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Abstract The presented work concerns the kine-

matically excited transient vibrations of a cantilever

beam with a mass element fixed to its free end. The

Euler–Bernoulli beam theory and the fractional Zener

model of the beam material are assumed. A fractional

Caputo derivative is used to formulate a viscoelastic

material law. A characteristic equation, modal fre-

quencies, eigenfunction and orthogonality conditions

are achieved for the beam considered. The equations

of motion of the system are solved numerically. A

numerical solution of a multi-term fractional differ-

ential equation is obtained by means of a conversion to

a mixed system of ordinary and fractional differential

equations, each of the order of 0\c� 1. The transient

time histories of the beam vibrations during the

passage through resonance are calculated. A compar-

ison between the beam responses obtained with a

fractional and an integer viscoelastic material model is

presented. The calculations performed reveal that use

of the fractional damping affects on the time histories

of the system. The calculated beam responses show

that for some values of the order of the fractional

derivative c, the amplitudes occurring in the area of the

second resonance are greater than those obtained in the

area of the first resonance, which does not occur in the

case of the integer order of the fractional derivative.

Moreover, an evaluation is made of the difference

between the results obtained for the calculations using

the fractional Zener model and the fractional Kelvin

model. It is shown that for some physical beam

parameters, the calculation results obtained using both

models are virtually the same for both models, which

means that the the simpler, fractional Kelvin–Voigt

material can be used instead of the fractional Zener

material model. This simplifies the solution and

decreases the time needed to make the numerical

calculations.

Keywords Fractional viscoelasticity � Beam

vibration � Transient dynamics analysis � Transient

resonance

1 Introduction

Its well known that cantilever beams are widely used

to model various structural elements such as masts,

offshore structures, military airplane wings,

accelerometers, Stockbridge dampers, energy har-

vesters and high buildings [1–5]. A number of authors

have studied the dynamics of a cantilever beam with a

mass element fixed to its free end [6–13]. The majority

of these studies consider only the beam dynamics

without damping or with a viscoelastic material
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model, where an integer order Kelvin–Voigt material

model is employed. Furthermore, these works seldom

examine the forced transient vibrations of the analyzed

system. Machine components often work in an oscil-

lating environment, which can cause undesirable

vibrations of these elements. Moreover, machines

frequently operate in an area above their first or

subsequent resonance and therefore have to pass

through one or more resonances when starting or

stopping them. Therefore, it is very important to

determine the maximum amplitudes of the vibrations

and stresses that occur in a system while it passes

through a resonance. Many authors have studied this

issue for various system configurations, but many such

studies leave out some important considerations, such

as the influence of damping on system dynamics and

orthogonality conditions (see e.g. [3, 6–8]). It is well

known that the viscoelastic properties of materials can

significantly affect a system’s dynamic behavior. An

important issue in modeling the dynamics of a

structure is making a correct determination of its

energy dissipation properties, for the system’s

dynamic behavior is strongly dependent on its damp-

ing properties, which also depend on the viscoelastic

properties of the material. Thus, a dynamic analysis

should involve an appropriate model of the viscoelas-

tic material. Many structural materials show weak

frequency dependence for their damping properties

over a broad frequency range. This weak frequency

dependence of damping requires a complex descrip-

tion of the viscoelastic material using differential

equations of the integer order [14–17]. In recent

decades, fractional differential equations have been

used increasingly frequently to describe many phys-

ical phenomena, including the properties of viscoelas-

tic materials [18–20]. The fractional derivatives are

used to model both spatial (e.g. [21–24]) and time

dependent physical phenomena [18, 20, 25]. By means

of fractional derivatives it is possible to model the

damping properties of viscoelastic materials, espe-

cially those that show a weak dependence of the

damping properties on the frequency [14, 17, 26]. The

constitutive equations describing viscoelastic materi-

als whose damping properties are weakly dependent

on the frequency, written with fractional differential

equations, require fewer parameters than those written

using integer order equations [15–17]. An overview of

works and events concerning the fractional calculus is

provided in a paper by Machado at al. [19], whereas a

review of the historical development of fractional

calculus in the mechanics of solids is presented by

Roshikhin [27]. A survey of publications on the

application of fractional calculus in the dynamics of

solids is presented in a paper by Rossikhin and

Shitikova [28].

Probably the first paper dealing with the transient

dynamic response of a beam consisting of a viscoelas-

tic material described by a fractional derivative model

was published by Bagley and Torvik [28, 29]. They

analyzed a simply supported Euler–Bernoulli beam

with a viscoelastic layer described by a fractional

Kelvin–Voigt model. In their paper, the transient

response of the beam to step loading using a contin-

uum formulation and the finite element method was

presented. Later, the dynamics of beams with vis-

coelastic properties described by the fractional

Kelvin–Voigt model were studied in various works

[28, 30–33]. It is the most commonly used fractional

model of a viscoelastic material in modeling the

dynamics of beams. The fractional Kelvin–Voigt

model has some advantages, of which the most

important is that it can be easily applied in the analysis

of the dynamics of various structural elements. The

use of the Kelvin–Voigt fractional viscoelastic mate-

rial model in modeling the dynamics of structural

elements allows us to obtain equations that can be

relatively easily solved by known methods used in

solving elastic problems.

Unfortunately, this model also has some disadvan-

tages. One of them is that it overestimates material

damping for higher frequencies. Caputo and Mainardi

[15] have show that the fractional Zener solid model

allows for a wider agreement with the experimental

data then fractional Kelvin–Voigt model. Similar

conclusions have been presented by other authors,

e.g Bagley [34] and Pritz [35]. Another disadvantage

is that this model cannot describe the behavior of some

types of viscoelastic auxetic materials possessing

negative Poisson’s ratios [36]. The fractional Zener

solid model does not have the aforementioned disad-

vantages [36] and is therefore being used increasingly

in modeling the dynamics of solids. The fractional

Zener solid model has been employed in beam

dynamics. A brief overview of the research using this

material model to describe the beam dynamics is

presented below.

Stankovic and Atanackovic analyzed the dynamics

and stability of a beam with the fractional Zener
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material model. They studied the lateral vibrations of a

compressed simply supported beam. They analyzed

the existence of a solution in the space of Laplace

hyperfunctions and performed a detailed stability

analysis of the solution [37]. In the paper [30],

aforementioned authors analyzed a similar beam

system. They showed that the dynamics of the problem

is governed by a single linear differential equation

with a fractional derivative. Moreover, they obtained

the form of the solution for the case of a periodic

compressive force. Lewandowski and Baum [38]

presented a dynamic analysis of a multilayered beam

with viscoelastic layers described by the fractional

Zener model. They applied the Euler–Bernoulli beam

theory to elastic layers and the Timoshenko theory to

the viscoelastic layers. They adopted the finite element

method, the virtual work principle, and the Laplace

transformation to derive of the equation of motion in

the frequency domain. Additionally, the authors found

that system parameter changes impacted greatly on the

value of the natural frequency and the non-dimen-

sional damping ratios of the beam. Lewandowski and

Wielentejczyk [39] studied non-linear, steady state

vibrations of beams, excited by harmonic forces. They

applied the von Karman theory to take account of

geometric nonlinearities. They used the finite element

approach. The one-harmonic function in time was

assumed to describe the steady-state vibration of the

beams being studied. The authors utilized the har-

monic balance method for a system of which the

constitutive stress-strain relationship was given as a

differential equation containing the fractional deriva-

tives for both stress and strain. Furthermore, they

examined the stability of the steady-state solution.

