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Abstract Local stiffeners affect the behaviour of

thin-walled beams (TWBs). An in-house code based

on a one-dimensional model proved effective in

several instances of compressive buckling of TWBs

but gave counterintuitive results for locally stiffened

TWBs. To clarify the matter, we investigated TWBs

with multi-symmetric double I cross-section, widely

used in practical applications where high bending

stiffness is required. Several samples were manufac-

tured and stiffened on purpose, closing them over a

small portion of the axis at different places. The

samples were tested with end constraints accounting

for various warping conditions. The experimental and

numerical outputs from a commercial FEM code gave

a key to overcome the unexpected results by the in-

house code, paving the way for further studies.

Keywords Local stiffeners � Warping constraints �
Open thin-walled beams � Torsion buckling

1 Introduction

Open thin-walled beams (TWBs) have high bending

stiffness and negligible twisting stiffness; boundary

effects propagate through their length (Saint–Venant’s

principle does not apply [1]). The cross-sections warp;

extension, bending and torsion are usually coupled.

Thus, buckling strongly depends on their warping

stiffness and on the constraints on torsion and warping.

A comprehensive treatise is Vlasov’s well-known

monograph [2]; starting from it, we may find innu-

merable papers and books dealing with the subject. For

sake of space, we quote only those that are directly

related with the experimental and numerical work in

this contribution.

The authors recently investigated the compressive

buckling of open thin-walled profiles by both numer-

ical and experimental analysis. In [3–6] we describe

the experimental campaigns to measure the variation

of the natural frequencies and the buckling loads (for a

description of the phenomenon see, e.g., [7–12]) of
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compressed open thin-walled profiles. An experimen-

tal campaign similar to ours was recently presented in

[13]. The profiles we investigated were manufactured

in aluminium on purpose for the tests, had cross-

sections once with vanishing, then with high warping

stiffness. We also investigated open profiles without

symmetry (thus, exhibiting strong couplings among

deformation modes) and others with a small local

damage.

The experimental results were positively compared

with the numerical ones of the in-house centred finite

differences code introduced in [14]. This relies on the

direct one-dimensional beam model discussed in

[15, 16]: the usual rigid cross-sections are added a

coarse descriptor of warping, and non-linear coupled

elastic relations are adopted. Thus, Vlasov’s govern-

ing equations for open thin-walled profiles are recov-

ered. The in-house code investigates elastic stability in

a Lyapunov’s dynamic setting [17] and is inspired by

the numerical approach in [18]. The code accounts for

the cross-section warping following [15, 16] and the

constitutive coefficients are evaluated according to the

beam model in [19], derived from that of a thin shell.

There are many other analytical and numerical

approaches to the subject (see, e.g., [20, 21]), but we

chose a direct one-dimensional formulation for sake of

simplicity and for the relative easiness with which

results can be obtained and compared with experi-

mental ones.

The results in [14] proved the in-house code to be

effective, admitting usual constraints on bending and

ideal constraints on warping. However, the effect of

the conditions on the torsion rotation and warping of

the end cross-sections propagates through the beam

and affects both the natural frequencies and the

buckling loads [1, 2]. Thus, in order to perform a

thorough investigation and provide ‘actual’ data to

insert into the in-house code, suitable end constraints

for laboratory tests were designed and manufactured

in brass. These devices were thus subsequently

simulated by suitable analytical and numerical bound-

ary conditions. The results of all the experimental and

numerical investigations showed good agreement and

were reported in our previous works [3–6]. This

highlighted that the in-house code is both robust and

simple, basing on a well-tested one-dimensional

model, which quickly and effectively brings reliable

results that can be useful in design and verification of

TWBs.

However, counterintuitive results arose when we

evaluated the buckling loads of TWBs with local

stiffeners, which are widely used in engineering.

Indeed, in many applications the modest torsion

rigidity of open TWBs asks for interventions to limit

the corresponding shearing stress and cross-sections

warping. Hence, actual assemblies of thin-walled open

profiles may exhibit local stiffeners, e.g., transverse

plates or reinforcing frames. These are located at

specific points, to limit the in-plane deformations of

the cross-sections and/or to protect the element, hence

the whole structure, against local buckling [22–26].

When we ran our in-house code to evaluate such

effects, introducing the modified cross-section prop-

erties of the reinforced zones, we found the surprising

result that for some locations of the stiffeners the

buckling load was lower than for the corresponding

unstiffened profile. Some of these unexpected results,

published in congress proceedings [27], asked for

deeper investigations to clarify the behaviour of the

one-dimensional model and its numerical

implementation.

