
Backbone curves, Neimark-Sacker boundaries
and appearance of quasi-periodicity in nonlinear oscillators:
application to 1:2 internal resonance and frequency combs
in MEMS

Giorgio Gobat . Louis Guillot . Attilio Frangi . Bruno Cochelin .

Cyril Touzé
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Abstract Quasi-periodic solutions can arise in

assemblies of nonlinear oscillators as a consequence

of Neimark-Sacker bifurcations. In this work, the

appearance of Neimark-Sacker bifurcations is inves-

tigated analytically and numerically in the specific

case of a system of two coupled oscillators featuring a

1:2 internal resonance. More specifically, the locus of

Neimark-Sacker points is analytically derived and its

evolution with respect to the system parameters is

highlighted. The backbone curves, solution of the

conservative system, are first investigated, showing in

particular the existence of two families of periodic

orbits, denoted as parabolic modes. The behaviour of

these modes, when the detuning between the eigen-

frequencies of the system is varied, is underlined. The

non-vanishing limit value, at the origin of one solution

family, allows explaining the appearance of isolated

solutions for the damped-forced system. The results

are then applied to a Micro-Electro-Mechanical Sys-

tem-like shallow arch structure, to show how the

analytical expression of the Neimark-Sacker boundary

curve can be used for rapid prediction of the appear-

ance of quasiperiodic regime, and thus frequency

combs, in Micro-Electro-Mechanical System

dynamics.

Keywords Quasi-periodic regime � Frequency
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Multiple scales method � Neimark-Sacker bifurcation

Abbreviations

FEM Finite Element Method

FRF Frequency Response Function

FT Fourier Transform

FC Frequency Comb

HB Harmonic Balance

IR Internal Resonance

MEMS Micro-Electro-Mechanical systems

MS Multiple Scales

NS Neimark-Sacker

QP Quasi-Periodic

ROM Reduced Order Model

RK4 Runge-Kutta 4th Order

G. Gobat (&) � A. Frangi
Politecnico di Milano, Piazza Leonardo da Vinci, 32,

20133 Milano, MI, Italy

e-mail: giorgio.gobat@polimi.it

L. Guillot � B. Cochelin
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Institute of Mechanical Sciences and Industrial

Applications Institut Polytechnique de Paris CNRS -

ENSTA Paris - EDF - CEA, 828 boulevard des
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1 Introduction

Nonlinear dynamical phenomena in mechanical sys-

tems are often connected with the description of

complex features that have no counterpart in linear

theory, like jump phenomena, hysteresis, quasiperi-

odicity and chaotic vibrations [18, 39, 54]. In recent

years, a number of studies appeared in several fields of

Physics andMechanics, highlighting the occurrence of

Frequency Comb (FC) in the observed dynamical

responses, especially when the system is driven by a

single harmonic component. In the frequency domain

a FC is characterized by a collection of spectral lines

of frequency mX� nxNS, where m and n are integers,

X is the driving frequency and xNS is a new

incommensurate frequency. In the time domain a FC

is associated with a signal showing both amplitude and

frequency modulation.

FCs have been largely investigated in optics where

they have important applications in metrology, see e.g.

[10, 29, 60, 63]. A strong link also exists with the so-

called modulation instability studied in the physics of

nonlinear waves [9, 64].

In recent years several occurrences of FCs have

been documented in Micro Electro-Mechanical Sys-

tems (MEMS). These devices display a wide range of

complex nonlinear phenomena, mainly due to their

large quality factors Q, typically ranging from 103 to

106. Indeed MEMS are often monolithic structures

encapsulated in near vacuum packages and their

dissipation is drastically reduced with respect to

macrostructures. Internal resonance (IR) plays an

important role in triggering more complex motions

and facilitate energy transfer between modes and also

the onset of quasiperiodicity [1, 2, 6, 22, 23, 44,

58, 59]. Indeed in most cases, FCs in MEMS are

associated with IR phenomena. FCs have been exper-

imentally observed in [7, 8] addressing a MEMS

resonator with strong 1:3 IR between bending and

torsional modes. Another example is provided in [31],

where a resonator is proposed in which the dissipation

can be dynamically eliminated, leading to the appear-

ance of a tunable FC. In [45] the formation, evolution,

and tuning of FCs in a piezoelectric MEMS resonator,

based on nondegenerate parametric pumping, is

presented. The tuning mechanisms of FCs are dis-

cussed with specific attention to the dependence of the

center frequency and the frequency spacing between

the spectral lines on the external input. In [22] a 1:2

IR between the first two symmetric vibrational

modes of a MEMS arch resonator is investigated

experimentally and theoretically. The MEMS struc-

ture is electro-thermally tuned and electro-statically

driven. Here FCs are observed amid a variety of

other complex behaviours. Other noteworthy studies

on IR in MEMS arch resonators, with experimental

data supported by theoretical models, can be found

in [46, 47]. In the context of MEMS piezores-

onators, similar phenomena have been demonstrated

in [14–16]. In particular, if the system has two

modes with eigenfrequencies f1 and f2 such that

f2 � f1=2, an excitation can activate parametric reso-

nance and trigger a FC. However, it is worth

mentioning that FCs in MEMS might be associated

with different phenomena. An example is discussed in

[19] where FCs arise as a consequence of intermittent

contact between deformable beams in a MEMS

structure.

The issue of predicting the onset of a FC is strongly

linked to the stability analysis of the associated

periodic response. Once it gets unstable, a Quasi-

Periodic (QP) regime might arise thus creating a FC.

Restraining ourselves to the case of nonlinear vibra-

tions, this problem can be reformulated as finding the

locus of bifurcation points in periodic responses

originating quasi-periodicity. In most cases these can

be classified as Neimark-Sacker (NS) bifurcations

[41, 48], which represent the main focus of this work.

It is however worth stressing that the onset of QP

solutions and FCs have been also observed in [7, 8] as

a consequence of a Saddle-Node-Invariant-Circle

(SNIC) bifurcation [51]. Besides, the stability of QP

solutions developing on a torus is a fundamental

aspect for questioning the appearance of chaos related

to the stability of the period-three solutions

[3, 4, 21, 28, 42].

The appearance of NS bifurcations in systems with

IR has already been reported for systems featuring 1:1

IR, see e.g. [56] for arches or [57] for circular

cylindrical shells, as well as for systems with 1:2 IR

[39, 40, 54] such as arches [55]. Other examples

involve different physical phenomena like, for

instance, the aero-elastic behaviour of a flexible

elastic suspended cable with linear eigenfrequencies

in an almost 1:2 ratio driven by the wind speed [30].

Finally, NS bifurcations can also originate in more
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complex 1:2:2 and 1:2:4 resonance scenarios as

reported in [36].

One can also remark that the computation of the

locus of specific bifurcation points, as parameters are

varied, has recently stimulated intensive research also

on numerical techniques. For instance, continuation

methods can be suitably adapted with additional

constraints to follow the evolution of a given bifur-

cation point in the parameter space [11, 61, 62].

This work focuses on the appearance of QP

solutions in nonlinear oscillators featuring 1:2 internal

resonance. In this context NS bifurcation points have

been known for a long time, see e.g. [35, 37, 38, 40]

and references therein. Consequently the viewpoint of

the present contribution is to revisit a classical

example in nonlinear oscillations, bring new results

and use them in the perspective of better understand-

ing and predicting the occurrence of frequency combs

in MEMS dynamics. The main outcomes of the

present study are to derive an analytical formula for

the locus of NS boundaries, exhibit the two different

families of periodic solutions connected to the two

backbone curves of the system, named them as

parabolic modes, and clearly highlight the links

between the backbones, the frequency-response

curves, the existence of isolated solutions and the

locus of NS points. Since applications to MEMS-like

structure are targeted, an arch structure is used in order

to show how the findings can be used for fast

prediction of the onset of FC in MEMS dynamical

solutions.

The formulas derived analytically give simplified

models that can be applied in systems that admit order

reduction. In this work we consider systems in which it

is possible to apply the center manifold theorem and

more generally invariant and inertial manifold theory

(see [24, 33, 34, 52]). In this framework, strong but

reliable simplifications can be applied and even

continuous systems may be reduced to a limited

number of degrees of freedom.

Future investigations will address the cases of 1:1

and 1:3 IRs, framing all these systems within the same

setting and offering a unified view on the appearance

of quasiperiodicity and link to backbones in assem-

blies of nonlinear oscillators featuring IR.

The paper is organized as follows. Sect. 2 is

devoted to the analysis of conservative systems with

the multiple scales technique. Two families of

parabolic modes are identified and associated with

two different backbone curves. The behaviour of these

families of solution, for system parameters variation,

is investigated. Sect. 3 is concerned with the analysis

of the forced-damped system. A connection with the

limit values of the conservative solution is given, and

the appearance of isolas is explained. The NS bound-

ary curve is computed and its dependence upon

parameters and shape variation is analysed in detail.

Finally, in Sect. 4, a MEMS-like arch structure is

analysed and the analytical expression of NS boundary

curves is utilized to predict the occurrence of QP

solutions, which represents the primary goal of the

paper. Reduced order models using implicit static

condensation [13, 25, 50] are obtained starting from

the Finite Element (FE) discretization. The dynamics

of the system is studied numerically through harmonic

balance and direct time integration techniques in order

to validate and refine the analytical estimate.

2 Conservative system: backbone curves

Let us consider the normal form of a system of two

coupled nonlinear oscillators featuring 1:2 IR:

€q1 þ x2
1q1 þ 2l1 _q1 þ a12q1q2 ¼ F cos Xtð Þ; ð1aÞ

€q2 þ x2
2q2 þ 2l2 _q2 þ a11q

2
1 ¼ 0; ð1bÞ

in which qi, ði ¼ 1; 2Þ denote the displacement of each

oscillator, xi the eigenfrequencies, a12; a11 the non-

linear positive quadratic coupling coefficients, li, ði ¼
1; 2Þ the linear damping coefficients andX the angular

frequency of the forcing term with intensity F. Since

we are interested in the 1:2 IR, the eigenfrequencies

are such that x2 � 2x1. In a conservative context,

where internal forces derive from a potential, we have

a11 ¼ a12=2. However, since the results discussed in

what follows can be used in more general contexts

such as e.g. economy, chemistry or biology, in

Appendix 1 we will relax this assumption and show

examples of the behaviour for more general cases of

quadratic coupling coefficients.