Martin [40] presented quasi-static analysis, classical

and fractional dynamic analysis of a simply supported

viscoelastic beam subjected to uniformly distributed

load. In this paper, the author studied the dynamic

behavior of Euler–Bernoulli beam with its damping

properties described in terms of fractional derivatives

of an arbitrary order. The governing equation was

solved with a mixed algorithm based on Galerkin’s

method for the spatial domain and the Laplace

transform, Bessel functions theory and binomial series

expansion for the time domain. The proposed

approach was used to solve sample problems. The

usefulness of the proposed approach has been demon-

strated by calculations of beam deflections in time for

various orders of the fractional derivative.

Analyzing the work described above, it can be

noted that the use of the fractional Zener solid model

significantly complicates the solution of the investi-

gated problem as well as further numerical calcula-

tions. In addition, the use of the fractional Zener model

in the description of the forced vibration of structural

elements causes the appearance of a fractional

derivative of the forcing force in the equations of

motion [41, 42], which significantly complicates the

solution of the problem and the numerical calcula-

tions. Furthermore, the presence of a fractional

derivative of the forcing force in the equations of

motion can be expected to significantly increase the

numerical computation time. Thus, although the

fractional Zener model better describes the dynamic

properties of materials over a wide frequency range

than the Kelvin–Voigt model does, its application

greatly complicates the solution of the investigated

problem and the numerical calculations.

In the author’s opinion, it should be examined

whether, in calculating the dynamics of beams or other

structural members, using the fractional Zener model

yields significantly different results than using the

fractional Kelvin–Voigt model. Moreover, the number

of research works that have studied the transient

forced vibrations of viscoelastic beams described by

the fractional Zener model is rather limited. In

particular, there is a lack of studies of the transient

forced vibrations of cantilever beams with a tip mass

element and using the fractional Zener material model.

Analysis of the transient vibration of the cantilever

beam with tip element mass and with material

properties described by the fractional Kelvin–Voigt

model has been presented in a previous paper by the

author [32]. However, in this work the equations of

motion were obtained without using the Laplace

transform. Moreover, a different method of computing

the generalized coordinates was used. Namely, the

beam response was calculated using a convolution

integral of the fractional Green’s and forcing

functions.

To the author’s knowledge, a transient dynamic

analysis of a cantilever beam with a mass element

fixed to its end has been performed only for beams

with a fractional viscoelastic material described with

the help of the fractional Kelvin–Voigt model. The

objective of this study, therefore, is to analyze the

transient vibrations of a cantilever beam with a mass

element fixed to its free end and with a viscoelastic
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material characterized by the fractional Zener model.

Furthermore, the purpose of this paper is to investi-

gates whether the use of the fractional Kelvin–Voigt

model can be sufficient when calculating structural

member dynamics, that is, whether the calculation

results obtained using the two models mentioned

differ significantly. The presented analysis may be

useful, for example, in modeling energy harvesting

devices [4].

2 Problem formulation

In this work, a cantilever beam with a tip element of

mass mp, moment of inertia IB and length l is studied.

A homogeneous beam with a uniform cross-section

and mass density is assumed. The mass center of the

mass element coincides with the free end of the beam

(Fig. 1). The Euler–Bernoulli theory is assumed, i.e.

the rotary inertia and shear deformation are neglected.

It is assumed that the beam can move only in the xz-

plane and that the gravitational force is perpendicular

to this plane, so that the gravitational force does not

affect the beam motion. The beam is excited by a base

motion along the z axis (Fig. 1).The viscoelastic

properties of the beam material are assumed to be

characterized by a fractional Zener model, which is

defined as follows [15, 16, 43]

rðtÞ þ bDðcÞðrðtÞÞ ¼ E �ðtÞ þ lcD
ðcÞð�ðtÞÞ

� �
ð1Þ

where rðtÞ and �ðtÞ are the stress and strain histories, b

and lc are time constants [43], E is the relaxed

modulus, t is time and DðcÞð�Þ is the Caputo fractional

derivative of the order c defined as [14, 18, 44]

DðcÞðf ðtÞÞ � 1

Cðm� cÞ

Z t

0

DðnÞ f ðsÞð Þ
ðt � sÞcþ1�m

ds ð2Þ

where Cðm� cÞ is the Euler gamma function [18],

DðnÞ f ð�Þð Þ ¼ on

otn ð�Þ is the n-th derivative of a function

f ð�Þwith respect to time,m is a positive integer number

satisfying the inequality m� 1\c\m, and t[ 0.

It is often assumed that the order of the fractional

derivative is in the range 0\c� 1 for many real

materials [16, 17], where c ¼ 1:0 corresponds to the

integer order derivative [18, 44].

Using the fractional Zener material model Eq. (1),

the following equation for the forced transverse motion

of a beam is obtained (see ‘‘Appendix A’’ section)

EJ
o4wðx; tÞ

ox4
þ lcD

ðcÞ o4wðx; tÞ
ox4

� �� �

þ Aq
o2wðx; tÞ

ot2
þ bDðcÞ o2wðx; tÞ

ot2

� �� �

¼ qðx; tÞ þ bDðcÞ qðx; tÞð Þ

ð3Þ

where w(x, t) is the transversal displacement of the

neutral beam axis (Fig. 1), A is the area of the cross-

section of the beam, J is the moment of inertia of the

beam cross-section with respect to the neutral axis, q is

the material mass density of the beam, q(x, t) is the

transverse load per unit length acting on the beam, x is

the longitudinal coordinate.

The solution is sought on the assumption that the

beam is at rest at the initial instant of time, and so the

initial shear force and the bending moment are zero.

The solution to Eq. (3) must satisfy the boundary

conditions for the beam considered, i.e. the displace-

ment follows from a base motion whereas the slope of

the displacement curve must be zero at the fixed end,

i.e. x ¼ 0, and so the boundary conditions are defined

as below

w 0; tð Þ ¼ wbs tð Þ and
owð0; tÞ

ox
¼ 0 ð4Þ

where wbs tð Þ is a function of time, describing a base

motion.

The boundary conditions of the beam at the free end

with the mass element are obtained using the rate of

change of the linear and angular momentum of the

mass element relative to its mass center (see Appendix

‘‘B’’ section) [45, 46]. Thus,

mp
o2wB tð Þ
ot2

¼ �V l; tð Þ; and IB
o3w l; tð Þ
oxot2

¼ M l; tð Þ

ð5Þ
Fig. 1 Schematic of the system analyzed
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where V(l, t) and M(l, t) are the shear force and

bending moment, respectively.