Thus, here we perform alternative numerical anal-

yses and experimental tests: the investigated profiles

have double I (cruciform) cross-sections. Despite this

easiness, such profiles are suitable for the analysis

since they are: (a) used in real-life applications;

(b) stiff remarkably in bending and non-negligibly in

warping. The surprising results by the in-house code

are evidenced, thoroughly discussed and overcome by

a careful analysis of the other numerical and exper-

imental results, plus a comparison with the existing

literature on stiffened profiles. Thus, further following

investigation seems necessary: the code, otherwise

reliable, leans on simplifying assumptions on kine-

matics and constraints, hence a deeper insight on the

modelling and numerical aspects needs to be per-

formed in the next future and is already scheduled.

The paper is organised as follows: Sect. 2 describes

the specimens used, specifies their geometrical and

material characteristics, plus the realisation of the

stiffeners, which are simple and require a very low

amount of material and work. Then, we numerically

investigate how the intermediate stiffeners affect the

buckling loads of the profiles when these are com-

pressed. Similar to our previous works, two analyses

are performed and presented in detail: one relies on

commercial finite elements, Sect. 3, the other on in-

house finite differences, Sect. 4. In Sect. 5 we describe
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the laboratory setting for the experimental campaign

and present the results of the tests on various

specimens. The three sets of results are compared

and duly commented, aiming to possible directions in

design. The TWBs cross-sections are gyroscopic (i.e.,

any centroidal axis in the cross-section plane is a

principal axis of inertia: second moments of area

always have the same value and the product moment

of area is always nil for any centroidal couple of

orthogonal axes; in short, any definition for the inertia

tensor returns a spherical one) but their usual appli-

cation sees the webs parallel to the axes of a Cartesian

plane frame. Since we study torsion buckling, and

twist occurs with respect to the centroidal axis, the

gyroscopic feature of the cross-sections is immaterial

on the results and conclusions, reported in Sect. 6.

2 A set of TWBS with intermediate stiffeners

To simplify investigation, we choose aluminium open

thin-walled profiles with (at least) doubly symmetric

cross-sections. Indeed, to perform experiments by the

MTS universal machines at ease in Turin Polytechnic,

‘‘soft’’ element shall be considered (otherwise, their

lengths would be excessive); moreover, all the

coupling terms in the constitutive laws for the profile

identically vanish [15, 16, 19]. Thus, the governing

equations are much simpler than those for elements

with generic cross-sections and the dominant beha-

viour is in torsion or bending only, making both

numerical analysis and laboratory activities easier to

perform.

The chosen cross-section is a double I, with the

contour and characteristic lengths shown in Fig. 1a.

This shape was already considered by the authors in

[3, 4, 6] to highlight the effect of a remarkable warping

rigidity in the modulated linear dynamics and the

buckling of open thin-walled beams. The specimens

are made of the aluminium alloy known as 6060-T5.

The stiffening is obtained by closing the initial open

shape of the cross-section, adding the small amount of

material dashed in Fig. 1b (similar to what is done in

[22–26]). We so realise a reinforcing frame of plates,

as thick as the external flanges of the cross-section and

connecting them so to yield a four-cell box. Multi-cell

boxes are endowed with a very high rigidity to bending

and torsion, thus are suitable for our analysis. We

remark that this operation requires little material and

no particular additional manufacturing.

The numerical analysis requires length l, Young’s

modulus E, Poisson’s ratio m (whence the shear

modulus G = E/[2(1 ? m)]), material mass density

per unit volume q, listed in Table 1. The material yield

stress (used in Sect. 5.2 to check inelastic effects on

experiments) is 120 MPa.

We adopt a Cartesian system {O, x1, x2, x3}, with x1

the abscissa along the axis, O the centroid and x2, x3

along the mid-lines of the cross-section webs. Table 2

lists the cross-section properties (i, j = 2, 3): the area

A; the shear areas Aij (accounting for the relevant shear

factors); Saint–Venant’s torsion factor J; the polar

moment of inertia Ic with respect to the shear centre

c (with coordinates xcj; for symmetric thin-walled

cross-sections, Trefftz and Timoshenko definitions for

c coincide [28]); the central principal moments of

inertia Ij; the flexure-torsion constitutive coupling

constants Ifj [15, 16, 19]; and the warping constant C
[1, 2]. Since the cross-sections are gyroscopic, all the

couplings vanish, i.e., Aij = xcj = Ifj = 0.

Table 2 also shows the percentage variation of

cross-section properties. The area and shear areas

increase, the flexural stiffness more than doubles;

indeed, adding material far from the centroid = shear

centre affects the latter more than the former. How-

ever, the torsion properties change significantly from

an open profile to a closed multi-cell: Saint–Venant’s

torsion factor grows by three orders of magnitude, the

polar moment of inertia more than doubles (consis-

tently with the moments of inertia), but the warping

constant vanishes.

In our investigation, the stiffened portion of the

profile has finite length, equal to one tenth of that of the

specimen, see Fig. 2. Several samples manufactured

by a company specialised in precision mechanics were

purchased; details are in Sect. 5.

