described in the works of Diwan and Ramesh [9],

Marxen and Henningson [25] and Michelis et al. [29].

The contour plots of the normalized streamwise

velocity u=U0 and the corresponding rms u0rms=U0 are

reported in Fig. 12. The flow region with negative

streamwise velocity confirms the occurrence of a

separation bubble (blue region in the plot). The

separation and the maximum displacement positions

are x=L ¼ 0:39 and x=L ¼ 0:52, respectively. These

positions were determined by looking at the mean flow

structure and the boundary layer integral parameters,

as described by Simoni et al. [38]. Maximum values of

the u0rms=U0 are localized inside the separated shear

layer, along the velocity profile inflection line, and the

maximum turbulence intensity was found in the flow

region downstream of the bubble maximum displace-

ment position, as also shown in the work of Yang and

Voke [43]. The high velocity fluctuations observable

in the reattachment region are due to the occurrence of

the large scale structures shed as a consequence of the

shear layer roll-up.

As for the previous cases, the energy content of

reconstructed fields obtained from an increasing

number of modes for the classic POD, the SI-PDO

and the NE-POD procedures is presented first in

Fig. 13. Also in this case both the SI-POD and the NE-

POD lose optimality with respect to the classic

method, with the NE-POD distribution being closer

to the SI-POD one. The difference between the curves

is 6% after 10 modes and they differ again by no more

than 2% after 100 modes.

The odd modes of the first 12 are reported in

Figs. 14, 15 and 16 for the classic POD, the SI-POD

and the NE-POD, respectively. Only the odd modes

have been chosen for the sake of brevity. The first POD

mode of Fig. 14 exhibits streamwise fluctuations in the

whole bubble, while the third one shows negative
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Fig. 11 Low frequency (LF) and high frequency (HF) contributions to NE-PODmodes 3 and 5.Mode number is indicated in the upper-

left corner of each plot. Mean boundary layer thickness is indicated by red line. (Color figure online)

x/L
0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.02

0.04

.05 .07 .08 .10 .12 .13 .15 .17 .18 .20

y/L

u’rms/U0

x/L
0.3 0.4 0.5 0.6 0.7 0.8 0.9

0

0.02

0.04y/L

0

0.02

0.04

0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9

y/L

u/U0

0

0.02

0.04y/L

Fig. 12 (Top) time-mean normalized streamwise velocity u=U0 and (bottom) rms of velocity fluctuations u0rms=U0. Streamwise and the

normal to the wall coordinates are scaled by the plate length L
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vectors in the fore part of the separated shear layer

with large scale fluctuations occurring behind the

maximum displacement position (x=L � 0:67,

y=L � 0:04). These modes may be linked to the

motions of the whole bubble due to the feed-back loop

mechanism and mean flow deformation (see [26]), or

to the presence of streaky structures in the separated

shear layer, due to the quite high FSTI level. Mode 5

and successive ones represent a sequence of counter-

rotating vortices generating downstream of

x=L ¼ 0:58, while the POD vectors are significantly

smaller upstream of this position. These modes are

representative of the shedding process dominating the

rear part of the bubble, as well described in the works

of Diwan and Ramesh [9] and Marxen and Henning-

son [25].

The modes obtained by the SI-POD method are

reported in Fig. 15. With respect to the classic POD,

the spatial normalization introduced in Eq. (18)

strongly emphasizes free-stream oscillations above

the separated shear layer, as in both previous cases.

Turbulent events into the separated shear layer (such

as those observed in the classic POD mode 3) are not

shown by the modes. As for the by-pass case, sparse

events in time are not captured by the SI-POD modes,

which mainly depict free-stream fluctuations and K-H

rolls. Vortices in the reattaching part of the boundary

layer are observable in modes 7, 9 and 11, while

oscillations in the free-stream region assume the shape

of large scale vortices only in mode 7.

Again, as also observed in the case of the by-pass

transition, the weighted scalar product introduced into

the definition of the NE-PODmethod allows capturing

turbulent events resembling streaky structures in the
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Fig. 13 Energy content of reconstructed fields obtained from an

increasing number of POD, SI-POD and NE-POD modes for

separation induced transition
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Fig. 14 Vector fields of the first odd 12 classic POD modes in the separated case. Mode number and corresponding eigenvalue is

indicated in the bottom-left corner of each plot. Mean flow structure is highlighted by iso-contour lines of the mean velocity (red lines).

(Color figure online)
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fore part of the bubble as well as free-stream vortices.