The relationship for a bending moment can be

obtained by multiplying both sides of Eq. (1) by z and

integrating over the cross-section area of the beam

(e.g.[38])

Mðx; tÞ þ bDðcÞðMðx; tÞÞ

¼ �EJ
o2wðx; tÞ

ox2
þ lcD

ðcÞ o2wðx; tÞ
ox2

� �� � ð6Þ

For a beam excited by a base motion, the transverse

translation of the beam can be considered as the sum of

the rigid body and the relative translation [47], viz

w x; tð Þ ¼ wbs tð Þ þ wrlðx; tÞ ð7Þ

where wrl is the relative translation of the neutral beam

axis with respect to the clamped end of the beam.

Substituting appropriate derivatives of Eq. (7) into

Eq. (3), the equation of motion of the beam can be

written as

EJ
o4wrlðx; tÞ

ox4
þ lcD

ðcÞ o4wrlðx; tÞ
ox4

� �� �

þ Aq
o2wrlðx; tÞ

ot2
þ bDðcÞ o2wrlðx; tÞ

ot2

� �� �

¼ qðx; tÞ þ bDðcÞ qðx; tÞð Þ
� �

� Aq Dð2Þ wbsðtÞð Þ þ bDðcÞ Dð2Þ wbsðtÞð Þ
� �� �

ð8Þ

Similarly, by substituting derivatives of the expression

Eq. (7) into Eq. (6), the bending moment is expressed

as

Mðx; tÞ þ bDðcÞðMðx; tÞÞ

¼ �EJ
o2wrlðx; tÞ

ox2
þ lcD

ðcÞ o2wrlðx; tÞ
ox2

� �� �

ð9Þ

Assuming zero initial conditions, and applying the

Laplace transform [18, 44] to the equation above, the

expression for the bending moment in the Laplace

domain is derived

bMðx; sÞ ¼ �EJ bwð2Þ
rl ðx; sÞ

1 þ lcs
c

� �

ð1 þ bscÞ
ð10Þ

where f ðnÞð�Þ ¼ on

oxn f ð�Þ is n-th derivative of function

f ð�Þ with respect to the spatial variable, s is the Laplace

variable.

Using the relationships for bending moment

Eq. (10) and applying the Laplace transform to the

boundary conditions for the end with a tip mass

element Eq. (5), the boundary conditions at x ¼ l can

be formulated as follows

IB � s2 bwð1Þ
rl ðl; sÞ ¼ �EJ bwð2Þ

rl ðl; sÞ
1 þ lcs

c
� �

1 þ bscð Þ

mps
2 bwbs sð Þ þ bwrlðl; sÞð Þ ¼ EJ bwð3Þðl; sÞ

1 þ lcs
c

� �

ð1 þ bscÞ
ð11Þ

Next, the equations above can be transformed as

IB � s2 bwð1Þ
rl ðl; sÞ þ EJ bwð2Þ

rl ðl; sÞ
1 þ lcs

c
� �

1 þ bscð Þ ¼ 0

mps
2 bwrl l; sð Þ � EJ bwð3Þ

rl l; sð Þ
1 þ lcs

c
� �

1 þ bscð Þ

¼ �mps
2 bwbs sð Þ

ð12Þ

Applying the Laplace transform to the equation of

motion Eq. (3), one obtains

EJ bwð4Þ
rl x; sð Þ 1 þ lcs

c
� �

þ q As2 bwrl x; sð Þ 1 þ bscð Þ

¼ bq x; sð Þ � qA s2 bwsb sð Þ
� �

1 þ bscð Þ
ð13Þ

this equation can be rewritten as

eEJ bwð4Þ
rl x; sð Þ þ q As2 bwrl x; sð Þ

¼ bq x; sð Þ � qA s2 bwsb sð Þ
ð14Þ

where

eE ¼ E
1 þ lcs

c
� �

1 þ bscð Þ

As can be seen, Eq. (14) is identical form to a well-

known equation for an elastic beam.

The homogeneous equation of Eq. (13) may be

transformed to the form

bwð4Þ
rl x; sð Þ � k4 bwrl x; sð Þ ¼ 0 ð15Þ

where
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k4 ¼ � q A

EJ
s2 1 þ bscð Þ

1 þ lcsc
� � ð16Þ

The solution to the problem formulated in equations

(12) and (13) is sought as a convergent series of the

eigenfunctions of the elastic beam [28, 45, 48]

bwrl x; sð Þ ¼
X1
n¼1

Wn xð Þbnn sð Þ ð17Þ

where WnðxÞ are the eigenfunctions of the correspond-

ing elastic beam, bnn sð Þ are time-dependent general-

ized coordinates in the Laplace domain.

The eigenfunctions WnðxÞ may be found using a

well-known procedure (see e.g [4, 32, 45]), namely by

solving analogical equation to Eq. (15) for the elastic

beam with homogeneous boundary conditions

Eq. (12). Then, using separation of variable method,

the following equation can be obtained

W ð4Þ xð Þ � k4W xð Þ ¼ 0 ð18Þ

The solution to Eq. (18) is sought in the form

W xð Þ ¼ A sin kxð Þ þ B cos kxð Þ þ C sinh kxð Þ
þ D coshðkxÞ

ð19Þ

Utilizing the boundary conditions for the clamped

beam end, it can be found that A ¼ �C and B ¼ �D.

Next, employing these results and the boundary

conditions for the beam end with the element mass,

the system of equations for the constants A and B is

formulated as

p3 � b � cos pð Þ � cosh pð Þ½ � þ sin pð Þ þ sinh pð Þ½ �
� 	

A

þ �p3 � b � sin pð Þ þ sinh pð Þ½ � þ cos pð Þ þ cosh pð Þ½ �
� 	

B ¼ 0

a � p � sin pð Þ � sinh pð Þ½ � � cos pð Þ þ cosh pð Þ½ �f gA

þ a � p � cos pð Þ � cosh pð Þ½ � þ sin pð Þ � sinh pð Þ½ �f gB ¼ 0

ð20Þ

where a ¼ mp

qAl, b ¼ IB
qAl3, and p ¼ k � l

The system of equations derived above Eq. (20) is

fulfilled if the determinant of the coefficients matrix of

the system of equations equals zero. Thus, equating the

determinant of Eq. (20) to zero, after many mathemat-

ical transformations, the characteristic equation of the

system is obtained

� p4a � b � 1 � cos pð Þ cosh pð Þ½ �

þ p3b � cos pð Þ sinh pð Þ þ cosh pð Þ sin pð Þ½ �

þ p � a � sin pð Þ cosh pð Þ � sinh pð Þ cos pð Þ½ �

� 1 � cos pð Þ cosh pð Þ ¼ 0

ð21Þ

The solution of the characteristic equation (21) has a

countable infinite set of roots. The pn root of the

characteristic equation corresponds to the n-th natural

undamped frequency xn of the elastic beam. The

frequencies can be calculated using the well-known

expression [45, 46, 49, 50]