The stiffener acts as a diffused constraint against

torsion rotation for a finite length and affects the

transmission of warping (which is proportional to the

unit torsion rotation, or twist) [1, 2, 15]. Then, one

might wonder if such a diffused constraint is consis-

tent with the vanishing warping stiffness in Table 2:

the question will emerge strongly in the sequel.

We examine the effect of the stiffeners on the

torsion buckling of the specimens under axial com-

pression, presenting the results of numerical studies

first, then those of experiments.
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3 Numerical investigations—finite elements

Dealing with TWBs, the specimens were meshed by

shell elements in the commercial code LUSAS [29].

Linear buckling analyses were run for various end

warping constraint conditions and stiffener locations,

Fig. 1 a Current and b stiffened cross-sections (dimensions in mm); dashed parts highlight the stiffener

Table 1 Specimens’ axis length and material properties

l (mm) E (N m-2) m (–) q (kg m-3)

950 69 9 109 0.3 2600

Table 2 Geometrical properties of the current and stiffened cross-sections

Cross-

section

A (mm2) A22 = A33

(mm2)

A23 = A32

(mm2)

J (mm4) Ic
(mm4)

I2 = I3
(mm4)

xc2 = xc3
(mm)

If2 = If3
(mm5)

C (mm6)

Current 251.84 110.38 0 148.36 111,028 55,514 0 0 4,305,656

Stiffened 384.00 200.02 0 163,945 235,498 117,749 0 0 0

Diff. (%) 52.5 81.2 – 110,405 112.1 112.1 – – - 100

l

l/10variable

N, δ

Fig. 2 Sketch of the numerical and experimental tests; N, d are the axial force and the corresponding displacement
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in number greater than experimental tests; the latter

are described in Sect. 5. In all cases, bending and twist

rotations were prevented at the ends. As for the

warping constraints, the following cases were anal-

ysed: (a) warping free at both ends; (b) warping

restrained at both ends; and (c) warping free at one end

and restrained at the other. A single intermediate

stiffener with length equal to one tenth of that of the

beam was considered located at the following posi-

tions, relative to one end of the beam: 0–l/10; l/10–2 l/

10; 2 l/10–3 l/10; 4 l/10–5 l/10; 4.5 l/10–5.5 l/10

(centred at mid-length). Cases with two intermediate

stiffeners, placed symmetrically with respect to mid-

length, were also analysed considering the following

positions relative to the beam ends: 0–l/10; l/10–2 l/

10; 2 l/10–3 l/10; 3 l/10–4 l/10.

After a preliminary convergence study, the beams

were meshed by QSL8 thin shell elements, i.e.,

8-nodes quadrilateral semi-loof elements with no

transverse shearing strain, 3 d.o.f. in translation at

corner nodes and 5 d.o.f. (3 in translation and 2 loof

rotations) at mid-side nodes [29]. This mesh had 48

subdivisions along the open (current) cross-section, 80

along the closed (stiffened) cross-section, and 304

subdivisions in the longitudinal direction (30 of which

relative to the stiffened part), yielding 150552 shell

elements in total. The properties of the material,

assumed linearly elastic and isotropic, were set

according to the values in Table 1.

Aiming to match the experimental conditions (see

Sect. 5.1), end constraints were applied to either the

cruciform web only or to the whole cross-section, for

free (Fig. 3) and restrained warping (Fig. 4),

respectively. Thus, all node translation and rotation

components were prevented, except for the axial

displacement (in the Z-direction) of the top section,

where a unit compressive axial force was applied to

the centroid (Figs. 3a and 4a). For restrained warping,

to prevent it at the top section but allowing for axial

translation at the same time, a 1 mm thick layer of

material with high stiffness (Young’s modulus

E = 1015 Pa) was introduced (Fig. 4a), so that the

relevant cross-section remains plane but may translate

along the axis of the profile.

Figure 5 shows the numerical model and the first

buckling mode of a specimen stiffened before

midspan, i.e., between 4 l/10–5 l/10 (380–475 mm);

warping is free at both ends. The first buckling mode is

in torsion: the beam axis twists but remains straight.

This behaviour is fairly usual for open TWBs of

moderate length (otherwise, flexural buckling pre-

vails) and cruciform sections with and without flanges.

Please remark that the stiffened part apparently does

not twist, in accord with the mechanical role of the

introduced reinforcement. The buckling load, equal to

17.7 kN for the unstiffened profile with the same end

constraints (16.5 kN if the end constraints act only at

the centroid, not on the whole web) [6], grows to 18.79

kN. The analytic solution for torsion buckling of

TWBs [1, 12] gives the buckling load of 16.3 kN for

the unstiffened profile [6], a value close to the

mentioned numerical counterpart of 16.5 kN.