In this section, we address conservative dynamics

and discard consequently the damping and forcing

terms from the equations of motion. We apply the

method of Multiple Scales (MS) to system (1)

following [40]. Only the main results are recalled

with emphasis on new findings. The detailed MS
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procedure is given in Appendix 2 for the sake of

completeness.

2.1 Multiple scales solution

The method of MS expresses the solution as a

composition of different time scales Tj ¼ e jt for

j ¼ 0; 1, and decomposes the solution as qiðtÞ ¼
qi0ðT0; T1Þ þ eqi1ðT0; T1Þ þ Oðe2Þ with i ¼ 1; 2 and e
a small bookkeeping parameter. We also assume that

the nonlinear coefficients are small and can be

expressed as a12 ¼ e�a12 and a11 ¼ e�a11. Starting from

Eq. (1) and introducing the MS expansions, we sort

non-linearities according to e and we ignore the

forcing F and the damping terms li (see details in

Appendix 2). The closeness of the fulfilment of the 1:2

ratio between the eigenfrequencies is quantified by

introducing an internal detuning parameter r1 such

that

x2 ¼ 2x1 þ er1: ð2Þ

We introduce a polar form for q10ðtÞ

q10ðtÞ ¼
a1ðT1Þ

2
expðih1ðT1Þ þ ix1T0Þ þ c:c:; ð3aÞ

q20ðtÞ ¼
a2ðT1Þ

2
expðih2ðT1Þ þ ix2T0Þ þ c:c:; ð3bÞ

where c.c. stands for complex conjugate; a1ðT1Þ,
a2ðT1Þ are unknown amplitudes; h1ðT1Þ, h2ðT1Þ are

unknown phases, varying at the slow time scale T1 and

i is the imaginary unit. Developing the solvability

condition (see details given in Appendix 2), we arrive

at the modulation equations for amplitudes and

phases:

a01 ¼
�a12a1a2 sin 2h1 � h2 � r1T1ð Þ

4x1

; ð4aÞ

a1h
0
1 ¼

�a12a1a2 cos 2h1 � h2 � r1T1ð Þ
4x1

; ð4bÞ

a02 ¼ � �a11a21 sin 2h1 � h2 � r1T1ð Þ
4x2

; ð4cÞ

a2h
0
2 ¼

�a11a21 cos 2h1 � h2 � r1T1ð Þ
4x2

: ð4dÞ

Inspecting Eq. (4), three different classes of possi-

ble solutions can be identified: 1) uncoupled solution

with a1 6¼ 0 and a2 ¼ 0, denoted A1-mode in what

follows; 2) uncoupled solution with a2 6¼ 0 and

a1 ¼ 0, denoted A2-mode; 3) coupled solutions with

both a2 6¼ 0 and a1 6¼ 0. The A1-mode is not admis-

sible because of the invariant-breaking term a11q21 in

Eq. (1) considering the conservative condition. Indeed

inserting q2 ¼ 0 in Eq. (1b) implies that also q1 ¼ 0.

The A2-mode is admissible, since inserting q1 ¼ 0

Eq. (1b) reduces to a linear oscillator, while Eq. (1a) is

trivially satisfied.

Considering now the coupled solutions with both a1
and a2 different from zero, we simplify Eq. (4),

dividing by the non-zero amplitudes a1 and a2:

a01 ¼
�a12a1a2 sin 2h1 � h2 � r1T1ð Þ

4x1

; ð5aÞ

h01 ¼
�a12a2 cos 2h1 � h2 � r1T1ð Þ

4x1

; ð5bÞ

a02 ¼ � �a11a21 sin 2h1 � h2 � r1T1ð Þ
4x2

; ð5cÞ

h02 ¼
�a11a21 cos 2h1 � h2 � r1T1ð Þ

4a2x2

: ð5dÞ

To analyse the permanent solutions corresponding to

fixed points of Eq. (5), the system needs to be made

autonomous. We observe that the phases appearing in

the sine and cosine functions involve the same

quantity 2h1 � h2 � r1T1. This means that the system

can be made autonomous with only two amplitudes

and one phase. However, if one adopts such a choice

an indeterminate quantity will appear when recon-

structing the whole solutions for q1 and q2, since both

h1 and h2 will need to have an initial phase. To solve

this issue, it has been preferred to make the system

autonomous using two angular variables.

c1 ¼ h1; ð6aÞ

cp ¼ 2h1 � r1T1 � h2: ð6bÞ

The resulting autonomous system reads

a01 ¼
�a12a1a2 sin cp

� �

4x1

; ð7aÞ
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c01 ¼
�a12a2 cos cp

� �

4x1

; ð7bÞ

a02 ¼ �
�a11a21 sin cp

� �

4x2

; ð7cÞ

c0p ¼ �
�a11a21 cos cp

� �

4a2x2

� r1 þ
�a12a2 cos cp

� �

2x1

: ð7dÞ

Obviously, Eq. (7b) is redundant since only cp
appears elsewhere in the system.

2.2 Coupled solutions: parabolic modes

and backbone curves

The fixed point solutions of Eq. (7) exist only when

sinðcpÞ ¼ 0 and consequently cosðcpÞ ¼ �1 ¼ p,

where the notation p ¼ �1 is introduced for the rest

of the paper. Consequently, the only possible coupled

solutions correspond to limit cycles with a1 and a2
constants independent of time T1.

The strong constraints imposed on the angular

variables define two classes of solutions: one related to

p ¼ 1 and one to p ¼ �1. We will show in the

following that each of these solutions is associated to a

family of periodic orbits with a given amplitude-

frequency relationship (or backbone curve). To better

describe the typology of these two solutions, let us first

reconstruct the first order amplitudes q10 and q20.

Combining Eq. (3) with Eq. (6), the first order solu-

tions are obtained as

q10ðtÞ ¼ a1 cosðc1 þ x1tÞ; ð8aÞ

q20ðtÞ ¼ a2 cosð2ðc1 þ x1tÞ � cpÞ: ð8bÞ

When p ¼ þ1, then cp ¼ 2mp with m integer and

the following relationship between the amplitudes

holds:

2
q210
a21

� 1 ¼ q20
a2

: ð9Þ

Eq. (9) dictates that the amplitudes lie on a parabola

with positive concavity in the configuration plane

ðq10; q20Þ. In the whole four-dimensional phase space

(including both velocities), we hence obtain a family

of periodic orbits developing on a manifold such

that its projection on ðq10; q20Þ is a parabola. This

solution is called parabolic mode, following also the

designation given in [6, 17, 32] for the case of 1:1

resonance, where normal modes and elliptic modes are

the two families of coupled solutions. More precisely,

in the case p ¼ þ1, this solution is denoted as pþ-
mode.

When p ¼ �1 a second family of periodic orbit is

obtained, where cp ¼ ð2mþ 1Þp, with m integer. The

amplitudes now define a parabola with negative

concavity in the configuration plane ðq10; q20Þ:

�2
q210
a21

þ 1 ¼ q20
a2

; ð10Þ

denoted as p�-mode . These two families of solutions

are represented in Fig. 1. It should be noted that for the

pþ-mode q1 and q2 have the same phase, while for the

p�-mode the phase difference is equal to p.
In order to express the frequency-amplitude rela-

tionship (backbone curves) for these two families of

coupled solutions, we elaborate on the relationship

between the amplitudes a1 and a2 given by the fixed

point equation associated to Eq. (7d):

e
�a11a21p
4a2x2

þ �a12a2p
2x1

� �
þ x2 � 2x1 ¼ 0; ð11Þ

where we have replaced the detuning variable r1 with
its expression in terms of eigenfrequencies x1;2 to

have a more straightforward insight into the system.

Denoting with �qi the maximum amplitude of qiðtÞ
(�qi ¼ ai; i ¼ 1; 2), we now replace the non-linear

coefficients with the original a12 and a11, and we

express �q1 in terms of �q2:

�q21 ¼
2�q2a12
x1

� 4ðx2 � 2x1Þ
p

� �
�q2x2

a11
: ð12Þ

which holds for both parabolic modes, setting either

(b)(a)

Fig. 1 Sketch of the parabolic modes corresponding to the

coupled solutions in the configuration plane ðq10; q20Þ. a) pþ-
mode, b) p�-mode
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p ¼ 1 or p ¼ �1. To obtain the amplitude-frequency

relationship we first solve the first-order equations at

the slow time scale T1, Eq. (7), and get the following

expressions for the phase angles:

c1 ¼
�a12a2p
4x1

T1 þ /1; ð13aÞ

cp ¼ � �a11a21p
4a2x2

T1 �
ðx2 � 2x1Þ

e
T1 �

�a12a2p
2x1

T1 þ /p;

ð13bÞ

with /1 and /p integration constants. Using Eq. (6),

the original nonlinear coefficients a12 and a11 and

using T1 ¼ et we have:

h1 ¼
a12a2p
4x1

t þ /1; ð14aÞ

h2 ¼
a11a21p
4a2x2

t þ 2/1 � /p; ð14bÞ

Inserting these equations in Eq. (3) we get

q10ðtÞ ¼ a1 cos ð
a12a2p
4x1

t þ x1t þ /1Þ; ð15aÞ

q20ðtÞ ¼ a2 cos ða21
p

4

a11
a2x2

t þ x2t þ 2/1 � /pÞ:

ð15bÞ

From Eq. (15), substituting �q1;2 , one obtains the

nonlinear oscillation frequencies xNLi of each

oscillator:

xNL1 ¼ x1 þ
a12 �q2p
4x1

; ð16aÞ

xNL2 ¼ x2 þ �q21
p

4

a11
�q2x2

: ð16bÞ

We remark in particular that the relationship xNL2 ¼
2xNL1 is always fulfilled, as can be shown inserting

Eq. (12) into Eq. (16b).

For the sake of clarity, xNL1 will be simply denoted

xNL in what follows. Note that Eq. (16a), together

with Eq. (12), identifies the solution manifold in the

space ðxNL; �q1; �q2Þ where the backbone solutions are

lying. The two families of solutions are discriminated

by replacing p with �1 in all expressions. Since the

amplitudes �q1, �q2 are assumed to be positive, one

arrives at the conclusion that: whenxNL\x1, only the

p� mode exists, while when xNL [x1, one only has

the pþ-mode. This gives a first condition for the

existence of the backbone curves.

An additional condition can be derived by inserting

Eq. (16a) in the rhs of Eq. (12) that must be positive to

guarantee the existence of a solution for �q1:

�2xNL þ x2ð Þ x1 � xNLð Þ 16x1x2

a12a11p2

� �
[ 0: ð17Þ

In Eq. (17), the third term is always positive due to the

assumptions on a12. The first two factors of Eq. (17)

impose that �q1 exists only for values ofxNL outside the

limit points xNL ¼ x1 and xNL ¼ x2=2.