xn ¼ k2
n

ffiffiffiffiffiffi
EJ

qA

s
ð22Þ

where

kn ¼
pn
l

Having calculated the roots of the Eq. (21), the

numbers kn and the natural frequencies xn can be

calculated. Next, determining kn from Eq. (22) and

substituting into Eq.(16), the equation for natural

damped frequencies of the viscoelastic beam is

obtained [49]

x2
n

qA
EJ

¼ � q A

EJ
s2 1 þ bscð Þ

1 þ lcsc
� � ð23Þ

The equation above may be rewritten as

sð2þcÞ þ 1

b
s2 þ 1

b
lcs

cx2
n þ

1

b
x2

n ¼ 0 ð24Þ

In a paper by Rossikhin and Shitikova [51], it is shown

that Eq. (24) has no real negative root and lacks

complex conjugate roots in the right half-plane of the

complex plane. The real part of the n-th root determi-

nes the damping coefficient of the n-th mode, while the

imaginary part determines the n-th damped natural

frequency.

Substituting the roots pn and the numbers kn into

Eqs. (20) and (21), the eigenfunction of the analyzed

beam can be written as

WnðxÞ

¼ An ½sinðknxÞ � sinhðknxÞ� � kn½cosðknxÞ � coshðknxÞ�f g
ð25Þ

where
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kn ¼
pn � a � sin pnð Þ � sinh pnð Þ½ � � cos pnð Þ þ cosh pnð Þ½ �
pn � a � cos pnð Þ � cosh pnð Þ½ � þ sin pnð Þ � sinh pnð Þ½ �

Functions WnðxÞ must fulfill the orthogonality condi-

tions [48]. These orthogonality conditions have the

following form [4, 32]

Z l

0

W ð4Þ
n ðxÞ � E J �WmðxÞdx� EI � W ð3Þ

n ðlÞWmðlÞ

þ EI � W ð2Þ
n ðlÞW ð1Þ

m ðlÞ ¼ x2
ndnm

ð26Þ

or, in an alternative form

Z l

0

WnðxÞ � ml �WmðxÞdxþ mp � WnðlÞWmðlÞ

þ IB � W ð1Þ
n ðlÞW ð1Þ

m ðlÞ ¼ dmn

ð27Þ

where dmn is the Kronecker delta, and ml ¼ Aq
The eigenvalues and eigenfunction can be com-

puted using equations Eqs. (21) and (25). The knowl-

edge of these values enable us to obtain a solution to the

forced vibration. Substituting Eq. (17) into Eq. (13),

the following expression is derived

EJ
X1
n¼1

W ð4Þ
n xð Þnn sð Þð1 þ lcs

cÞ

þ q A
X1
n¼1

Wn xð Þnn sð Þs2 1 þ bscð Þ

¼ qðx; sÞ � qAs2wsbðsÞ
� �

1 þ bscð Þ

ð28Þ

Multiplying both sides of Eq. (28) by the mass-

normalized eigenfunction WsðxÞ and integrating over

the length of the beam, one obtains

X1
n¼1

Z l

0

Ws xð ÞEJ �W ð4Þ
n ðxÞnn sð Þð1 þ lcs

cÞdx

þ
X1
n¼1

Z l

0

WsðxÞmlWnðxÞnn sð Þs2 1 þ bscð Þdx

¼
Z l

0

WsðxÞ qðx; sÞ � mls
2wbsðsÞ

� �
1 þ bscð Þ

� �
dx

ð29Þ

Employing the orthogonality conditions (Eqs. (26)–

(27)) Eq. (29) may be rewritten as

1 þ lcs
c

� �

X1
n¼1

n̂nðsÞ x2
ndns þ EJ �Wð3Þ

n ðlÞ �WsðlÞ � EJ �W ð2Þ
n ðlÞW ð1Þ

s ðlÞ
� �

þ s2 1 þ bscð Þ
X1
n¼1

n̂nðsÞ dns � mp �WnðlÞWsðlÞ � IB �W ð1Þ
n ðlÞW ð1Þ

s

� �

¼
Z

0

WsðxÞ qðx; sÞ � mls
2wbsðsÞ

� �
1 þ bscð Þdx

ð30Þ

Arranging and grouping the appropriate terms, after

several arithmetical transformations, the following

relationship is obtained

x2
n 1 þ lcs

c
� �

nn sð Þ þ s2 1 þ bscð Þnn sð Þ

�
X1
n¼1

1 þ bscð Þ�

mps
2Wn lð Þ � EJ �Wð3Þ

n lð Þ
ð1 þ lcs

cÞ
1 þ bscð Þ

� �
Ws lð Þnn sð Þ

�
X1
n¼1

1 þ bscð Þ�

IBs
2Wð1Þ

n lð Þ þ EJ �W ð2Þ
n lð Þ

1 þ lcs
c

� �

1 þ bscð Þ

 !
W ð1Þ

s lð Þnn sð Þ

¼
Z l

0

WsðxÞ qðx; sÞ � mls
2wbsðsÞ

� �
1 þ bscð Þ

� �
dx

ð31Þ

In the next step, the boundary conditions (Eq. (12))

should be transformed. Employing the sought solution

(17), multiplying both sides of the first equation by

WsðlÞ and the second equation by W
ð1Þ
s ðlÞ, the bound-

ary conditions are expressed as

X1
n¼1

IBs
2W ð1Þ

n lð Þ þ EJ�W ð2Þ
n lð Þ

1 þ lcs
c

� �

1 þ bscð Þ

 !

W ð1Þ
s lð Þnn sð Þ ¼ 0

X1
n¼1

mps
2Wn lð Þ � EJ�Wð3Þ

n lð Þ
1 þ lcs

c
� �

1 þ bscð Þ

 !
Ws lð Þnn sð Þ

¼ �mps
2wbs sð ÞWs lð Þ

ð32Þ
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It can be noticed that the expressions under the sum

operator in Eq. (31) are the same as the left-hand sides

of the equations for the boundary conditions

(Eq. (32)), and so, after a number of arithmetical

transformations, the following equation for general-

ized coordinates in the Laplace domain is derived

sð2þcÞnn sð Þ þ 1

b
s2nn sð Þ þ 1

b
lcs

cx2
nnn sð Þ þ 1

b
x2

nnn sð Þ

¼ 1

b

Z l

0

WnðxÞ qðx; sÞ � mls
2wbsðsÞ

� �
1 þ bscð Þ

� �
dx

� 1

b
mps

2wbs sð ÞWn lð Þ 1 þ bscð Þ

ð33Þ

Assuming zero initial conditions, the equation above

corresponds to the following equation in the time

domain [18, 44]