Figure 6 shows a contour plot of the axial displace-

ments (DZ) in the same buckling mode of Fig. 5. As it

is well known, the eigenvector has undefined ampli-

tude; thus, we do not read actual displacements but

Fig. 3 Detail of the mesh and end restraints for free warping at a top and b bottom ends
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simply have a visual sketch for the cross-section

warping and the stiffener effect. Red and blue denote

extrema of axial displacements, of equal magnitude

and opposite direction. A transition to yellow and

green indicates that their absolute value decreases

until zero. As expected, the largest cross-section

warping is at the ends, then it gradually vanishes in

approaching the stiffener, Fig. 6a, thus confirming its

effect on warping also. Figure 6b shows also a detail

of the end cross-sections: each flange warps out of its

plane by axial displacements that linearly decreases

from the ends and vanish at the mid-point. There, the

flanges connect with the web, which does not warp;

both features follow the TWBs theory [2].

Figure 7 shows the first buckling mode of the same

profile considered in Figs. 5 and 6 when warping is

prevented at both ends. As before, buckling is in

torsion, but the corresponding load increases to 45.41

kN. The relevant unstiffened profile buckles at 38.4

kN, according to both shell FE model and TWB

analytic formula [6]. From Fig. 7b, we clearly see that

warping vanishes at the ends and in the stiffened zone,

confirming the previous remarks.

Table 3 lists the elastic buckling loads (Nb,e) given

by FEM. For both free and restrained end warping

conditions, we can identify the best location of the

stiffener(s) to maximise the buckling load. One

stiffener should lie in the interval 2 l/10–3 l/10,

Fig. 4 Detail of the mesh and end restraints for restrained warping at a top and b bottom ends

Fig. 5 Stiffener at 4 l/10–5 l/10, free warping at the ends (case 2 of Table 3): a FEM model; b lateral and c top view of the first buckling

mode

123

2088 Meccanica (2021) 56:2083–2102



independent of the end warping restraints (cases 3, 8).

Two symmetrically placed stiffeners have best loca-

tion in the interval: l/10–2 l/10, if end warping is free

(case 20); 2 l/10–3 l/10, if it is restrained (case 23). By

comparing the different warping constraint conditions

and stiffened configurations, we infer that the consid-

ered stiffener acts as a full inner warping constraint,

the effects of which propagate along the beam length.

Indeed, among the analysed configurations, we get the

same buckling loads in cases 4–14, 5–16, 9–15, 10–17,

20–24-26, and 21–25-27. The elastic buckling stress

rb,e = Nb,e/A is compared in Sect. 5 with the yield

stress of the specimens’ material, so to evaluate the

elastic-plastic buckling loads and compare them with

the experimental critical ones.

Fig. 6 First buckling mode as in Fig. 5: a contour plot of axial displacements (DZ); b warping of the ends

Fig. 7 First buckling mode for the same stiffened beam as in Fig. 5, but with end warping restrained: a contour plot of axial

displacements (DZ); b no warping of the ends
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Figures 8 and 9 show the contour plots of the first

buckling modes for all the beams in Table 3, rein-

forced by one or two stiffeners. The plot of the

longitudinal displacements (denoted DZ again) is

superposed to the buckled shape, thus helping to

understand the effect of the stiffening in relation to the

results in Table 3. We remark that the walls length-to-

thickness ratio is such that no apparent local nor

Fig. 8 Contour plot of the axial displacements (DZ), first buckling mode of the beams with one stiffener in Table 3, with warping: (1–5)

free-free; (2–10) restrained-restrained; (11–17) free-restrained or vice versa
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distortional buckling [30] takes place; this was also

confirmed by the experiments, except only small

regions near the ends in the case of restrained warping.

4 Numerical investigations—finite differences

The in-house code used in this section was originally

proposed by some of the authors in [14] and is based

on a one-dimensional model for thin-walled beams

with finite kinematics; balance is obtained equating

external and internal powers. Non-linear hyper-elastic

constitutive laws consider the coupling between

extension and bending; extension, torsion and warp-

ing; shear forces; shear and torsion; bending and

torsion. In few words, the model is a non-linear

Timoshenko-like beam endowed with a coarse scalar

descriptor of warping, postulated to be proportional to

the twisting couple; loadings can be either conserva-

tive or not.

The solution strategy in the code relies on a centred

finite difference scheme (FDM) able to describe static

equilibria; in detail, the Levenberg–Marquardt method

was chosen to solve the system of non-linear equa-

tions. A ‘small’ perturbation superimposed on equi-

librium leads to an eigenvalue problem and Lyapunov

stability is studied, providing static and dynamic

bifurcations (buckling and flutter). For the sake of

brevity, the full set of governing equations and its

finite differences implementation are not shown here;

interested readers may refer to [14].