The existence regions of each parabolic modes are

summarized in Fig. 2 in terms of the shift of the

nonlinear oscillation frequency xNL � x1 (on the x-

axis) and of the detuningx2 � 2x1 (on the y-axis). For

a given system, the detuning is fixed so that a single

horizontal line gives the existence region. The blue

region (respectively the red region) corresponds to the

existence of p� (resp. pþ) mode. From Eq. (17), the

linesxNL ¼ x2=2 (highlighted with a green color) and

the y-axis xNL ¼ x1, delimit a region in which no

coupled solutions exist. The green hatched region

delimited by xNL ¼ x2=2 and xNL ¼ x2=6þ 2x1=3

is commented in Sect. 2.3.

It is worth looking at the behaviour of the

backbones at the limit point of their existence regions.

At the first boundary xNL ¼ x1 we get:

Fig. 2 Schematic representation of the existence region for the

coupled parabolic modes, in the plane ðxNL � x1;x2 � 2x1Þ.
The abscissa represents the shifted nonlinear oscillation

frequency while the ordinate is the detuning between the

eigenfrequencies of the system
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lim
xNL!x1

�q1 ¼ 0; lim
xNL!x1

�q2 ¼ 0; ð18Þ

meaning that close to x1, the backbone curve ampli-

tudes are going to zero as expected. The situation is

different in the vicinity of x2=2. Indeed at this second

boundary xNL ¼ x2=2, one obtains:

lim
xNL!x2=2

�q1 ¼ 0; ð19aÞ

lim
xNL!x2=2

�q2 ¼
2x1ðx2 � 2x1Þ

a12p
: ð19bÞ

In particular the limit value of �q2 is non-zero at the

limit point of the backbone when xNL �! x2=2,

which could appear conflicting with the coupled

solution assumptions. One should note that this is

only true in the limit, and that the uncoupled A2-mode

solution still exists for the system. Consequently the

limit point of the backbone connects with this solution

at this specific point. This particular situation induces

a jump in the backbone solution (see the detuned

condition in Fig. 3 commented in Sect. 2.4) and, as

shown in Sect. 3.2, will also lead to the emergence of

isolated solutions in the forced and damped system.

2.3 Stability of coupled solutions

The stability of coupled solutions is governed by the

eigenvalues of the Jacobian matrix J of the conserva-

tive system (see Appendix 2 for details). The deter-

minant det ðkI � JÞ of the characteristic polynomial,

expressing the angular variables in terms of

�qi; i ¼ 1; 2, writes:

det ðkI � JÞ ¼ k2

16�q22x1x2
2

4a12a11p
2 �q21 �q

2
2x2

�

þx1 a211p
2 �q41 þ 16k2 �q22x

2
2

� ��
:

ð20Þ

The nonzero eigenvalues k are given by:

k ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6xNL � 4x1 � x2ð Þ x2 � 2xNLð Þ

p
: ð21Þ

and have negative real part if:

0.995 1 1.005

NL
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Fig. 3 Backbone curves of the two families pþ (red curves) and

p�-modes (blue curves), in the plane ðxNL; a1Þ (first row) and
ðxNL; a2Þ (second row), and for three different possible cases.

First column: x2=2\x1, second column: x2=2 ¼ x1, third

column: x2=2[x1. In the figure, x1 ¼ 1, a12 ¼ 1 � 10�2,

a11 ¼ 5 � 10�3
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xNL\
2x1

3
þ x2

6
and xNL [

x2

2
: ð22Þ

The unstable region delimited by conditions in

Eq. (22) is shown in Fig. 2 as the green hatched

region. We observe that this region completely falls in

a non-existence area of coupled solutions. Conse-

quently, the conservative backbone curves are always

stable.

2.4 Backbone curves

In this section, we show how the backbone curves of

the two different parabolic modes organize when the

detuning parameter is varied. Note that some of the

results presented here are close to those presented in

[27], where a different point of view was adopted on

the same system. Fig. 3 shows the three different

possible cases: when the detuning is negative, when it

is vanishing, and when it is positive. The figure plots

the projection of the solutions in the planes ðxNL; �q1Þ
and ðxNL; �q2Þ. However, an optimal representation

would be in the 3D space ðxNL; �q1; �q2Þ, as will be

shown in Sect. 3 when the solutions will be fully

reconstructed.

One can note that, consistently with Eq. (12)-(16),

the backbones in the ðxNL; �q2Þ plane are always

straight lines, while their projection in the ðxNL; �q1Þ
plane are line segments only when the detuning

vanishes, and otherwise have a parabolic shape. While

increasing the detuning from negative to positive, one

can observe the following features. When x2=2\x1,

the backbone starting at x1 is a pþ-mode, while the

backbone starting at x2=2 is a p
�-mode. According to

Eq. (19b), the p�-mode backbone starts from a

nonzero value in ðxNL; �q2Þ plane. In the case of

perfect 2:1 resonance, x2=2 ¼ x1, the backbones of

the two families start from the same point and from

zero amplitude. Symmetrically, when x2=2[x1, the

backbone emanating from x1 is now a p�-mode,

meaning that in the process of the transition a switch of

family occurs. Consequently, the family of periodic

solutions emanating fromx2=2 is now a pþ-mode, and

it starts at a non-zero value in the ðxNL; �q2Þ plane.

3 Forced system and NS boundaries

This section investigates the Frequency Response

Functions (FRF) of the oscillators described by

Eq. (1), with a forcing term applied on the low-

frequency oscillator and damping. While the appear-

ance of quasi-periodic solutions has been already

documented for this case e.g. in [40, 55], our aim here

is to provide an exact expression of the NS boundary

curve. Note also that quasiperiodic solutions are

usually not addressed in the case where the forcing

is applied on the high-frequency mode since the main

concern is typically to investigate the loss of stability

of the uncoupled solution [40, 53]. As for the

conservative case, first-order perturbative solutions

are derived with the MS method. Since this derivation

is classical, most of the details are reported in

Appendix 3, and emphasis is rather set on the

derivation of the NS boundary curve, its dependence

on parameters and the link between the FRF and the

backbones.

3.1 Multiple Scales solution

First, the equations of motion in Eq. (1) are rewritten

considering the MS expansion for time and oscillators

degrees of freedoom using a bookkeeping parameter e
(see Appendix 3). We also introduce the assumptions

that the non-linearities, the forcing amplitude and the

damping are small, and can be expressed as

a12 ¼ e�a12, a11 ¼ e�a11, l1 ¼ e�l1 and F ¼ e �F. The

forcing angular frequency is in the vicinity of the first

eigenfrequency x1, and an external detuning param-

eter r2 is introduced to describe this nearness as:

X ¼ x1 þ er2: ð23Þ

The first-order system governing the modulation of the

amplitude is derived in a similar way as in the previous

section. At the slow time scale T1, the resulting system

reads:

a01 ¼
�a12a1a2 sin 2h1 � h2 � r1T1ð Þ

4x1

�
�F sin h1 � r2T1ð Þ

2x1

� �l1a1;

ð24aÞ
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a1h
0
1 ¼

�a12a1a2 cos 2h1 � h2 � r1T1ð Þ
4x1

�
�F cos h1 � r2T1ð Þ

2x1

;

ð24bÞ

a02 ¼� �a11a21 sin 2h1 � h2 � r1T1ð Þ
4x2

� �l2a2; ð24cÞ

a2h
0
2 ¼

�a11a21 cos 2h1 � h2 � r1T1ð Þ
4x2

: ð24dÞ

When the forcing is applied on the low-frequency

oscillator, only coupled solutions exist (see Appendix

3).

The system is made autonomous by introducing c1
and c2 such that:

c1 ¼ h1 � T1r2; ð25aÞ

c2 ¼ 2h1 � r1T1 � h2; ð25bÞ

and reads:

a01 ¼
a1 �a12a2 sin c2ð Þ � 4�l1x1ð Þ � 2 �F sin c1ð Þ

4x1

;

ð26aÞ

c01 ¼
�a12a1a2 cos c2ð Þ � 2 �F cos c1ð Þ

4a1x1

� r2; ð26bÞ

a02 ¼ � �a11a21 sin c2ð Þ
4x2

� �l2a2; ð26cÞ

c02 ¼
1

2
cos c2ð Þ �a12a2

x1

� �a11a21
2a2x2

� �
�

�F cos c1ð Þ
a1x1

� r1:

ð26dÞ

It is worth highlighting that the definitions of Eqs. (25)

and (6) and the structure of Eqs. (26) and (7) are

similar and only differ for the additional terms

associated to �F, �li and r2.
The fixed points, associated to forced oscillations of

constant amplitudes, can be expressed as function of

the maximum amplitudes of ð�q1; �q2Þ only. Internal and
external detunings r1 and r2 can also be replaced by

the frequency differences to have a more straightfor-

ward insight into the system. The amplitude equations,

considering the original system parameters, reads:

�q32 þ
8x1C
a12

ððX� x1Þðx2 � 2XÞ þ l1l2Þ�q22

þ 16x2
1

a212
ððX� x1Þ2 þ l21Þ�q2 �

Ca11F2

a212x2

¼ 0;

ð27aÞ

�q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2 �q2
a11C

r

; ð27bÞ

with C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

l2
2
þ x2�2Xð Þ2

q
. Eq. (27b) can be seen as the

solution manifold in the space ðX; �q1; �q2Þ.
Eq. (27a) is a polynomial of the third-order in �q2

and can give, depending on the parameters, from one

to three solutions. The phases of fixed points are given

by:

cosðc1Þ ¼
�q1
2F

a12 cosðc2Þ�q2 þ 4x1 x1 � Xð Þð Þ;

ð28aÞ

sinðc1Þ ¼
�q1
2F

a12 sinðc2Þ�q2 � 4l1x1ð Þ; ð28bÞ

cosðc2Þ ¼
4�q2x2ð2X� x2Þ

a11 �q21
; ð28cÞ

sinðc2Þ ¼ � 4l2 �q2x2

a11 �q21
: ð28dÞ

These equations are not strictly necessary to build

FRFs, but are needed to reconstruct the amplitude

variations in time. They can also be used to establish

existence conditions for the solutions exploiting the

bounds of the trigonometric functions.