Dð2þcÞ nn tð Þð Þ þ 1

b
Dð2Þ nn tð Þð Þ þ lc

x2
n

b
DðcÞ nn tð Þð Þ

þ x2
n

b
nn tð Þ ¼ Qnðx; tÞ þ PnðtÞ

ð34Þ

where

Qnðx; tÞ ¼

1

b

Z l

0

qðx; tÞ � mlD
ð2Þ wbsðtÞð Þ

� �
WnðxÞdx

þ
Z l

0

DðcÞ qðx; tÞ � mlD
ð2Þ wbsðtÞð Þ

� �
WnðxÞdx

PnðtÞ ¼

� 1

b
mpD

ð2Þ wbs tð Þð Þ � mpD
ðcÞ Dð2Þ wbs tð Þð Þ
� �� �

Wn lð Þ

The differential equation achieved for the generalized

coordinates for the fractional Zener beam (Eq. (34)) is

more complicated than the analogous equation obtained

for the fractional Kelvin–Voigt beam [32]. It can be seen

that the order of Eq. (34) is 2 þ c, meaning that the order

is fractional and it is greater than 2, which greatly

complicates the numerical solution of this equation.

Moreover, the right side of the Eq. (34) contains

fractional derivatives of the load and inertial force,

which also complicates the numerical solution and

significantly extends the numerical simulation time.

Generalized coordinates nnðtÞ can be calculated

numerically with the help of a method similar to the

methods described in the paper by Edwards et al. [52]

and in the book by Diethelm [53] (Chapter 8). Namely,

the numerical solution of the linear multi-term frac-

tional differential Eq. (34) can be obtained by

converting this equation to a system of mixed ordinary

and fractional differential equations, each of the order

0\c� 1. Therefore, the Eq. (34) can be converted into

a system of equations as shown below

DðcÞ nð1Þn tð Þ
� �

¼ nð2Þn tð Þ

Dð1�cÞ nð2Þn tð Þ
� �

¼ nð3Þn tð Þ

Dð1Þ nð3Þn tð Þ
� �

¼ nð4Þn tð Þ

DðcÞ nð4Þn tð Þ
� �

¼ Qnðx; tÞ þ PnðtÞ

8>>>>>><
>>>>>>:

ð35Þ

where Qnðx; tÞ and PnðtÞ have the same meaning as in

Eq.(34).

It can be noticed that

nð3Þn tð Þ ¼ Dð1�cÞ nð2Þn tð Þ
� �

¼ Dð1�cÞDðcÞ nð1Þn tð Þ
� �

¼ Dð1�cþcÞ nð1Þn tð Þ
� �

¼ Dð1Þ nð1Þn tð Þ
� �

ð36Þ

The identity above simplifies the solution of the

system of differential equations Eq. (35)

Due to the presence of the fractional derivative in

the equations of motion, the use of the method

presented in the author’s previous paper [32] was

practically impossible, due to the considerable diffi-

culties in computing the convolution of the fractional

Green function and the forcing function [31, 32].

Calculations of the transient vibrations of the

analyzed beam with the fractional Kelvin–Voigt

material are performed using the equation presented

in the author’s previous paper [32].

EJ
o4wrl x; tð Þ

ox4
þ lck

dc

dtc
o4wrl x; tð Þ

ox4

� �� �

þ Aq
o2wrl x; tð Þ

ot2
¼ q x; tð Þ � Aq

d2wst tð Þ
dt2

ð37Þ

where lck is the time constant.

This equation can be solved using the separation of

variables method. Employing this method, the fol-

lowing equations of generalized coordinates are

obtained
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Dð2Þ nn tð Þð Þ þ x2
n nn tð Þ þ lckD

ðcÞ nn tð Þð Þ
� �

¼
Z l

0

q x; tð ÞWn xð Þdx� mlD
ð2Þ wbs tð Þð Þ

Z l

0

Wn xð Þdx

� mpD
ð2Þ wbs tð Þð Þ �WnðlÞ

ð38Þ

The calculation of the general coordinates (Eqs (38))

for the beam using the fractional Kelvin–Voigt

material is performed numerically using the same

method as for the beam with the fractional Zener

material. Thus the Eq. (38) is converted into a system

of differential equations of a mixed integer and

fractional order

DðcÞ nð1Þn tð Þ
� �

¼ nð2Þn tð Þ

Dð1�cÞ nð2Þn tð Þ
� �

¼ nð3Þn tð Þ

Dð1Þ nð3Þn tð Þ
� �

¼ Fnðx; tÞ

8>>><
>>>:

ð39Þ

where

Fnðx; tÞ ¼
Z l

0

q x; tð ÞWn xð Þdx� mlD
ð2Þ wbs tð Þð Þ

Z l

0

Wn xð Þdx

� mpD
ð2Þ wbs tð Þð Þ �WnðlÞ

The solution of the system of equations above can be

simplified using the identity Eq. (36)

The systems of mixed integer and fractional order

differential equations Eqs. (35) and (39) can be

partitioned into two separated systems of equations

solved simultaneously. The first system is of integer

order differential equations while the second one is of a

fractional order. Two different algorithms can be

employed to solve each system.

The systems of Eqs. (35) and (39) are solved using a

procedure for solving differential equations of a mixed

integer and fractional order. The procedure is written

by the author and implemented in the ‘‘Matlab’’

package. The fractional order differential equations

are solved using the trapezoidal rule for the fractional

Caputo derivative worked out by Diethelm et al [54].

The integer order equations are solved using the well-

known Adams–Bashforth–Moulton predictor- correc-

tor method [55, 56].

The roots of the characteristic beam equation (21)

are calculated using the ‘‘FindRoot’’ procedure of the

‘‘Mathematica’’ package whereas the roots of the

characteristic equation (24) are computed using the

‘‘NSolve’’ procedure of this package.

3 Investigation of the effect of the fractional

derivative order on transient vibrations

of a beam

The equations achieved in the previous section are

used to study the impact of the order of the fractional

derivative c on the dynamic properties of the analyzed

beam. Studies are made of the Plexiglas beam with

l ¼ 0:8 m, q ¼ 1190 kg/m3, A ¼ 5 � 10�4 m2, J ¼
1:667 � 10�8 m4, E ¼ 3:2 � 103 MPa , coefficients

a ¼ 1:0, b ¼ 0:05, 0.1 (Eq. (20)).

First, the impact of the order c of the fractional

derivative on the roots of the characteristic equation

was analyzed. These roots, namely sn ¼ �rn þ iXn,

were calculated for a ¼ 1:0, b ¼ 0:1, lc = 0.01841 sc

and for two values of the coefficient b i.e. 0.0161 and

0.0175 sc. The calculations are performed for the first

two vibration modes, which correspond to the first two

roots of the Eq. (24). As mentioned before, these roots

affect the damping coefficients and vibration ampli-

tudes of a beam. For each mode, two complex

conjugate roots are calculated.