Fig. 9 Contour plot of the axial displacements (DZ), first buckling mode of the beams with two stiffeners in Table 3, with warping:

(18–21) free-free; (22–25) restrained-restrained; (26–27) free-restrained or vice versa
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The code proved to be robust and reliable, since it

was validated through several numerical and experi-

mental investigations. Indeed, in [3, 5, 6, 14] numer-

ous case studies were proposed, for symmetric and

non-symmetric cross-sections, considering both

prominent and evanescent values of the warping

rigidity. The code also proved to be capable of

describing the effect of ‘follower’ non-conservative

loads [31], the incidence of local weakening [4] and

the non-linear behaviour of thin-walled open profiles

undergoing large displacements [32].

The profiles numerically investigated in this section

are those described in Sect. 2, see Table 1 and Fig. 2;

their cross-sections are those indicated by Table 2 and

Fig. 1. In detail, following the FEM analysis in

Sect. 3, we selected the cases 1 to 10 of Table 3. To

sum up, these refer to a single stiffener with length one

tenth of that of the beam, l; its ends are placed at the

following distance from the closest beam end: 4.5 l/

10–5.5 l/10, 4 l/10–5 l/10, 2 l/10–3 l/10, l/10–2 l/10,

0–l/10. Boundary conditions prevent all displacements

and rotations; an axial displacement is imposed at one

end, whereas warping is free in cases 1–5, and

restrained in cases 6–10. The cases 11–27 investigated

in Sect. 3, about non-symmetric constraint conditions

and/or two stiffeners, are not considered here: indeed,

the simulations for the cases 1–10 suffice to express an

opinion on the capabilities of the code. On the other

hand, in addition to the cases 1–10 of Table 3, other

five cases are introduced, denoted 6*, 7*, 8*, 9* and

10*, respectively. They basically equal the cases 6, 7,

8, 9, 10, but the warping stiffness C is posed half the

values in Table 2. The authors used this numerical

artifact successfully in other studies, e.g., [6], aiming

to model a semi-restrained warping, and intended to

match the experimental conditions of joint devices

able to prevent penetration, but not detachment of the

beam ends. In other words, these non-linear con-

straints are simulated in the code by assuming that the

beam ends are fully restrained against warping but

considering half the actual warping stiffness.

The fifteen simulations are run considering 50

chunks along the beam; the length of each chunk is

uniform and equal to 19 mm. This large number of

elements satisfies the result of a preliminary conver-

gence analysis and aims to accurately represent the

structural response of all the case studies. Since the

length of the stiffeners is one tenth of that of the beam,

a sequence of 5 chunks models a stiffener. Remark that

the location of this sequence varies along the beam to

cover the actual placement, Fig. 2, and that these five

chunks have the sectional properties of the stiffened

cross-section (whereas all the others have the initial

ones, Table 2). We stress that, once the field equations

have been discretised in the FD framework ([14]), a

suitable updating of the geometrical properties of the

considered chunks suffices to describe variations of

the cross-section along the beam axis.

Analogously to the FEM results in Table 3, Table 4

compares these buckling loads with those provided by

the in-house FDM-based code. In detail, the values of

the fourth column, referring to the FEM analysis, are

the same already listed in Table 3. However, the semi-

restrained cases (cases 6* to 10*) were not considered

by FEM because the numerical artifice used to

simulate this boundary condition cannot be used with

models other than one-dimensional ones.

By analysing the results of the FDM code only (fifth

column of Table 4), it is manifest how the warping

constraint at the ends of the considered profile strongly

affects its buckling load. In fact, when comparing the

cases where the sample presents a stiffening located at

the same position (i.e., case 1 versus case 6, case 2

versus case 7, and so on), we see that the critical loads

have at least doubled when passing from free to

restrained warping constraints at the ends of the

profile. When semi-restrained warping is considered,

we get values of the buckling loads that are interme-

diate between those for free and fully restrained

warping at the ends of the profile. It is worth remarking

that this is expected, being consistent with the physics

of the problem.

However, comparing the FEM and FDM outcomes,

large discrepancies turn out (4th and 5th columns of

Table 4). Indeed, the critical loads provided by the

FDM are always smaller than the FEM counterparts,

with high percentage reductions (6th column of

Table 4), ranging from 9 to 68%. That is, an otherwise

robust and reliable numerical code that was effective

in numerous cases of interest and was validated by

several experimental tests (as well as numerical

solutions, when available), provides unexpected

results when stiffeners are considered.

To find the reasons behind these high differences, it

is useful to compare the results by FEM and FDM,

considering the same profiles of Table 4 with the same

end constraints, now unstiffened. Therefore, only

three cases survive, differing for the ends warping
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conditions; the results are in Table 5. Firstly, the

numerical data still reveal the significance of the

warping constraint at the ends of the beam. Secondly,

we note how this time the percentage differences

among the two sets of results are very small, less than

1% in absolute value.