Indeed, modes 5 and 7 of Fig. 16 clearly exhibit

streamwise oscillations in the fore part of the bubble

between x=L ¼ 0:46 and x=L ¼ 0:58, while also

emphasizing flow oscillations in the free-stream

region upstream of x=L ¼ 0:45 (see mode 7). Oscil-

lation events resembling free-stream vortices are also

visible in modes 3, 9 and 11. The less energetic

oscillation events occurring upstream of the bubble

maximum displacement position are also more

0
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Fig. 15 Vector fields of the first odd 12 SI-POD modes in the separated case. Mode number and corresponding eigenvalue is indicated

in the bottom-left corner of each plot. Mean flow structure is highlighted by iso-contour lines of the mean velocity (red lines). (Color

figure online)
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Fig. 16 Vector fields of the first odd 12 NE-POD modes in case of separated boundary layer. Mode number and corresponding
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highlighted with respect to the classic POD. Also in

this case, the Fourier-based decomposition procedure

described in Sect. 2.6 was applied to further isolate the

turbulent events captured by the NE-POD modes. To

this end, NE-POD modes 5 and 7 are decomposed

since they show the coexistence of streamwise fluc-

tuations in the separated shear layer, K-H rolls and

also free-stream fluctuations above the boundary layer

edge.

The FFT of the 5-th and 7-th eigenvectors are

reported in Fig. 17. Low frequency fluctuations mostly

contribute to mode 5 (rhombus point symbols), while

mode 7 is animated by a temporal coefficient with

deterministic higher frequencies, with the peak linked

to the characteristic shedding frequency of the sepa-

rated shear layer, as described in details in the previous

authors’ work Simoni et al. [38]. Note that the 5-th

eigenvector still has a significant amplitude at this

frequency. The frequency capturing similar energy in

these two spectra has been chosen also in this case to

distinguish between low and high frequency contri-

butions to the modes. Low frequency contributions

allow isolating velocity fluctuations in the fore part of

the bubble (Fig. 18). Particularly, vectors pointing

upstream are clearly observable in the low frequency

contributions to the modes. This suggests that streaky

structures may occur in the separated boundary layer

due to the high FSTI level, according to what was

shown in the work of Istvan and Yarusevych [15] for

similar flow configuration. Otherwise, the counter

rotating vortices shown in the original modes down-

stream of x=L ¼ 0:6 are not observable in these plots.

Evidence of the shedding process are instead recog-

nizable in the high frequency contributions to the

modes. In both the second and fourth plots the

turbulent events appear more organized than in the

corresponding overall modes (compare Fig. 18 to 16).

Additionally, high frequency contributions also high-

light free-stream fluctuations above the separated

shear layer (bottom plot of Fig. 18), thus sharing

similarities with results obtained for the attached flow

configuration in the foregoing example.

5 POD and NE-POD filtered velocity fields

In this section, velocity fields obtained as combination

of a sub-set of classic POD and NE-POD modes are

presented. The aim is to discuss the different flow

features highlighted by these two low-order represen-

tations of the original data sets. It is pointed out here

that the full rank reconstruction provides the original

flow field for both the decompositions, since NE-POD

was shown to preserve the original energy of the flow.

Otherwise, considering only a subset of modes

provides evidence of the redistribution of velocity

fluctuations among the NE-POD spectrum with

respect to the classic POD. Figures 19, 20 depict

sequences of perturbation velocity maps for the by-

pass and separation induced transition, respectively.

Velocity fields are reconstructed using 10 modes, for

which the cumulative energy distributions reported in

Figs. 6 and 13 differ for no more than 10%.

Figure 19 shows 4 snapshots of NE-POD (left

column) and POD (right column) filtered fields for the

by-pass transition case. Note that the same sequence of

snapshots is presented in such a way to directly

highlight the different features captured by the low

order representations of the present data set. Both the

NE-POD and the POD filtered fields clearly highlight

the occurrence of velocity fluctuations into the

boundary layer (delimited with red line in the plots).

For both the decompositions adopted, a low-speed

streak is observed in the top snapshot around

x=L ¼ 0:52, which is shown to break up in the

successive images. The highest differences between

NE-POD and the POD filtered fields are observed

where streak breakup occurs (x=L[ 0:52). Particu-

larly, in the POD filtered snapshots (right column), Q2

events are more highlighted than in the corresponding

NE-POD filtered field. In the classic POD, breakup

events, which are characterized by elevate energy of

fluctuations, overshadow those linked to the formation
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Fig. 17 FFTs of eigenvectors corresponding to NE-PODmodes

5 (rhombus point symbols) and 7 (circle point symbols)
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and propagation of streamwise oriented streaks, which

are instead highlighted using the NE-POD modes for

the reconstruction of the instantaneous velocity field.

Additionally, free-stream fluctuations are better cap-

tured in the instantaneous realizations reported on the

left column of Fig. 19. This is due to spatial weight

matrix introduced in the NE-POD procedure. As a

consequence, using NE-POD modes instead of the

classic POD ones for the reconstruction of low order

models of the flow field at hand allows for a better

characterization of coexisting free-stream and streaks
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Fig. 18 Low frequency (LF) and high frequency (HF) contributions to NE-POD modes 5 and 7. Mode number is indicated in the

bottom-left corner of each plot. Mean flow structure is highlighted by iso-contour lines of the mean velocity (red dashed line). (Color

figure online)
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Fig. 19 Sequence of perturbation velocity maps for by-pass transition case reconstructed using 10 (left) NE-POD and (right) classic

POD modes. Time-mean boundary layer thickness is highlighted by means of contour line of u=U1 ¼ 0:99 (red line). (Color

figure online)
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related fluctuations, as well as their possible

correlation.