The dependence of the calculated roots of the order

of the fractional derivative c is shown in Figs. 2 and 3.

The changes in the absolute value of the real part of the

root are shown in Fig 2, where it can be seen that the

absolute value of the real part of root, i.e. the damping

coefficient, increases with an increasing order of the

fractional derivative (Fig. 2). The changes in the value

of the imaginary part of the root, which corresponds to

the natural damped frequency Xn, are shown in Fig 3.

Note that the value of the damped natural frequency

changes rather insignificantly with an increase in the

order of the fractional derivative (Fig. 3).The damping

properties of elements are often characterized by a

dimensionless damping coefficient. The dimension-

less damping coefficient f can be defined as the ratio of

the real part (damping coefficient) to the imaginary

part (damped natural frequency) of the root of the

Eq. (24). The dependence of the dimensionless

damping coefficient on the order of the fractional

derivative for the first and second mode of vibrations is

shown in Fig. 4. The dependence of the dimensionless

damped natural frequency (Xn=x1) on the order of the
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fractional derivative c for two first vibration modes is

presented in Fig. 5. It can be seen that the value of the

first damped dimensionless natural frequency virtually

does not dependent on the order of the fractional

derivative.

In the next step, the effects of the order of the

fractional derivative c on the transient responses of the

beam are analyzed. The responses of the beam are

calculated using a system of equations (Eq. (35)), and

it is assumed that the distributed load qðx; tÞ ¼ 0. The

beam is excited by its base motion. The motion of the

beam base is determined by the following function of

time

wbsðtÞ ¼ w0 sin
e � t2

2

� �
ð40Þ

where w0 is the excitation amplitude, e is the angular

acceleration.

The dimensionless beam deflection w=w0 versus

the dimensionless time parameter s is computed for

the point at the end of the beam on which the mass

element is located (Fig. 1). The dimensionless time is

defined as s ¼ e � t=x1, where x1 is the first undamped

natural frequency of the analyzed beam. The calcula-

tions are performed for several values of the order of

the fractional derivative c, and e ¼ 20 s�2. A numer-

ical analysis is performed for lc ¼ 0:01841 sc and two

values of the coefficient b, viz b ¼ 0:0161 sc and

b ¼ 0:0175 sc.

The calculated maximum amplitudes of the beam

response for various values of the order of the

fractional derivative c, and a ¼ 1, b ¼ 0:05, and

b ¼ 0:1, and for b ¼ 0:0175 sc are shown in Table 2,

whereas those for b ¼ 0:0161 sc are presented in

Table 1. The time histories of the beam responses for

b ¼ 0:05, b ¼ 0:0161 sc and b ¼ 0:0175 sc are shown
Fig. 2 The real part of the roots of the characteristic equation

Eq. (24), a ¼ 1, b ¼ 0:1, lc ¼ 0:01841sc, a first mode b second

mode

Fig. 3 The imaginary part of the roots of the characteristic

equation Eq. (24), a ¼ 1, b ¼ 0:1, lc ¼ 0:01841sc, a first mode

b second mode
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in Figs. 6 and 7, while for b ¼ 0:1, b ¼ 0:0161 sc and

b ¼ 0:0175 sc they are presented in Figs. 8 and 9.

As can be seen in Tables 1 and 2 , the maximum

vibration amplitudes of the beam responses computed

for b ¼ 0:0175 sc are greater then those computed for

b ¼ 0:0161 sc. This is because for a constant value of

the coefficient lc, the damping level depends on the

value of coefficient b (see e.g. [44]), namely if b

increases, the damping level decreases. Moreover, it is

visible that the maximum amplitudes decrease with an

increasing order of the fractional derivative. The

results obtained show that with an increase in the order

of the fractional derivative, the vibration amplitudes

decrease (Tables 1 and 2, Figs. 6, 7, 8, and 9). This

effect is more noticeable in the area of the second

resonance, especially for lower values of the order of

the fractional derivative. Moreover, it can be seen

from the data in Tables 1 and 2 that the maximum

amplitudes occurring in the second mode of vibrations

are grater than those occurring in the first mode for

c ¼ 0:4 and b ¼ 0:0175 sc, and for both values of b
coefficient, whereas for b ¼ 0:0161 sc the amplitudes

are greater only for b ¼ 0:1. From the time histories of

the beam vibrations we can see significant difference

between the beam responses obtained for the material

model described with derivatives of the integer order

and those with derivatives of the fractional order, i.e.

Fig. 4 Dimensionless damping coefficient, a ¼ 1, b ¼ 0:1,

lc ¼ 0:01841sc, a first mode b second mode

Fig. 5 Damped dimensionless natural frequency, a ¼ 1,

b ¼ 0:1, lc ¼ 0:01841sc, a first mode b second mode

Table 1 Maximum amplitudes, fractional Zener model,

b ¼ 0:0161 sc, lc ¼ 0:01841 sc

c b ¼ 0:05 b ¼ 0:1

First mode Second mode First mode Second mode

0.4 7.77 7.45 7.08 9.15

0.6 7.61 5.65 6.94 7.62

0.8 7.33 3.35 6.68 5.40

1.0 6.84 2.16 6.23 3.61
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the amplitudes obtained for the material model

formulated using integer order derivatives are signif-

icantly lower than those obtained using fractional

derivatives.

In order to evaluate the differences between the

calculations results obtained for the beams with the

fractional Zener and Kelvin–Voigt models, additional

calculations for a similar beam with the fractional

Kelvin–Voigt model, described by Eq. (41), are

performed:

rðtÞ ¼ E �ðtÞ þ lckD
ðcÞ �ðtÞð Þ

� �
ð41Þ

where lck is the time constant.

In these calculations, it is assumed that the loss

tangent for the fractional Zener and Kelvin models is

equal for the first undamped natural frequency of the

beam under study. The loss tangent for the fractional

Zener material is expressed as [44]

tan dðmÞ ¼ 1

b
� 1

lc

 !
�

mc sinðcp
2
Þ

m2cþ 1
lc

1
b þ ð 1

lc
þ 1

bÞ mc cosðcp
2
Þ

ð42Þ

where m is the frequency of consideration.

The loss tangent of the fractional Kelvin–Voigt

material for the frequency m can be calculated using

equation [44]

Fig. 6 Beam response for b ¼ 0:05, b ¼ 0:0161 sc,
lc ¼ 0:0181 sc

Fig. 7 Beam response for b ¼ 0:05, b ¼ 0:0175 sc,
lc ¼ 0:0181 sc

Fig. 8 Beam response for b ¼ 0:1 sc, b ¼ 0:0161,

lc ¼ 0:0181 sc

Fig. 9 Beam response for b ¼ 0:1 sc, b ¼ 0:0175,

lc ¼ 0:0181 sc

Table 2 Maximum amplitudes, fractional Zener model,

b ¼ 0:0175 sc, lc ¼ 0:01841 sc

c b ¼ 0:05 b ¼ 0:1

First mode Second mode First mode Second mode

0.4 7.84 8.58 7.15 9.76

0.6 7.78 7.47 7.09 8.85

0.8 7.66 5.93 6.98 7.46

1.0 7.46 4.24 6.78 5.90
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tan d mð Þ ¼
mc sin cp

2

� �
1
lck

þ mc cos cp
2

� � ð43Þ

Therefore, the parameter lck may be obtained from the

expression below with m ¼ x1, where x1 is the first

undamped natural frequency of the beam, which is

calculated using Eq. (22).