Basically, the comparisons in Table 5 indicate that

the two codes begin to exhibit different behaviours

only when stiffeners are introduced. However, the

most surprising outcome raised from Table 5 comes

when comparing the values of the buckling load for

unstiffened beams (Table 5) with those of the same

beams when stiffened (Table 4). Indeed, the FDM

code seems to indicate a counterintuitive behaviour in

which the presence of the stiffener can, for some

placements, reduce the critical load of the

Table 3 FEM elastic buckling loads and corresponding pressures for different stiffener(s) positions and end warping constraints

(F = free warping, R = restrained warping)
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corresponding unstiffened beam (see [27]). This

surprising result occurs for seven of the fifteen case

studies, viz. n. 1, 2, 3, 6, 7, 6*, and 7*.

On the one hand, since the code was already widely

validated in many contributions in the last seven years

[3, 5, 6, 14], even for non-prismatic beams [4] and

strong non-linearities [32], code bugs can be excluded.

On the other hand, the FEM results and physical

intuition seem to suggest that the key point is how the

stiffening portion is described in the one-dimensional

beam model (hence, in the numerical code relying on

it). Indeed, as it was pointed out previously, it is

strange that a reinforced chunk is characterised by a

vanishing stiffness whatsoever. In short, the coarse

description of the constitutive properties of the 1-D

model looks unsuitable to describe an abrupt transition

from unstiffened to stiffened chunk. To overcome this

drawback, intuition suggests that a stiffening portion

may be modelled as an inner constraint towards

warping: actually, this is also what one sees from the

outputs of FEM in Figs. 8 and 9.

Table 4 FEM versus FDM elastic buckling loads for different stiffener positions and end warping constraints (F = free warping,

R = restrained warping, S = semi-restrained warping)

Table 5 FEM versus FDM elastic buckling loads for prismatic beams with different end warping constraints (F = free warping,

R = restrained warping, S = semi-restrained warping)

Warping constraints Elastic buckling load FEM, Nb,e (kN) Elastic buckling load FDM, Nb,e (kN) Differences (%)

F–F 16.50 16.35 - 0.9

R–R 38.40 38.45 0.1

S–S – 23.75 –

No stiffeners are considered
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Thus, we disregarded the theoretical values for the

warping constant C in Table 2 and considered that the

stiffening portion acts so to increase them. In detail,

we consider the valuesCs of the stiffened portion equal

to those of the unstiffened chunks, Cc, amplified by

increasing orders of magnitude. The results of the

FDM analysis, once these data are used, are in Table 6.

Consider the cases 1, 3, 6 of Tables 3 and 4: in cases

1 and 6 the FDM provides the lowest buckling loads

for free and restrained end warping constraints,

respectively, whereas case 3 is analysed to check the

validity of the procedure for a non-symmetric element.

Table 6 explicitly shows that turning the stiffened part

into an effective warping constraint properly recovers

the FEM results. That is, our intuition is confirmed,

and the in-house code shows reliable again.

These findings, however, pose very interesting

questions in both modelling and numerical rendering,

since a ‘naı̈ve’ application of the one-dimensional

model might apparently yield wrong results. A

problem similar to that emerged here applying the

in-house FDM code could arise when using refined

1-D (i.e., beam) finite elements including cross-

section warping due to torsion. This is hence worthy

of further theoretical and computational investigation.

5 Experimental investigations and comparisons

5.1 Experimental set-up

Axial compression tests were made on an MTS

universal machine with maximum loading capacity

of 100 kN. The loading was displacement-controlled:

the input was a monotonic increase of one axial end

displacement, imposed by the linear actuator (hy-

draulic jack) at a speed 10 lm/s; the output was the

axial load measured by the machine as a reactive force.

Figure 10a shows the experimental set-up: the

specimen is held vertical by two brass end constraints,

connected to the MTS by steel devices. The top end is

connected to the fixed crossbar, while the lower end is

fixed to the actuator by an element allowing horizontal

adjustment during positioning (this was essential to

ensure specimen verticality). Figure 10b shows a

closest view of the stiffener (realised by welding

angular plates to the flanges) and of the optoNCDT

1302–20 laser displacement transducer by Micro-

Epsilon (Fig. 10b), mounted to monitor the transverse

displacement of a control point located approximately

at mid-length of the sample (Fig. 10a). The main

features of such non-contact sensor are in Table 7. The

measured transverse displacement was an indirect

indicator of twist.

Figures 11a, b show the end constraints for free and

prevented end warping, respectively; end displace-

ments, rotations and twist are all prevented in both

cases. The brass joints, available from previous studies

of ours [3, 4, 6], were realised on purpose to fit the

peculiar cross-section.