Fig. 4 shows the type of solutions obtained when

varying the frequency detuning and the link with the

backbone curve and the pþ or p� modes. Note that in

Fig. 4 emphasis is put on the shape of the solution,

while stability is addressed in the following section.

In the first line, the case of a positive detuning

between the eigenfrequencies is considered,

x2=2[x1. In particular one can observe that close

to X ¼ x2=2, the FRF has a local minimum for a1 and

a maximum for a2. The resonant branches follow the

backbones of the two families of periodic orbits pþ

and p�. Fig. 4 c) depicts the solution in the configu-

ration plane ðq1; q2Þ for the three points marked with

coloured circles on the FRF. As expected, the blue

point corresponds to p�-mode and one recovers the

shape of the parabola in ðq1; q2Þ, with a slight
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dephasing corresponding to the addition of forcing and

damping (exact parabola is retrieved for the backbone

only). The same reasoning applies for the red point

corresponding to pþ-mode. The black point is selected

exactly at X ¼ x1 and is a p�-mode also.

The second line of Fig. 4 considers the tuned case

x2=2 ¼ x1. In Fig. 4 f), while pþ and p� mode are

still perfectly well retrieved, the black point atX ¼ x1

shows a combination of the two solutions resulting in a

symmetrical shape in the ðq1; q2Þ plane. Finally, the

third line shows the case of a negative detuning, and

behaves symmetrically as compared to the case of

positive detuning. Increasing the detuning from

negative to positive values, we see how the solution

emanating from the forced low-frequencyx1 switches

from the p� to the pþ mode, with the intermediate step

being the symmetric shape shown in Fig. 4 f). This

result is in line with those presented in [27] and

complement their analysis by underlining the para-

bolic nature of the two families of periodic orbits, with

different curvature.

3.2 Isolas

Interestingly, the first-order solution obtained by MS

analysis contains isolated branches of solutions, as
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Fig. 4 Typical frequency-response functions and orbit in

configuration space ðq1; q2Þ, for different cases of detuning.

First line, positive detuning, x2=2[x1. Second line, no

detuning, x2=2 ¼ x1. Third line, negative detuning

x2=2\x1. Stability is not reported. Selected values of the

parameters: x1 ¼ 1, a12 ¼ 5 � 10�2, a11 ¼ 2:5 � 10�2,

l1 ¼ l2 ¼ 2:5 � 10�3, F ¼ 8 � 10�2
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already remarked in [27]. In addition to their analysis,

it is here underlined that the manifestation of these

isolas is the consequence of the non-vanishing starting

point on the �q2 axis when the internal detuning is

different from zero. This particular feature is

illustrated in Fig. 5 for the case of a positive detuning,

x2=2[x1. As shown in the previous section, the

limit value of the pþ-mode corresponds to a non-

vanishing value of �q2. Since the forced-damped

solutions emanate from the backbone curves [5], this

eventually creates the condition for the appearance of

isolas.

3.3 Stability analysis and Neimark-Sacker

boundary

The stability analysis of the solutions is based on the

eigenvalues k of the Jacobian matrix of Eq. (26),

analysed in Appendix 3. The characteristic polyno-

mial can be written as:

k4 þ c1k
3 þ c2k

2 þ c3kþ c4 ¼ 0; ð29Þ

with all the coefficients detailed in Appendix 4. Since

all expressions are available in closed form, one can

explicitly compute the stability of the solutions and

follow bifurcation points.

We focus on the definition of the Neimark-Sacker

(NS) boundary curve. The NS bifurcation requires that

a pair of eigenvalues are complex conjugate with zero

real part. Using the compact definition of the charac-

teristic polynomial of Eq. (29), this implies that the

four eigenvalues are iA;�iA;B;C where A 2 R and

B;C 2 C. Then Eq. (29) can be rewritten as [26]:

k4 þ c1k
3 þ c2k

2 þ c3kþ c4

¼ ðk� iAÞðkþ iAÞðk� BÞðk� CÞ:
ð30Þ

Equating the same power terms one obtains a system

of four equations:

c1 ¼ �ðC þ BÞ; ð31aÞ

c2 ¼ A2 � BC; ð31bÞ

c3 ¼ �A2ðC þ BÞ; ð31cÞ

c4 ¼ A2BC: ð31dÞ

Isolating A2 as the ratio between Eq. (31a) and

Eq. (31c), expressing the product BC using Eq. (31d)

and inserting both terms in Eq. (31d), the condition for

a NS bifurcation can be expressed in terms of the ci’s

only, reading:

1
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1.025 1.03 1.035 1.04 1.045
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3.5

q 2

(a)

(b)

p+

p+

Fig. 5 FRF and backbone curves close to the isolated solution

branches, obtained for r1 ¼ 0:05, a12 ¼ 5 � 10�2 and a11 ¼
2:5 � 10�2. The black continuous lines are the FRF (forced and

damped solutions). The red lines are the backbones correspond-

ing to the pþ mode. The black dashed line marks X ¼ x2=2.

Damping values as l1 ¼ l2 ¼ 1 � 10�3. Selected values of the

forcing amplitude are F ¼ 2:5 � 10�2; 2:75 � 10�2; 3 � 10�2
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Fig. 6 FRF, backbone curves and NS boundary when x1 ¼ 1,

x2 ¼ 2x1, l1 ¼ l2 ¼ 1 � 10�3, a12 ¼ 5 � 10�2 and a11 ¼
2:5 � 10�2. The black continuous lines are the FRF (forced and

damped solutions). The red and the blue lines are the backbones

corresponding to the pþ and p� mode respectively. The black

dashed line marks the X ¼ x2=2 frequency. The green dash-

dotted line is the NS boundary. In 3D figure in the space X�
a1 � a2 the orange surface is the manifold on which all the

possible forced and damped solution lies and is given by

Eq. (27b). Selected values of the forcing amplitude are

F ¼ 2:5 � 10�2; 5 � 10�2; 7:5 � 10�2
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c1c2c3 ¼ c23 � c4c
2
1; ð32aÞ

c3
c1

¼ A2: ð32bÞ

Inserting the detailed expressions of each coefficient

in Eq. (32), the definition of the NS boundary curve is

obtained as a polynomial in �q2, and reads:

b1 �q
4
2 þ b2 �q

3
2 þ b3 �q

2
2 þ b4 �q2 þ b5 ¼ 0: ð33Þ

where the expressions of bi are reported in Appen-

dix 4. For fixed values of the system parameters l1, l2,
a12, x2, x1 and spanning the values of X one gets the

boundary curve for the NS bifurcation as a function

�q2ðXÞ.
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Fig. 7 FRF, backbone curves and NS boundary when

r1 ¼ 5 � 10�2, l1 ¼ l2 ¼ 1 � 10�3, a12 ¼ 5 � 10�2 and

a11 ¼ 2:5 � 10�2. The black continuous lines are the FRF

(forced and damped solutions). The red and the blue lines are

the backbones corresponding to the pþ and p� mode respec-

tively. The black dashed line marks the X ¼ x2=2 frequency.

The green line is the NS boundary. In 3D figure in the space

X� �q1 � �q2 the orange surface is the manifold on which all the

possible forced and damped solution lies and is given by

Eq. (27b). Selected values of the forcing amplitude are

F ¼ 2:5 � 10�2; 5 � 10�2; 7:5 � 10�2
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3.4 FRFs, backbone curves and NS boundary

We now discuss the complete solutions including the

FRF, their connection with the backbone curves and

the location of the NS boundaries.

We select a fixed set of parameters x1 ¼ 1, l1 ¼
l2 ¼ 1 � 10�3, a12 ¼ 5 � 10�2 and a11 ¼ 2:5 � 10�2.

First, the case of a vanishing internal detuning, thus

x2 ¼ 2x1, is shown in Fig. 6 collecting the FRF, Eq.

(27), the NS boundary, Eq. (33); and the backbones

given by Eqs. (16) and (12). Fig. 6 a) is a view in the

3D space ðX; a1; a2Þ. The solution manifold given by

Eq. (27b) is represented as an orange surface and all

solution branches as well as the NS boundary curve lie

on this manifold. In this case the figure is fully

symmetric with respect to X ¼ x1 ¼ x2=2. Figure 6
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Fig. 8 FRF, backbone curves and NS boundary when

r1 ¼ �5 � 10�2, l1 ¼ l2 ¼ 1 � 10�3, a12 ¼ 5 � 10�2 and

a11 ¼ 2:5 � 10�2. The black continuous lines are the FRF

(forced and damped solutions). The red and the blue lines are

the backbones corresponding to the pþ and p� mode respec-

tively. The black dashed line marks the X ¼ x2=2 frequency.

The green line is the NS boundary. In 3D figure in the space

X� �q1 � �q2 the orange surface is the manifold on which all the

possible forced and damped solution lies and is given by

Eq. (27b). Selected values of the forcing amplitude are

F ¼ 2:5 � 10�4; 5 � 10�4; 1 � 10�3
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b), c) show the projection of the 3D plot respectively

on planes ðX; �q1Þ and ðX; �q2Þ. The FRF develops

according to the backbone curves of the pþ and p�

modes. When X approaches x1 the FRF have a local

peak for �q2, and correspondingly �q1 approaches a

nearly zero value. In this case, the NS boundary is

symmetric and displays a unique minimum centred at

X ¼ x1, as shown in the enlarged view Fig. 6 d) and

e).

Fig. 7 shows the case of a positive detuning, with

x2 ¼ 2x1 þ 5 � 10�2, all the other parameters being
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Fig. 9 Behaviour of the NS boundary curve when the detuning

r1 ¼ x2 � 2x1 is changed. The system parameter here consid-

ered are a12 ¼ 1 � 10�2, a11 ¼ 5 � 10�3, l1 ¼ l2 ¼ 5 � 10�3. The

square markers correspond to the minima predicted by the

analytical expression given in Appendix 5, namely X ¼ x2=2
and X ¼ ðx1 þ x2Þ=3
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Fig. 10 Behaviour of the NS boundary curve, for x1 ¼ 1,

x2 ¼ 2:05, a12 ¼ 1 � 10�2, a11 ¼ 5 � 10�3 and different values

of l1 ¼ l2 as detailed in the legend. The blue and red

continuous lines are the backbone of the p� and pþ mode while

the black dashed lines correspond to X ¼ x2=2 and

X ¼ ðx1 þ x2Þ=3
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unchanged. In this case the symmetry is broken, as can

be appreciated by inspecting the shape of the solution

manifold in the 3D space, showing a minimum with

respect to �q1 at X ¼ x2=2. The solution branches

arising in the vicinity of X ¼ x1 belong to the p�

family, in line with previous remarks. The shape of NS

boundary curve (see Fig. 7d) and e)), also shows

important modifications, having two minima and one

local maximum, particularly visible in the ðX; �q1Þ
projection. Interestingly, the projection on the ðX; �q2Þ
plane shown in Fig. 7c) underlines the closeness of the

NS boundary to the non-zero point where the back-

bone of the pþ-mode emerges.