1

lck
¼

mc sin cp
2

� �
tan d mð Þ � mc cos

cp
2

� �
ð44Þ

The time histories for the beam with the fractional

Kelvin–Voigt model are calculated using Eqs. (37)–

(39). The maximum amplitudes are determined from

the calculated time histories. The maximum ampli-

tudes for lck calculated using Eq. (44) with parameters

b ¼ 0:0161 sc, lc ¼ 0:01841 sc of the Zener model

are presented in Table 3, and with parameters

b ¼ 0:0175 sc, lc ¼ 0:01841 sc in Table 4. The time

histories for b ¼ 0:05, lck calculated with parameters

b ¼ 0:0161 sc, lc ¼ 0:01841 sc of the Zener model

are presented in Fig. 10 whereas for lck with

b ¼ 0:0175 sc, lc ¼ 0:01841 sc in Fig. 11. The time

histories for b ¼ 0:1, lck calculated with parameters

b ¼ 0:0161, lc ¼ 0:01841 sc of the Zener model are

presented in Fig. 12, and those for lck with

b ¼ 0:0175 sc, lc ¼ 0:01841 sc in Fig. 13.

As can be seen from the Tables 1, 2, 1, and 4, the

maximum vibration amplitudes of the first mode of

vibration have virtually the same value for the results

obtained with the fractional Zener and Kelvin–Voigt

material models, which can be expected assuming that

the loss tangent is equal for both materials for the first

undamped natural frequency. It can also be seen that

for the second mode of vibration, the maximum

vibration amplitudes calculated for the fractional

Kelvin–Voigt model are smaller than those for the

fractional Zener model. As the order of the fractional

derivative increases, the difference between the max-

imum amplitudes calculated using these models

increases. These differences are greater for the coef-

ficient b ¼ 0:0161 sc than for b ¼ 0:0175 sc, i.e. for

greater material damping. In the case where

b ¼ 0:0161 sc, the relative difference between the

maximum amplitudes obtained using both models for

c ¼ 0:4; 0:6 and b ¼ 0:05 is less than 3:1%, whereas

for b ¼ 0:1 it is less than 9:7%. In the case where

b ¼ 0:0175 sc, the relative difference between the

maximum amplitudes calculated using aforemen-

tioned material models for c ¼ 0:4; 0:6 and b ¼ 0:05

is less than 0:9%, whereas for b ¼ 0:1 it is less than

0:8%.

From the time histories presented in Figs. 6, 7, 8, 9,

10, 11, 12, and 13 one can see that the corresponding

time histories obtained for both material models are

similar, and virtually identical for some physical

parameters of the beam.

Thus, it can be stated that for some physical

parameters, the use of of both material models

generates very similar results. Therefore, the simpler

fractional Kelvin–Voigt material model may be used

instead of the fractional Zener model.

Table 3 Maximum amplitudes, fractional Kelvin–Voight

material, lck for, b ¼ 0:0161 sc, lc ¼ 0:01841 sc

c b ¼ 0:05 b ¼ 0:1

First mode Second mode First mode Second mode

0.4 7.76 7.39 7.08 9.07

0.6 7.61 5.48 6.94 6.88

0.8 7.31 3.11 6.65 3.85

Table 4 Maximum amplitudes, fractional Kelvin–Voight

material, lck for, b ¼ 0:0175 sc, lc ¼ 0:01841 sc

c b ¼ 0:05 b ¼ 0:1

First mode Second mode First mode Second mode

0.4 7.83 8.56 7.14 9.74

0.6 7.77 7.43 7.08 8.78

0.8 7.65 5.70 6.96 7.12

Fig. 10 Beam response with fractional Kelvin–Voight mate-

rial, b ¼ 0:05, lck for b ¼ 0:0161 sc, lc ¼ 0:0181 sc
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4 Conclusions

In this work, a transient dynamic analysis of a

cantilever beam with a mass element fixed to its free

end is presented. The viscoelastic properties of the

beam material are described using the fractional Zener

model. The equation of motion for the analyzed beam

is formulated for the kinematic excitation caused by

the motion of the base of the beam. A characteristic

equation, modal frequencies, eigenfunction and

orthogonality conditions are derived. The derived

equation of motion of the system is solved numeri-

cally. The transient responses of the beam during the

passage through resonance are calculated. The beam

excitation is assumed to be determined by the linearly

increasing function of time.

The calculations performed reveal that use of the

fractional damping impacts on the time histories of the

system. The calculated beam time histories show that

for some values of the order of the fractional derivative

c, the amplitudes occurring in the area of the second

resonance are greater than those obtained in the area of

the first resonance. In contrast, in the material models

described by integer order derivatives, these ampli-

tudes are considerably lower than those calculated in

the area of the first resonance. A similar behavior of

transient beam responses was demonstrated for the

fractional Kelvin–Voigt material of the beam in the

author’s previous paper [32]. The occurrence of higher

vibration amplitudes in the area of the second

resonance and the achieved responses of the beam

should be verified by experimental researches.

Additionally, studies are carried out to evaluate the

difference between the results obtained for the calcu-

lations made using the fractional Zener model and the

fractional Kelvin model. It is shown that for some

physical beam parameters, the calculation results

obtained using both models are virtually the same,

meaning that the simpler, fractional Kelvin–Voigt

material can be used instead of the fractional Zener

material model.

Additionally, it has been found that the numerical

computation time of the transient beam vibrations for

the fractional Zener material model is much longer

than that for similar dynamics computations using the

Kelvin–Voigt model. This is because the order of the

fractional differential equations is higher for the

fractional Zener material model than for the fractional

Kelvin–Voigt model. As a result, more fractional-

order differential equations are used for the compu-

tational method for the fractional Zener model than for

the fractional Kevin model (see Eqs. (35) and (39)),

which considerably increases the numerical computa-

tion time and complicates the algorithm for solving

differential equations. In the author’s opinion, this is a

Fig. 11 Beam response with fractional Kelvin–Voight mate-

rial, b ¼ 0:05, lck for b ¼ 0:0175 sc, lc ¼ 0:0181 sc

Fig. 12 Beam response with fractional Kelvin–Voight mate-

rial, b ¼ 0:1, lck for b ¼ 0:0161 sc, lc ¼ 0:0181 sc

Fig. 13 Beam response with fractional Kelvin–Voight mate-

rial, b ¼ 0:1, lck for b ¼ 0:0175 sc, lc ¼ 0:0181 sc
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significant disadvantage of the use of the fractional

Zener material model in engineering calculations.
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Appendix A

As is mentioned above, the equations of motion of the

beam are derived by employing the Euler–Bernoulli

beam theory , according to which rotation of element

and shear deformation are disregarded. A free-body

diagram corresponding to small element of length dx is

shown in Fig. 14.