As discussed in the previous section, in the case of

Fig. 11b the end warping of the flanges is only

partially restrained, since the joints prevent penetra-

tion but not detachment of the terminal cross-sections:

this can, on average, reasonably be assimilated to a

half-restrained warping condition [6]. This circum-

stance must be considered when comparing experi-

mental and numerical results. Even the geometrical

imperfections and the residual stresses induced by

welding of the stiffening plates were not taken into

account in the numerical simulations but may have

some importance for real prototypes. Despite the

mentioned differences, a comparison between numer-

ical predictions and experimental results is of primary

interest, if only to check if the former is conservative,

thus of possible use for engineering applications.

Table 6 FDM with

increased warping stiffness

versus FEM elastic

buckling loads for cases 1, 3

and 6

Case n. Elastic buckling load, FDM versus FEM, Nb,e (kN)

FDM, Cs FEM

0 100 Cc 101 Cc 102 Cc 103 Cc 104 Cc 105 Cc 106 Cc

1 8.95 17.75 17.95 18.05 18.05 18.05 18.05 18.05 18.34

3 12.45 36.65 37.45 37.55 37.65 37.65 37.65 37.65 39.20

6 18.05 44.15 45.15 45.45 45.55 45.55 45.55 45.55 43.34
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An NI9215 device by National Instruments gave

analogic to digital signal conversion. Data acquisition

and analysis were performed by self-built LabVIEW

programs. Two sets of curves emerged: axial load

versus axial displacement and axial load versus twist

rotation of the mid-span; they were used in a

complementary way to evaluate the buckling load

(see following section).

5.2 Experimental results and comparisons

in elastic-plastic range

Referring to Table 3, the following nine cases were

experimentally tested: 1, 2, 4, 5, 6, 7, 9, 21 and 24.

Two tests were performed in cases 2, 6 and 7, while

only one for the remaining cases, for a total of twelve

tests. In detail: cases 1, 2, 4 and 5 have a single

stiffener and free warping end conditions; 6, 7 and 9

have one stiffener and restrained end warping; 21 and

24 have two symmetric stiffeners, with free and

restrained end warping, respectively (see Table 3).

Tests were repeated once in three cases over nine (one

case for free end warping, two cases for restrained end

warping), showing a good match in terms of buckling

load, limit load, and slope of the axial load versus axial

displacement curve (see Figs. 12 and 13). For this

reason, although the limited number of tested speci-

mens do not allow us to do any statistics for the

analysed cases, we feel sufficiently confident about the

general repeatability of the results.

Figures 12a, 13a and 14a show the axial load versus

axial displacement plots for all the tested cases. All the

curves show a similar qualitative trend, where three

stages can be recognised: (1) a first phase charac-

terised by a stiffening branch due to initial adjustments

(to cover gaps within both end joints and the relevant

Fig. 10 a Experimental set-up for axial compression; b particular of laser sensor and stiffening frame

Table 7 Main features of the laser sensor

Measure range Start of measure range End of measure range Linearity Resolution

20 mm 30 mm 50 mm 40 lm 4 lm (averaged)

10 lm (dynamic 750 Hz)
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parts of the loading machine in contact with them); (2)

a second linear branch dominated by the axial stiffness

of the specimen; and (3) a last softening phase

corresponding to the post-buckling regime. The axial

load corresponding to the ending of the linear stage

(transition among phases 2 and 3) indicates the

buckling load [12].

Actually, the transition between the second and the

third phase is pretty gradual because of initial

imperfections (i.e., no real bifurcation between a

fundamental and a secondary branch may exist, see

[17]), and a precise identification of the buckling load

is not easy. Thus, the use of a second indicator results

of help, as shown in Figs. 12b, 13b and 14b, where the

curves of experimental axial load versus normalised

torsion angle are shown. This angle may be taken as

the kinematic parameter describing the apparent beam

stiffness against torsion buckling. Its values were

normalised with respect to the maximum values

attained during each test, so to allow a direct

comparison among the several tests. It is worth

mentioning that, due to the initial geometrical imper-

fections, the twist rotation appears almost at once. The

change in the sense of rotation recorded sometimes,

especially after the initial settlement, can be ascribed

to the combined effect of initial imperfections (of both

geometry and loading) and of non-uniform local

plasticisation of the constrained regions, which

defined the weakest rotation sense as the load was

increased; see in particular cases 2 and 5 of Fig. 12b,

case 6 of Fig. 13b.

The general responses in Figs. 12b, 13b and 14b

reflect the three stages described above for the load–

displacement curves. At the end of the second phase

(i.e., at the end of the pre-critical branch), the twist

angle starts increasing more rapidly with the load, thus

exhibiting a softening response corresponding to the

post-buckling regime [12].