Finally, the case of a negative detuning with x2 ¼
2x1 � 5 � 10�2 is addressed in Fig. 8. The solutions

around x1 now belong to pþ-mode. The NS boundary

shows again the two minima and the local maximum,

and its closeness to the emerging point of the p�-mode

is symmetrically observed.

These results underline that a further investigation

of the minima and maxima of the NS boundary curve,

together with its relationship with the backbones,

would provide a better understanding of the dynamics.

This is the aim of the following sections.
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Fig. 11 Behaviour of the NS boundary curve, for x1 ¼ 1,

x2 ¼ 2:05, a12 ¼ 5 � 10�2, a11 ¼ 2:5 � 10�2 and different ratio

l1=l2 keeping l1 ¼ 5 � 10�3 fixed. The blue and red continuous

lines are the backbone of the p� and pþ mode while the black

dashed lines mark X ¼ x2=2 and X ¼ ðx1 þ x2Þ=3. The other
lines corresponds to different damping levels as detailed in the

legend

H
B

rise
L

(a)

s(b)

Fig. 12 a 3D view of the FEM model used for the arch, b
scheme of the geometry of the shallow arch considered.

B=20 lm, H=5 lm, L=530 lm, rise=13.4 lm, s=10 lm

Table 1 First six eigenfrequencies of the arch. The third

column reports the ratio with respect to the first eigenmode.

The fourth column refers to their graphical representation in

Fig. 13

Mode n Frequency [MHz] Ratio Fig.

1 0.43416 1 13 a)

2 0.52597 1.211 13 b)

3 0.60391 1.391 13 c)

4 0.66759 1.537 13 d)

5 0.75695 1.743 13 e)

6 0.86367 1.989 13 f)
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3.5 NS boundary behaviour and extrema

In this section the parametric dependence of the NS

boundary curve with respect to detuning and damping

is investigated with specific attention to special points

corresponding to extrema of the boundary. Fig. 9 first

displays the shape of the NS boundary curve when the

detuning is varied from negative to positive values, in

both planes ðX; �q1Þ and ðX; �q2Þ. The plots have been

obtained for x1 ¼ 1, l1 ¼ l2 ¼ 5 � 10�4, a12 ¼ 1 �
10�2 and a11 ¼ 5 � 10�3 and different values ofx2. As

already underlined, the boundary curve has a single

minimum in the case of no detuning, obtained from

Eq. (33) assuming x2 ¼ 2x1 ¼ 2X:

�q2 ¼
4 l1 þ l2ð Þx1

a12
; ð34aÞ

�q1 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 þ l2ð Þx1x2

a12a11C

s

: ð34bÞ

For non-vanishing detuning two minima occur in the

plane ðX; �q1Þ, and they correspond to points where

there is a change of curvature in ðX; �q2Þ projection.

This result is of prime importance since the locations

of the minima convey meaningful information about

the minimum forcing and amplitude levels that are

needed to reach a quasiperiodic solution.

In Fig. 9, two points for each curve are marked with

a black square, corresponding to X ¼ x2=2 and

X ¼ ðx1 þ x2Þ=3. These are minima of the NS

boundary curve predicted by asymptotic analysis as

detailed in Appendix 5.

These specific points are obtained in the limit of

small damping and are thus only approximate values.

This is further illustrated in Fig. 10, obtained for

x1 ¼ 1,x2 ¼ 2:05, a12 ¼ 1 � 10�2, a11 ¼ 5 � 10�3 and

different values of damping assuming l1 ¼ l2. The
detuned frequency condition is considered because the

loci of the minima change only in this case. The

figure shows that the NS boundary tends to have

sharper minima and values closer to the proposed

approximation as damping tends to zero. On the other

hand, the behaviour of the NS boundary curve at large

values of amplitudes is asymptotically identical and

not very sensitive to variations of the damping.

A different case is analysed in Fig. 11, obtained for

x1 ¼ 1, x2 ¼ 2:05, a12 ¼ 5 � 10�2, a11 ¼ 2:5 � 10�2

and different values of the ratio l1=l2, while keeping
l1 ¼ 5 � 10�3 fixed. The figure shows that increasing

the damping l2 makes the NS boundary smoother. It

moreover underlines that in this specific case the

asymptotic behaviour of the curve at large amplitudes

(f)

(a)

(b)

(c)

(d)

(e)

Fig. 13 First six eigenmodes of the arch. The contour of the

displacement magnitude is shown in colour

Table 2 Coefficients describing the internal nonlinear elastic

force in the ROM

eigenmode (1) (2)

k1 1 - 3.1705 � 10�8

k2 - 4.2188� 10�9 3.9572

a11 0.0156 0.0095

a12 0.0191 0.0410

a22 0.0205 - 0.0568

b111 6.7646� 10�5 8.7921� 10�5

b112 2.6376� 10�4 5.6267� 10�4

b122 5.6241� 10�4 0.0014

b222 4.7679� 10�4 0.0021
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is also affected. It is worth stressing that, except for the

largest value of l2, all the curves in the ðX; �q2Þ plane
stay close to the specific point where the pþ backbone

emerges, underlining again the particular role of this

point in the dynamics.

4 Test example: a clamped shallow double-arch

MEMS structure

In this section we validate our previous findings by

predicting the appearance of FCs in a MEMS clamped

shallow arch. To highlight possible limits of the MS

solution, we progressively add features in the model

and comparisons and discussions are proposed for

each step. First we check the MS solution reliability

assuming that the structure behaviour is governed by

Eq. (1) featuring only two quadratic nonlinear terms.

The MS results, given by Eq. (27) are compared with

the numerical solution of Eq. (1) when the detuning

parameter vanishes, i.e. x2 ¼ 2x1, and in the general

case x2 6¼ 2x1, the latter condition being more

realistic from a practical point of view since process

imperfections typically prevent a perfect match

between the two eigenfrequencies. Finally a compar-

ison between a reduced-order model including all

nonlinearities, the corresponding MS solution and a

full Finite Element Simulation is proposed using a

custom code [43].

4.1 Reduced order model

The arch geometry and dimensions are reported in

Fig. 12.

The device is made of polycrystalline silicon with

density q ¼ 2330 kg/m3. A linear elastic constitutive

model (Saint-Venant Kirchhoff) is considered, with

Young modulus E ¼ 167000 MPa and Poisson coef-

ficient m ¼ 0:22 [49]. The double-arch has a large

radius of curvature and it can be considered as

shallow. The structure is inspired by the design

proposed in [12], and it exploits two clamped arches

connected at their center points in order to shift the

anti-symmetric modes to higher frequencies. The first

six eigenfrequencies of the structure, obtained from a

Finite Element (FE) analysis using the mesh in Fig. 12

b, are reported in Tab. 1, and the corresponding mode

shapes are shown in Fig. 13. In particular, one can

observe that it is possible to achieve a 1:2 resonance

between the first and the sixth eigenmodes, Fig. 13 a

and f.

A reduced-order model (ROM) is obtained from the

full FE model using a static condensation approach

[13, 25]. The ROM retains as master modes only the

two eigenmodes involved in the 1:2 resonance. The

approach uses static loadings proportional to the

inertia of the master modes to create a stress manifold

(a)

(b)

[μ
m
]

MS FRF

MANLAB FRF

MS NS boundary

RK4 FRF upward
Stable Unstable NS

RK4 FRF downward
MANLAB bif. point

q 1
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0.9975 0.998 0.9985 0.999 0.9995 1 1.0005 1.001 1.0015 1.002

0.5
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1.5
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[μ
m
]

q 1

Fig. 14 Tuned condition x2 ¼ 2x1. Comparison between the

analytical solution from Eq. (27) (black line), continuation of

periodic orbits of Eq. (1) (red lines) and the time-marching

integration of Eq. (1) (circle markers). The analytical NS

boundary is the green dash-dotted line. The red star markers

define the bifurcation points identified by MANLAB
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which is then fitted with a third order polynomial to

obtain an explicit expression of the nonlinear restoring

forces. The reduced-order dynamics, expressed with

nondimensional time s ¼ x1t and mass-normalized

values, reads:

q001 þ l1q
0
1 þ k

ð1Þ
1 q1 þ k

ð1Þ
2 q2 þ a

ð1Þ
11 q

2
1

þ a
ð1Þ
12 q1q2 þ a

ð1Þ
22 q

2
2 þ b

ð1Þ
111q

3
1 þ b

ð1Þ
112q

2
1q2

þ b
ð1Þ
122q1q

2
2 þ b

ð1Þ
222q

3
2 ¼ F cosXs;

q002 þ l2q
0
2 þ k

ð2Þ
1 q1 þ k

ð2Þ
2 q2 þ a

ð2Þ
11 q

2
1

þ a
ð2Þ
12 q1q2 þ a

ð2Þ
22 q

2
2 þ b

ð2Þ
111q

3
1 þ b

ð2Þ
112q

2
1q2

þ b
ð2Þ
122q1q

2
2 þ b

ð2Þ
222q

3
2 ¼ 0;

ð35aÞ

where q1 and q2 are the generalized modal coordinates

expressed in [lm] and k
ðkÞ
i ; a

ðkÞ
ij and b

ðkÞ
ijs are the linear,

quadratic and cubic coefficients, respectively, for

eigenmode k. The load multiplier considered in our

benchmark is F ¼ 0:0201 lNls2/ng. The first and

second order derivatives with respect to the nondi-

mensional time are denoted with 0 and 00 respectively.
Even if X is now a nondimensional frequency, the

same symbol of the previous sections has been used

since we fixed x1 ¼ 1 in all the examples presented

therein.

The damping factor is li ¼ xi

Qix1
with Q1 and Q2

factors set to 500 and 1000 respectively, which is

consistent with a mass proportional damping. The

coefficients of the polynomial are reported in Tab. 2.

Arch displacements can be reconstructed with good

accuracy from the linear modes and in particular the

midspan deflection is

uðtÞ ¼ 0:11q1ðtÞ þ 0:0707q2ðtÞ ½lm�: ð36Þ

We notice that the selected damping values are

slightly lower than the ones assumed in the previous

examples concerning the MS solutions. This condition

is typical of MEMS structures that are often packaged

in near vacuum. The impact of these choices will be

discussed in the following sections.