The force equation of motion in the vertical

direction (axis Oz) gives

Aq
o2wðx; tÞ

ot2
dx ¼ �V xð Þ þ V xð Þ þ oVðx; tÞ

ox
dxþ q x; tð Þdx

ð45Þ

Canceling the appropriate terms, the equation above

can be written as

oVðx; tÞ
ox

¼ Aq
o2wðx; tÞ

ot2
� q x; tð Þ ð46Þ

The moment equation of motion about the axis

perpendicular to the plane Oxz, and passing through

the centroid of the element dx (see Fig. 14) has the

form

M x; tð Þ �M x; tð Þ � oMðx; tÞ
ox

dxþ V x; tð Þ dx
2

þ V x; tð Þ þ oVðx; tÞ
ox

dx

� �
dx

2
¼ 0

ð47Þ

Canceling the appropriate terms and disregarding

terms having second powers in dx, the following

relationship is derived

oMðx; tÞ
ox

¼ Vðx; tÞ ð48Þ

Differentiating equation (48), we obtain

oVðx; tÞ
ox

¼ o2Mðx; tÞ
ox2

ð49Þ

Substituting for the shear force derivative (Eq. (46))

into equation (49), the following expression is derived

o2Mðx; tÞ
ox2

¼ Aq
o2wðx; tÞ

ot2
� q x; tð Þ ð50Þ

Next, the relationship between the bending moment

M(x, t) and the deflection w(x, t) should be obtained.

For an Euler–Bernoulli beam, the strain is expressed as

�ðtÞ ¼ �z
o2wðx; tÞ

ox2
ð51Þ

Substituting relationship (51) into equation (1) and

multiplying both sides by z and integrating over the

cross-section area

Fig. 14 Forces acting on the element dx
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Z

A

rðtÞzdAþ bDðcÞ
Z

A

rðtÞzdA
� �

¼ �E
o2wðx; tÞ

ox2
þ lcD

ðcÞ o2wðx; tÞ
ox2

� �� �Z

A

z2 dA

ð52Þ

The integral terms on the left side of the equation (52)

are the bending moment M(x, t), and on the right side,

it is the inertia moment of the cross-section of a beam

with respect to the neutral axis, then

Mðx; tÞ þ bDðcÞ Mðx; tÞð Þ

¼ �EJ
o2wðx; tÞ

ox2
þ lcD

ðcÞ o2wðx; tÞ
ox2

� �� � ð53Þ

Differentiating both sides of Eq. (53) with respect to

the spatial variable x, the following relationship can be

obtained

o2Mðx; tÞ
ox2

þ bDðcÞ o2Mðx; tÞ
ox2

� �

¼ �EJ
o4wðx; tÞ

ox4
þ lcD

ðcÞ o4wðx; tÞ
ox4

� �� � ð54Þ

Next, substituting equation (50) into equation (54), the

following relationship is obtained

Aq
o2wðx; tÞ

ot2
� qðx; tÞ þ bDðcÞ Aq

o2wðx; tÞ
ot2

� qðx; tÞ
� �

¼ �EJ
o4wðx; tÞ

ox4
þ lcD

ðcÞ o4wðx; tÞ
ox4

� �� �

ð55Þ

After some mathematical transformations, the follow-

ing equation is derived

EJ
o4wðx; tÞ

ox4
þ lcD

ðcÞ o4wðx; tÞ
ox4

� �� �

þ Aq
o2wðx; tÞ

ot2
þ bDðcÞ o2wðx; tÞ

ot2

� �� �

¼ qðx; tÞ þ bDðcÞ qðx; tÞð Þ

ð56Þ

Appendix B

A free-body diagram of a mass element attached to the

free end of a beam is shown in Fig. 15. It is assumed that

the mass center of the element coincides with the end of

the beam, i.e. the distance BB0 is neglected

The rate of change of the linear momentum of the

mass element mp in the vertical direction (axis Oz)

gives

mpD
ð2Þ wBðtÞð Þ ¼ �Vðl; tÞ ð57Þ

The rate of change of the angular momentum of the

mass element mp with respect to its mass center B is

IB �
o2/ðl; tÞ

ot2
¼ Mðl; tÞ ð58Þ

where /ðx; tÞ is the rotation angle of the beam cross

section, and for an Euler–Bernoulli beam equals the

slope angle (see Fig. 15 ), thus

/ðx; tÞ ¼ owðx; tÞ
ox

ð59Þ

Differentiating Eq. (59) and substituting into Eq. (58),

the following relation may be obtained

IB �
o3wðl; tÞ
oxot2

¼ Mðl; tÞ ð60Þ

Substituting Eq. (48) into Eq. (57), we obtain

mp
o2wBðtÞ
ot2

¼ � oMðx; tÞ
ox

ð61Þ

The transverse translation of the element mass center

wBðtÞ is the sum of the rigid body and the relative

translation [47], namely

wB tð Þ ¼ w l; tð Þ ¼ wbs tð Þ þ wrl l; tð Þ ð62Þ

Then, second derivative of wB tð Þ with respect to time

is

Fig. 15 Forces acting on the mass element mp
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Dð2Þ wBðtÞð Þ ¼ Dð2Þ wbsðtÞð Þ þ o2wrlðl; tÞ
ot2

ð63Þ

Substituting Eqs. (63) and (48) into Eq. (57) the

following equation is obtained

mp Dð2Þ wbsðtÞð Þ þ o2wrlðl; tÞ
ot2

� �
¼ � oMðx; tÞ

ox
ð64Þ

Using relation Eq. (10) and applying the Laplace

transform to this equation, the following equation is

obtained

mps
2 bwst sð Þ þ bwrlðl; sÞð Þ ¼ EJ � bwð3Þ

rl ðl; sÞ
1 þ lcs

c
� �

ð1 þ bscÞ
ð65Þ

Taking int account Eq. (63), the second derivative of

/ l; tð Þ with respect to time is

o2/ðl; tÞ
ot2

¼ o3wðl; tÞ
oxot2

¼ o

ox
Dð2Þ wbsðtÞð Þ
� �

þ o

ox

o2wrlðl; tÞ
ot2

� �
¼ o3wrlðl; tÞ

oxot2

ð66Þ

Taking int account Eqs. (66) and (10), and applying

the Laplace transform to Eq. (58), the moments

equation of motion for the element mass mp may be

written as

IB � s2 bwð1Þ
rl ðl; sÞ ¼ �EJ � bwð2Þ

rl ðl; sÞ
1 þ lcs

c
� �

ð1 þ bscÞ
ð67Þ
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