Considering the material yield stress ry-

= 120 MPa, the values of the elastic buckling pres-

sure in Table 3 suggest that some inelastic behaviour

took place, even though localised at a small portion of

the profile, where the strains are more relevant. This

inevitably implies that we must admit that buckling

occurred in the elastic–plastic range, even though the

beam is not fully plasticised. Accordingly, even the

effective buckling load had to be evaluated in the

elastic–plastic regime. To the purpose, Johnson’s

parabolic formula was adopted [1, 12, 33]. This

formula, dated back to 1893, works well for ductile

metal columns and is still today the basis of the

modern column design curves, as one can find in

national and international codes of practice and

recommendations [34]. Thus, the critical buckling

load coincides either with the elastic buckling load

Nb,e = rb,e A if rb;e � ry
�

2, or with the inelastic

buckling load Nb;ep ¼ rb;ep A otherwise, where A is the

current cross-sectional area (see Table 2) and:

rb;ep ¼ ry �
r2
y

4rb;e
: ð1Þ

Table 8 shows the numerical inelastic buckling

loads and the corresponding pressures provided by this

empirical-theoretical approach, calculated by consid-

ering as ingredients of Johnson’s formula (1) the

numerical outputs of the elastic buckling loads given

by FEM (Table 3).

In Figs. 12, 13 and 14 red dashes, indicating the

numerical value of the inelastic buckling load evalu-

ated by Johnson’s empirical formula, are superim-

posed to the experimental curves. Despite the

approximate and empirical nature of this formula, a

very good agreement between experimental and FEM

numerical results is found. In addition, we remark that

in general the numerical predictions appear to be

Fig. 11 Top and bottom end constraints for a free warping and

b restrained warping
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Fig. 12 Experimental

curves for cases 1, 2, 4, 5 of

Table 3 (one stiffener, free

ends warping): a axial load

versus axial displacement,

b axial load versus

normalised twist angle. Red

dashes fix the numerical

inelastic buckling loads

123

2098 Meccanica (2021) 56:2083–2102



conservative; no need to stress the fact that such an

indication is strongly in favour of technical design

since it goes in favour of safety. This can be

considered enough for the purpose of the present

study, while a numerical modelling of inelastic torsion

buckling of aluminium thin-walled profiles would go

far beyond [20, 21, 35, 36].

6 Conclusions

Our in-house numerical code for the analysis of

TWBs, relying on finite differences, is able to describe

warping effects through a coarse one-dimensional

beam model. It proved to be quick, efficient and

reliable, but gave counterintuitive results (i.e., a

decrease in the buckling load) when locally stiffened

Fig. 13 Experimental

curves for cases 6, 7, 9 of

Table 3 (one stiffener,

restrained ends warping):

a axial load versus axial

displacement, b axial load

versus normalised twist

angle. Red dashes fix the

numerical inelastic buckling

loads
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profiles were considered. In this contribution we

presented a thorough comparison of experimental

and numerical results on the effect of local stiffeners

on the buckling load capacity of multi-symmetric open

thin-walled beams. The experimental campaign was

performed on a series of specifically designed and

manufactured aluminium specimens and stiffeners.

These required a small amount of material and

manufacturing but remarkable increased the buckling

strength, which, however, is very sensitive to the

placement of the stiffener, emphasizing the crucial

role of a proper design. From this standpoint, the

experimental and numerical results shown here are a

benchmark for future developments.

The numerical analysis directly compared the

results of a commercial code, where shell finite

elements were used, with those of the in-house one,

assuming a linearly elastic material. On the other hand,

the in-house code well catches the contributions of end

constraints towards warping but gives unexpected

results (if not properly interpreted) as for the interme-

diate stiffeners. In fact, warping constraints can be

specified by imposing boundary conditions; the stiff-

ening effect relies on the geometrical properties

assigned to the cross sections of the reinforced chunks.

Physical intuition and a careful examination of the

FEM results suggested a different view of the stiffened

beam chunk in both the one-dimensional theoretical

and numerical models, i.e., as an inner warping

constraint. In this way, the surprising results were

overcome, and the FEM results were fully recovered.

The numerical elastic buckling loads were thus used to

calculate inelastic buckling loads, which matched well

the experimental results.

From the satisfactory comparison of experimental

and numerical results we thus believe that our present

Fig. 14 Experimental curves for cases 21 and 24 of Table 3 (two symmetric stiffeners): a axial load versus axial displacement, b axial

load versus normalised twist angle. Red dashes fix the numerical inelastic buckling loads
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contribution may serve as an indication towards

design purposes, most of all since we proved that

small amounts of material provide technically remark-

able effects. At the same time, the interesting remark

on the modelling of the local stiffeners opens new

questions both from the theoretical and numerical

points of view, which pave the way for further

investigations that are in due course and will be

reported elsewhere.
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