4.2 Multiple scales model

In order to apply the MS formulas, the nonlinear terms

of Eq. (35) that are not included in Eq. (1) are

neglected. First we consider the perfectly tuned case

by enforcing x2 ¼ 2x1. We compare the FRF given

by Eq. (27) and the solution computed via direct

numerical continuation of periodic orbits applied to

Eq. (1) using the continuation package MANLAB

[20]. The numerical continuation solution is also

Table 3 Estimate of the incommensurate frequency xNS for

the upward and downward external frequency sweeps X
considered, in the perfectly tuned case x2 ¼ 2x1. The RK4

estimates are extracted from the FT of the system (resolution

� 5 � 10�4). The value not specified in the RK4 values

correspond to a chaotic regime were the FC spacing is not

defined. Analytical values of xNS provided by the MS method

at the onset of the QP regime as reported in the last lines

X xNS xNS

½�� ½��10�3 ½��10�3

RK4 0.99838 5.39 # upward – " downward

0.99871 3.99 4.19

0.99903 4.00 4.00

0.99936 3.60 3.60

0.99968 2.00 2.00

1.00000 5.40 5.40

1.00032 2.00 2.00

1.00064 3.60 3.60

1.00097 4.00 4.00

1.00129 3.20 3.20

1.00161 3.00 5.40

MS 0.99838 5.49 5.49

1.00161
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assessed by comparison with a direct time-marching

algorithm on system Eq. (1) in order to investigate the

QP regime behaviour. For this case, a Runge-Kutta

order 4 (RK4) integration scheme is used and QP

solutions are plotted as Poincaré sections obtained by

stroboscopy at the forcing frequency. Upward and

downward sweeps of the forcing frequency are

performed and for each frequency 5000 (¼ 10Q1)

cycles are simulated to reach the steady state regime

and collect time history data. The time step adopted is

1/500 of the forcing period 2p=X.
Results are plotted in Fig. 14a). The MS and

continuation (MANLAB) FRF are superimposed

everywhere except close to the peaks. The numerical

solution of Eq. (1) predicts a larger amplitude at the

lower frequency peak and a smaller amplitude at the

high frequency one. Indeed at the peaks the

assumption of the MS solution that nonlinear terms

are small starts being violated. On the contrary, the NS

boundary intersections with the FRF predicted by the

MS have a nearly perfect agreement with the bifur-

cation analysis performed by MANLAB (see the

enlarged view in Fig. 14 b). This is reasonable since

the NS boundary crosses the FRF at low amplitudes,

where the MS approximation is fully respected.

Inspection of the time-marching solution reveals

additional information. The match with the FRF

obtained thanks to numerical continuation is almost

exact in the periodic regions, the only difference being

that the RK4 results present jumps in the solution

(highlighted with arrows in the plot) since unstable so-

lutions cannot be simulated. The time-marching solu-

tion allows appreciating amplitude modulation in the

QP region. For a fixed frequency value a cloud of points

is observed, as expected in a QP regime. The incom-

mensurate frequency can be estimated from the Fourier

Transform (FT) of the response and results are reported

in Table 3 for both the upward and downward span.

The MS solution developed in this work cannot

predict the behaviour of xNS inside the QP region, but

it can be used to estimate the values at its boundary,

since here the purely imaginary eigenvalues define the

oscillating frequency of ai. The NS bifurcations occur

at X ¼ 0:99838 and X ¼ 1:00161 respectively, corre-

sponding to the eigenvalues k ¼ �i5:49 � 10�3, that

have the same value at both frequencies. The com-

puted analytical value of k can be compared with the

numerical results of Tab. 3. It is worth stressing that

the agreement is good at the left of the NS in the

upward sweep and at the right of the NS in the

downward sweep, i.e. at the onset of the instability.

The agreement then changes proceeding in the NS

region since the numerical solution follows the QP

solution branch on which the additional frequency of

the torus is varying, a feature not provided by the MS

analysis. Examples of the FT and time histories

encountered in the frequency span are illustrated in

Fig. 15 a and b referring to X ¼ 0:99838 and X ¼
0:98711 respectively.

In Fig. 15 a, the QP regime has just settled down

and one can observe a clear modulation of the

envelope in the time domain, and a well shaped

spectrum with clean spacings between all the fre-

quency peaks, following the rule nX� mxNS with n

and m integers. Fig. 15 b has been obtained for X ¼

(a)

(b)
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Fig. 15 FT and time histories from the RK4 solution on X ¼
0:99838 a) and X ¼ 0:98711 b)
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0:98711 in the upward frequency sweep, thus the QP

regime is further along the branch of QP solution. One

can appreciate how the QP is modified along the

solution branch, with a more complex envelope

modulation, and a more important number of fre-

quency peaks in the spectrum. One can also observe

the enlargement of the frequency peaks, indicating

that the QP solution will probably lose its stability in

favour of a chaotic behaviour further in the solution

branch. One can also note that the direct time

integration results underline the facts that the NS

bifurcation is supercritical with emergence of a

stable torus at both side of the branching points,

symmetric, with probably a small portion of unsta-

ble torus close to the branching points.

Before moving to the detuned condition, phase

space representation from time-marching solution are

inspected.

The torus emerging from the NS bifurcation is

represented in Fig. 16, obtained from direct RK4

integrations with X ¼ 1. A 3D representation in the

space (q1; _q1; q2) and in the planes ðq1; _q1Þ and ðq1; q2Þ
are shown. For sake of clarity, only a short portion of

the time history, corresponding to few quasi-periods,

is considered. Fig. 16 a represents the phase space

ðq1; _q1; q2Þ while Fig. 16b) is a cross-section of the

four dimensional torus considering the portion

included in the green and the blue planes. The red

dots mark the crossing region. Figure 16c) and d) are

Fig. 16 Torus obtained by direct integration with RK4 algorithm of Eq. (1) in the tuned casex2 ¼ 2x1. Only a short portion of the time

history is plotted for sake of clarity
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the 2D version of the phase space considering its two

projections in the planes q1; _q1 and q1; q2.

The detuned case is now investigated with

x2 ¼ 1:989x1, and the same analysis is repeated.

The FRF results are plotted in Fig. 17 and the xNS

values are collected in Tab. 4. By comparing the MS

and the numerical continuation (MANLAB) solutions,

the FRFs and the NS bifurcation crossing points share

the same degree of accuracy of the previous case.

Focusing on the incommensurate frequencies, the MS

solution predicts xNS ¼ 4:37 � 10�3 at X ¼ 0:99372

and xNS ¼ 6:19 � 10�3 at X ¼ 0:99679. Fig. 17b)

shows how the QP time-marching solution is com-

pletely embedded in the region estimated by MS. An

outstanding match is found close to X ¼ 0:99679

while the values on X ¼ 0:99372 are lower than

expected. The underlying reason is that at X ¼
0:99679 a supercritical NS bifurcation appears, which

is also confirmed by the identical values of xNS found

close to this point when sweeping the forcing

frequency in the increasing or decreasing direction.

On the other hand, a subcritical NS bifurcation takes

place at X ¼ 0:99679, consequently the added fre-

quency predicted by the MS method corresponds to

unstable quasi-periodic solutions that are not found

with direct time integration. Instead, the numerical

solution jumps to the branch of stable QP solutions and

then travels up to the other supecritical bifurcation

point.

4.3 Reduced order model and full order simulation

Finally we consider a comparison between the MS

solution and the ROM retaining all nonlinear terms.

Results obtained with the ROM are further validated

with analyses performed on the full FE model using

two different techniques. First, an Harmonic Balance

approach (HB) is used, from which a reference FRF is

computed. However, this technique in our implemen-

tation cannot detect QP solutions. As a consequence, a

costly direct time integration of the full FE model is

also performed with a Newmark-b scheme for specific

values ofX. The time-marching solution adopts a time

step equal to 1/300 of the forced eigenmode period and

3000 cycles are simulated for each frequency. The full

FEM model uses as external forcing a body force

having the same shape of the first eigenmode, which is

consistent with the ROM loading in Eq. (35). The

comparison between the MS solution and the ROM is

plotted in Fig. 18. As expected and mostly because of

the presence of the cubic terms in the ROM, some

quantitative differences appear between the two

solutions. However no qualitative difference is

reported since the simplified system studied in the

MS development contains the most important resonant

monomial terms that convey the important bifurcation

(a)

(b)

[μ
m
]

[μ
m
]

MS FRF

MANLAB FRF

MS NS boundary

RK4 FRF upward
Stable Unstable NS

RK4 FRF downward
MANLAB bif. point

q 1
q 1

0.99 0.995 1 1.005 1.01

1

2

3

4

5

6

7

0.9935 0.994 0.9945 0.995 0.9955 0.996 0.9965

0.5

1

1.5

2

2.5

3

Fig. 17 Detuned condition x2 ¼ 1:989x1. Comparison

between the analytical solution from Eq. (27) (black line),

continuation of periodic orbits of Eq. (1) (red lines) and the

time-marching integration of Eq. (1) (circle markers). The

analytical NS boundary is the green dash-dotted line. The red

star markers define the bifurcation points identified by

MANLAB
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information. Moreover in the low amplitude region

and close to X ¼ 1 the MS solution is nearly exact.

Also the prediction of the NS boundary intersections

with the FRF shows a very good match with numerical

results on the ROM. This is expected since the MS

approach is reliable in a low amplitude region where

the smallness assumptions still hold, and thus under-

lines that the analytical formula of the NS boundary

curve can be used for rapid prediction of the occur-

rence of FC in such a case.

Finally we compare the ROM solution with a Full

FEM simulation considering the maximum absolute

midspan displacement max juj. The results are plotted
in Fig. 19 where the NS boundary curve from the MS

solution is also included. We notice the excellent

agreement between the FRF obtained using numerical

continuation and HB for the full FEM model and for

the ROM, respectively, validating the reduction tech-

nique adopted. As expected, the NS boundary from the

MS predicts correctly the onset of the QP regime also

in this case.