Figure 20 shows two sequences of NE-POD (top

plots) and POD (bottom plots) filtered snapshots for

the case of separation induced transition. Both low-

order reconstructions clearly highlight the propagation

of large scale K-H vortices from the maximum

displacement of the laminar separation bubble

(x=L[ 0:6). In the first NE-POD filtered snapshot

(top plot) a clock-wise rotating vortex seems to form at

x=L ¼ 0:56, which is shown to move forward in the

successive images. It should be noted that the same

pattern is not clearly observable in the corresponding

snapshot obtained by reconstruction from the classic

POD modes. This is due to the higher energy

characterizing the velocity fluctuations downstream

of the bubble maximum displacement, which prevents

the characterization of the formation process of new

K-H rolls. Additionally, the low-order filtered field

obtained by means of NE-POD modes better high-

lights the occurrence of stramwise fluctuations in the

separated shear layer for x=L\0:56 (compare the first

and second snapshots of both low-order representa-

tions) due to BL streaks, as well as the propagation of

large scale vortices in the free-stream region. These

latter structures, which are well captured by the NE-

POD filtered field, are not instead observable in any of

low-order POD representation. The present results

therefore suggest that the characterization of free-

stream vortices and of streaky structures, which

propagate in the separated shear layer, as well as their

link to the formation of K-H rolls, may be performed

x/L0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.02

0.04y/L t=t0+6Δt

0

0.02

0.04y/L t=t0+4Δt

0

0.02

0.04y/L t=t0

0

0.02

0.04y/L t=t0+2Δt

x/L0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.02

0.04 t=t0+6Δty/L

0

0.02

0.04 t=t0+2Δty/L

0

0.02

0.04 t=t0y/L

0

0.02

0.04 t=t0+4Δty/L

Fig. 20 Sequence of perturbation velocity maps for separation induced transition case reconstructed using 10 (top) NE-POD and

(bottom) classic POD modes. Mean flow structure is highlighted by iso-contour lines of the mean velocity (red lines). (Color

figure online)
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looking at low-order models obtained by means of the

NE-POD method here discussed.

6 Conclusions

In the present work, different variants of the classic

POD method, including temporal and spatial normal-

ization matrices and weighted scalar product, have

been applied to both numerical and experimental data.

The capability of these procedures to capture turbulent

events embedded in low energy spatio-temporal

regions has been discussed and highlighted.

For the specific flows at hand, the normalization of

the energy of each snapshot has been proved to

introduce only negligible variation with respect to the

classic POD procedure. This is due to the similar

energy level of the snapshots, different to what occurs

in highly phase dependent flow fields tested in the

literature. In the conditions examined in this work, the

normalization only acts ‘‘scaling’’ the data set.

Significant different modal representation character-

izes instead the SI-POD method, where the spatial

weight matrix acts normalizing the rows of the

snapshot matrix, thus better highlighting oscillation

events embedded in spatial region with low kinetic

energy. This procedure has been proved to better

emphasize free-stream events for the experimental test

cases considered. However, it almost completely hides

the occurrence of energetic events sparse in time (like

streaky structures in the by-pass transition process).

Such events are not recovered applying both spatial

and temporal normalization to the data matrix since

the spatial one dominates, being characterized by a

significantly larger rms of its diagonal entries. The

adaptation of a weighted projection into the NE-POD

method provides, in the case of separation induced and

by-pass transition beneath free-stream turbulence, the

greatest capability to identify oscillations events

occurring in low energetic spatial region as well as

sparse in time. In the case of bypass transition, the

occurrence of boundary layer streaks and less ener-

getic free-stream vortices has been clearly highlighted

by the NE-POD method. The Fourier decomposition

of the modes allowed isolating the low-frequency

streaky structures from the high-frequency free-stream

vortices. Interestingly, Q2 events related to streak

breakdown are characterized by the same frequency

contributions characterizing free-stream fluctuations.

In the case of separated flow transition, theNE-POD

procedure further highlights velocity fluctuations in the

fore part of the bubble. Low frequency contributions to

the modes well isolate streaky-like structures upstream

of the bubble maximum displacement, while higher

frequencies have been found to bemostly related to the

K-H rolls, originating downstream of this position.

Moreover, high frequency contributions to the modes

also highlight free-stream structures at the edge of the

separating boundary layer, similar to those observed in

the case of bypass transition.

Low-order reconstruction of the velocity field

obtained by means of POD and NE-POD modes in

case of by-pass and separation induced transition were

presented. NE-POD based low-order models have

been shown to better highlight lower energy events

such as free-stream vortices and ordered coherent

structures preceding the breakup process of both

streaky structures and K-H rolls in the attached and

separated boundary layer, respectively.
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