Fig. 20 shows three representative quasi-periodic

solutions obtained from direct time integration on the

full FE model. Note that these solutions are obtained

from a decreasing sweep so that the solutions follow

the QP branch of solution by order of decreasing

frequencies. The first line in Fig. 20 corresponds to

X=0.9965, which is the onset of the QP regime, just

after the NS bifurcation point. The amplitude modu-

lation displays a simple pattern in Fig. 20 a) and the

frequency spectrum shows the appearance of the extra

peaks indicating the birth of the FC. At this point one

can compare the xNS value predicted by the MS at the

boundary (see Table 4) and that from from direct

numerical integration. The comb spacing in Fig. 20b

reveals the value xNS ¼ 5:93 � 10�3, very close to the

values reported in Table 4 and thus underlining again

the good predictive capacity of the simple analytical

model. The second line in Fig. 20 corresponds to

X=0.9956, a point further along the branch of QP

solutions. One can observe that the amplitude

Table 4 Estimate of the

incommensurate frequency

xNS for the upward and

downward frequency

sweeps X considered, in the

case x2 ¼ 1:989x1. The

RK4 estimates are extracted

from the FT of the system

(resolution � 5 � 10�4).

Analytical values obtained

from MS analysis at the

bifurcation points reported

in the last two lines

X xNS xNS

- ½��10�3 ½��10�3

RK4 0.99368 1.99 # upward 1.99 " downward

0.99399 1.99 1.99

0.99431 2.39 2.39

0.99462 2.82 2.78

0.99493 3.78 3.78

0.99525 4.38 4.38

0.99556 4.98 4.98

0.99587 5.78 5.78

0.99619 5.98 5.98

0.99650 5.98 5.98

0.99681 6.18 6.18

MS 0.99372 4.37

0.99679 6.19

0.985 0.99 0.995 1 1.005 1.01
0
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7

q 1[
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]

MS FRFMANLAB FRF MS NS boundaryMANLAB bif. point

Fig. 18 Comparison between the analytical solution (black

line) and the static condensation ROM (red line). The analytical

NS boundary is the green dash-dotted line. The red star markers

define the bifurcation points identified by MANLAB
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modulation is more complex but still clearly periodic,

resulting in a well defined frequency comb. In this case

the new frequency xNS cannot be determined from the

MS analysis. Finally, the third line shows the results

obtained for X=0.9939. In this case one can clearly

observe that the envelope modulation has no clear

periodicity at the reported time scales, underlining that

the torus is on the way to lose its stability by creating

longer and longer periods which will result in a chaotic

solution. The frequency spectrum is more densely

filled. A complete study of the chaotic nature of this

solution could be performed by computing the Lya-

punov spectrum or a more involved stability analysis

of the torus solution. This point is however not the

scope of the present study which is focused on the

appearance of quasiperiodic solutions and their link to

Frequency combs in MEMs dynamics.

5 Conclusion and further developments

In this paper we have developed analytical results for

1:2 internally resonant coupled oscillators. Even

though this analysis is classical in nonlinear vibration

theory, new insights have been reported, in particular

with regard to the identification of the two backbones

and their corresponding parabolic mode shapes and

the analytical derivation of the NS boundary curves.

All these results have been also put under the frame of

explaining the appearance of FC inMEMs dynamics, a

subject that give rise to numerous investigations in the

recent years, and all the results have been applied to a

MEMS arch structure in order to underline the

predictive capacity of the analytical NS boundary

curve. This result can be helpful in a context of MEMs

design for accurate and fast predictions since the QP

solutions are sometimes intentionally searched for.

Starting from the normal form of the dynamical

system we inspected the conservative solution pro-

viding a clear identification of the mode shapes and

solution branches. By extending our study to the

forced and damped condition we were able to retrieve

a closed form solution for the NS boundary curve. We

inspected in depth the behaviour of the bifurcation

boundary by varying the system parameters and

comparing it with the conservative and the non-

conservative solutions. We proved the validity of our

findings in the challenging simulation of a MEMS

structure example. The analytical solution has been

validated against several numerical methods including

numerical continuation procedures (MANLAB),

reduced order models solved with direct time integra-

tion or the Harmonic Balance Method and eventually

also with full FEM approaches.
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Fig. 19 Comparison between the static condensation ROM (red

line), the HB FEM model (dashed blue line) and the time-

marching FEM integration (circle markers). The analytical NS

boundary is the green dash-dotted line. The red star markers

define the bifurcation points identified by MANLAB. The circle

markers highlighted with different colors correspond to the

frequencies plotted in Fig. 20
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Fig. 20 Time histories (left column) and corresponding

Frequency spectrum (right column) obtained by direct time

integration of the full FE model, following the branch of QP

solution by order of decreasing frequencies. First line: X =

0.9965, birth of the QP solution. Second and third lines: X ¼
0:9956 and 0.9939
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marks X ¼ x2=2. Figure a) and b) represent the backbone �q1
and �q2 respectively when x2 � 2x1 ¼ 0. Figure c) and d)

represent the backbone �q2 and �q2 respectively when

x2 � 2x1 ¼ 5 � 10�3
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Fig. 21 Behaviour of the backbones when a12=a11 is changed

keeping fixed a12 ¼ 1 � 10�2. In these plots the line color marks

with blue the p� and with red the pþ mode, the black dashed line

marks X ¼ x2=2. Figure a) and b) represent the backbone �q1
and �q2 respectively when x2 � 2x1 ¼ 0. Figure c) and d)

represent the backbone �q1 and �q2 respectively when

x2 � 2x1 ¼ 5 � 10�3
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A good agreement between the analytical results

and the numerical approach is always observed. In

particular, the NS boundary provides a nearly perfect

prediction of the quasi-periodic regime arising and a

very good estimate of the incommensurate frequency.

The formulas proposed prove useful for design

applications on real devices and structures. The closed

form solution allows exploring in depth the resonance

phenomena with low computational effort. Further

development are currently undertaken in order to

reframe the cases of 1:1 and 1:3 internal resonance

within the same analyses, underlining the existence of

different families of periodic orbits , deriving accurate

predictive solutions for the NS boundary curve, in

order to shed new light and unify analyses of the

emergence of QP solutions in nonlinear oscillators

with applications to MEMs dynamics.
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Appendix

1. General nonlinear coefficients in Eq. 1

This section shows how the formulas proposed in the

paper can be used into the general case of uncorrelated

a12 and a11. We will mainly focus on the effect of a

different sets of nonlinear coefficients on backbones

and NS boundary. Considering the backbone curves,

keeping the frequency detuning x2 � 2x1 fixed and

varying the non-linear coefficients a12 and a11 ratios,
the results are shown in Figs. 21 and 22.
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Fig. 23 The figures show the NS boundary behaviour

corresponding to x1 ¼ 1, x2 ¼ 2:005, l1 ¼ l2 ¼ 1:5 � 10�3

for different ratio a12=a11 keeping a12 ¼ 5 � 10�2
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Fig. 21 assumes a12 ¼ 1 � 10�2 and it considers

different values of the ratio a12=a11. Figure 21 a) and

b) refer to a detuning value r1 ¼ 0, while Fig. 21c)

and d) refer to r1 ¼ 5 � 10�3. The backbones of the

second oscillator response is invariant with respect to

the ratio a12=a11. This is reasonable because only a12
appears in Eq. (16a). The �q1 backbone tends to grow

with the ratio a12=a11 preserving the same shape . The

r1 value introduces a curvature in the �q1 mode

response and left unchanged the starting point of the

�q2 backbone.

Fig. 22 assumes a11 ¼ 1 � 10�2 and considers dif-

ferent values of the ratio a11=a12. Fig. 22 a) and b)

refer to r1 ¼ 0, while Fig. 22c) and d) to

r1 ¼ 5 � 10�3. The backbone of both oscillators grow

with the ratio a11=a12 preserving their shape. The r1
value introduces a curvature in the �q1 mode response

and shifts to higher amplitudes the starting point of the

�q2 backbone.

We now inspect the NS boundary behaviour. We

consider the system parameters x1 ¼ 1, x2 ¼ 2:005,

l1 ¼ l2 ¼ 1:5 � 10�3 and we plot in Fig. 23 the NS

boundaries corresponding to different ratio a12=a11,
keeping a12 ¼ 5 � 10�2. The plots show that in the �q1
amplitude the NS boundary tends to enlarge with a

lower ratio (higher a11) while it is identical in the �q2
response. This is reasonable because only a12 appears
in Eq. (33). Considering the same system, in Fig. 24

the NS boundaries for different ratio a11=a12, keeping
a11 ¼ 5 � 10�2 are plotted. The plots show that in both

the amplitudes the NS boundary tends to enlarge with

lower ratio (higher a12).

2. Conservative system

This section presents the details of the MS solution in

Sect. 2.1 for the conservative case, i.e. with no forcing

and damping. We insert the MS approximation qiðtÞ ¼
qi0ðT0; T1Þ þ eqi1ðT0; T1Þ into Eq. (1) and split the

resulting terms using e as sorting parameter. Conse-

quently, we get a first order system:

D2
0q10 þ x2

1q10 ¼ 0;

D2
0q20 þ x2

2q20 ¼ 0;
ð37Þ

and a second order system:

D2
0q11 þ x2

1q11 ¼ �2D0D1q10 þ �a12q10q20;

D2
0q12 þ x2

2q12 ¼ �2D0D1q20 þ �a11q
2
10;

ð38Þ

in whichDk
i denotes the order k derivative with respect

to the time scale i ¼ 0; 1. Eq. (37) describes two linear

uncoupled oscillators with motion given by:

q11 ¼ A1e
ix1T0 þ �A1e

�ix1T0 ð39aÞ

q21 ¼ A2e
ix2T0 þ �A2e

�ix2T0 ð39bÞ

Inserting the solution of Eq. (37) in Eq. (38) we get an

expression with Ai as unknowns. Nullifying secular

terms we get the conditions:
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Fig. 24 The figures show the NS boundary behaviour

corresponding to x1 ¼ 1, x2 ¼ 2:005, l1 ¼ l2 ¼ 1:5 � 10�3

for different ratio a11=a12 keeping a11 ¼ 5 � 10�2
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�a12A2
�A1e

iT1r1 þ 2ix1A
0
1 ¼ 0; ð40aÞ

A2
1�a11 þ 2ix2A

0
2e

iT1r1 ¼ 0: ð40bÞ

To solve Eq. (40) we need to expand Ai in polar form

as AiðT1Þ ¼ 1
2
aiðT1Þ exp ðihiðT1ÞÞ; i ¼ 1; 2. Insert Ai

in Eq. (40) and imposing that the real and imaginary

part vanish independently, we get Eq. (4).

As required by the stability analysis in Sect. 2.3 we

finally compute the Jacobian matrix of system. (7),

i.e.:

J ¼

J11 0 J13 J14

0 0 J23 J24

J31 0 0 J34

J41 0 J43 J44

0

BBB@

1

CCCA
; ð41Þ

with:

J11 ¼
�a12a2 sin cp

� �

4x1

; J13 ¼
�a12a1 sin cp

� �

4x1

;

J14 ¼
�a12a1a2 cos cp

� �

4x1

; J23 ¼
�a12 cos cp

� �

4x1

;

J24 ¼ �
�a12a2 sin cp

� �

4x1

; J31 ¼ �
�a11a1 sin cp

� �

2x2

;

J34 ¼ �
�a11a21 cos cp

� �

4x2

; J41 ¼ �
�a11a1 cos cp

� �

2a2x2

;

J43 ¼
1

2
cosðcpÞ

�a12
x1

þ �a11a21
2a22x2

� �

J44 ¼ �
sin cp
� �

4a2

2�a12a22
x1

� �a11a21
x2

� �
:

3. Forced and damped system

Starting from Eq. (1) we sort the non-linearities using

a book-keeping parameter e. We assume a first order

approximation, thus we rewrite Eq. (1) in the form:

€q1 þ x2
1q1 ¼ e½�2�l1 _q1 � �a12q1q2 þ �F cos Xtð Þ�;

ð42aÞ

€q2 þ x2
2q2 ¼ e½�2�l2 _q2 � �a11q

2
1�: ð42bÞ

The external forcing angular frequency is related to

the eigenfrequency through Eq. (23). Proceeding as

for the conservative case (see from Eq. (38) to

Eq. (40)), we get the solvability condition:

�a12A2
�A1e

iT1r1 þ 2ix1 A1 �l1 þ A0
1

� �
� 1

2
�FeiT1r2 ¼ 0;

ð43aÞ

A2
1�a11 þ 2ieiT1r1x2 A2 �l2 þ A0

2

� �
¼ 0: ð43bÞ

Inserting the polar form of Ai; i ¼ 1; 2 (see Appendix

2) in Eq. (43) and imposing that the real and imaginary

parts vanish, we get the system of four equations in

Eq. (24).

Considering the A1-mode condition a1 6¼ 0 and

a2 ¼ 0, Eq. (1) admit a nonzero solution for a1 only if

a11 is zero, but this is a degenerate condition. Thus, the
A1-mode is not allowed.

Considering the A2-mode condition a2 6¼ 0 and

a1 ¼ 0, Eq. (1) implies a zero forcing value, and

consequently nonzero solutions exist only if the

damping term also is zero. This is a degenerate

condition since it is the one predicted by the conser-

vative case, thus the A2-mode in damped and forced

conditions is impossible.
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The coupled solutions are obtained from Eq. (24),

as detailed in Sect. 3, and are given by Eq. (26).

In order to address the stability of the coupled

solutions derived in Sect. 3, one needs the Jacobian

matrix for Eq. (26), i.e.:

J ¼

J11 J12 J13 J14

J21 J22 J23 J24

J31 0 J33 J34

J41 J42 J43 J44

0

BBB@

1

CCCA
; ð44Þ

with:

J11 ¼
�a12a2 sin c2ð Þ � 4�l1x1

4x1

;

J12 ¼ �
�F cos c1ð Þ
2x1

;

J13 ¼
�a12a1 sin c2ð Þ

4x1

; J14 ¼
�a12a1a2 cos c2ð Þ

4x1

;

J21 ¼
�F cos c1ð Þ
2a21x1

;

J22 ¼
�F sin c1ð Þ
2a1x1

;

J23 ¼
�a12 cos c2ð Þ

4x1

;

J24 ¼ � �a12a2 sin c2ð Þ
4x1

;

J31 ¼ � �a11a1 sin c2ð Þ
2x2

;

J33 ¼ ��l2;

J34 ¼ � �a11a21 cos c2ð Þ
4x2

;

J41 ¼
�F cos c1ð Þ
a21x1

� �a11a1 cos c2ð Þ
2a2x2

;

J42 ¼
�F sin c1ð Þ
a1x1

;

J43 ¼
1

4
cos c2ð Þ 2�a12

x1

þ �a11a21
a22x2

� �

J44 ¼ � 1

2
sin c2ð Þ �a12a2

x1

� �a11a21
2a2x2

� �
:

4. Coefficients of polynomials Eq. (29) and Eq. (33)

c1 ¼2 l1 þ l2ð Þ;

c2 ¼
a2a12
x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 þ x2 � 2Xð Þ2

q
� a22a

2
12

16x2
1

þ l21 þ l22 þ 4l1l2 � 2x1X� 4x2X

þ x2
1 þ x2

2 þ 5X2;

c3 ¼
a2a12
x1

l1 þ l2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 þ x2 � 2Xð Þ2

q

� a22a
2
12l2

8x2
1

þ 2l1 l22 þ x2 � 2Xð Þ2
� �

þ 2l2 X� x1ð Þ2 þ 2l2l
2
1;

c4 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 þ x2 � 2Xð Þ2

p

16x2
1

3a22a
2
12

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22 þ x2 � 2Xð Þ2

q�

þ16a2a12x1 l1l2 � X� x1ð Þ 2X� x2ð Þð Þ

þ16x2
1 l21 þ X� x1ð Þ2
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l22 þ x2 � 2Xð Þ2
q �

;

ð45Þ

b1¼
a412l1l2
64x4

1

;

b2¼�
a312 l1þl2ð Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22þ x2�2Xð Þ2

q

8x3
1

;

b3¼� a212
2x2

1

l1l2�

l21þl22þ2l1l2�2x1Xþ4x2Xþx2
1�x2

2�3X2
� �

;

b4¼
2a12
x1

l1þl2ð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22þ x2�2Xð Þ2

q
�

l21þ2l2l1þl22þ x1þx2�3Xð Þ2
� �

;

b5¼4

 �
l1
�
l22þ x2�2Xð Þ2

�
þl2 X�x1ð Þ2þl2l

2
1

�
�

�
l1 4l22þ X�x1ð Þ2
� �

þl2 l22þ x2�2Xð Þ2
� �

þl31þ4l2l
2
1

�
� l1þl2ð Þ2 l21þ X�x1ð Þ2

� �

l22þ x2�2Xð Þ2
� �

!

:

ð46Þ
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5. Asymptotic analysis of the extrema of the NS

boundary curve

In order to search for the extrema of the NS boundary

curve, we compute the derivative of Eq. (33), defining

the NS boundary, with respect to the external forcing

frequency X:

d1ðXÞ�q32 þ d2ðXÞ�q22 þ d3ðXÞ�q2 þ d4ðXÞ ¼ 0; ð47Þ

where the explicit expressions for all the coefficients

read:

d1¼�a312 l1þl2ð Þ2 2X�x2ð Þ
4x3

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22þ x2�2Xð Þ2

p ;

d2¼
a212l1l2 x1�2x2þ3Xð Þ

x2
1

;

d3¼
4a12

x1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l22þ x2�2Xð Þ2

p

 

l1þl2ð Þ2
�
l21 2X�x2ð Þ

þ2l2l1 2X�x2ð Þþl22 �3x1�4x2þ11Xð Þ

þ 2X�x2ð Þ
�
�21x2Xþx1 5x2�12Xð Þ

þx2
1þ4x2

2þ27X2
��
!

;

d4¼16l1l2

 

l21 �x1�2x2þ5Xð Þ

þl22 �x1�2x2þ5Xð Þþ2l1l2 �x1�2x2þ5Xð Þ

þ9x1X
2�18x2X

2�x2
1Xþ11x2

2X�8x1x2X

�x3
1�2x3

2þx1x
2
2þ2x2

1x2þ9X3

!

:

ð48Þ

Due to the complexity of the expressions, a numerical

solution is mandatory in general. However, in specific

cases one can get an analytical estimate for the

extrema. First, we simplify Eq. (47) considering l1¼
l2¼l and by sorting it with respect to l we get:

ðg1l4 þ g2l2Þ

x3
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ ð2X� x2Þ2

q þ g3l
2 ¼ 0; ð49Þ

with

g1¼272a12 �q2x
2
1X�48a12 �q2x

3
1�112a12 �q2x2x

2
1

�64x4
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þ 2X�x2ð Þ2

q
þ320x3

1X
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þ 2X�x2ð Þ2

q

�128x2x
3
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2þ 2X�x2ð Þ2

q
;

g2¼864a12 �q2x
2
1X

3�384a12 �q2x
3
1X

2�1104a12 �q2x2x
2
1X

2

þ32a12 �q2x
4
1Xþ352a12a2x2x

3
1X

þ464a12 �q2x
2
2x

2
1X�16a12 �q2x2x

4
1�80a12 �q2x

2
2x

3
1

�64a12 �q2x
3
2x

2
1þa312 �q

3
2x2�2a312 �q

3
2X;

g3¼3a212 �q
2
2x1Xþa212 �q

2
2x

2
1�2a212 �q

2
2x2x1

þ144x3
1X

3þ144x4
1X

2�288x2x
3
1X

2

�16x5
1X�128x2x

4
1Xþ176x2

2x
3
1X

�16x6
1þ32x2x

5
1þ16x2

2x
4
1�32x3

2x
3
1:

ð50Þ

Inserting X ¼ x2=2 in Eq. (50) we remark that g2, the

leading term in l, vanishes. Thus X ¼ x2=2 is an

asymptotical extrema for the problem and corresponds

to a minimum.

We next consider the limit l ! 0. The leading

order term is proportional to l2 and is given by:

g2

x3
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2X� x2Þ2

q þ g3 ¼ 0: ð51Þ

This expression is the asymptotic approximation of

Eq. (47) and it can be be expressed in the same form as

Eq. (47), with:

d1¼�a312
x3

1

;

d2¼
a212 x1�2x2þ3Xð Þ

x2
1

;

d3¼
16a12
x1

�21x2Xþx1 5x2�12Xð Þþx2
1þ4x2

2þ27X2
� �

;

d4¼�16

 

18x2X
2�x1 �8x2Xþx2

2þ9X2
� �

�11x2
2Xþx2

1 X�2x2ð Þþx3
1þ2x3

2�9X3

!

:

ð52Þ

Eq. (51) can be directly solved with respect to X if we

consider that the NS boundary tends to approach zero

when the damping tends to zero.With this assumption,

only the lower order terms with respect to �q2, i.e. d4
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and d3, are relevant. This provides a linearised version

of the NS minima problem and has the solution X ¼
ðx2 þ x1Þ=3 independent of its amplitude.
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