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Abstract Ambient vibration modal identification,

also known as Operational Modal Analysis, aims to

identify the modal properties of a structure based on

vibration data collected when the structure is under its

operating conditions, i.e., no initial excitation or

known artificial excitation. This procedure for testing

and/or monitoring historic buildings, is particularly

attractive for civil engineers concerned with the safety

of complex historic structures. However, since the

external force is not recorded, the identification

methods have to be more sophisticated and based on

stochastic mechanics. In this context, this contribution

will introduce an innovative ambient identification

method based on applying the Hilbert Transform, to

obtain the analytical representation of the system

response in terms of the correlation function. In

particular, it is worth stressing that the analytical

signal is a complex representation of a time domain

signal: the real part is the time domain signal itself,

while the imaginary part is its Hilbert transform. A

3DOF numerical example will be presented to show

the accuracy of the proposed procedure, and

comparisons with data from other methods assess the

reliability of the approach. Finally, the identification

method will be extended to the real case study of the

Chiaramonte Palace, a historic building located in

Palermo and known as ‘‘Steri’’.

Keywords Operational modal analysis � Hilbert
transform � Correlation function � Analytical signal

1 Introduction

Most of the literature concerning dynamic identifica-

tion deals with the estimation of the modal parameters

(frequencies, damping coefficients and mode shapes)

of a structure starting from the measurement of both

the dynamic input and structural response signals.

In the past, the dynamic identification of the modal

characteristics of buildings was generally based on

force vibration tests involving impact tests or other

complex setups, applying several types of input

exciters directly in-situ. In this context, it is customary

to refer to the modal analysis based on artificial forced

excitations as Experimental Modal Analysis (EMA)

which presupposes the use of both known input and

structural response measurements to estimate modal

parameters [1, 2].

Based on the number of reference points used to

measure data, numerous modal identification algo-

rithms have been developed such as Single-Input/
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Palermo, Viale delle Scienze, 90128 Palermo, Italy

e-mail: antonina.pirrotta@unipa.it

C. Bilello

ABGroup Ingegneria e Servizi Tecnici integrati, Sciacca,

Italy

123

Meccanica (2021) 56:797–812

https://doi.org/10.1007/s11012-020-01273-4(0123456789().,-volV)( 0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-020-01273-4&amp;domain=pdf
https://doi.org/10.1007/s11012-020-01273-4


Single-Output (SISO), Single-Input/ Multi-Output

(SIMO) and Multi-Input/ Multi-Output (MIMO) tech-

niques [3].

In traditional EMA, the artificial excitation is

normally conducted in one or more structural points

in order to effectively measure Frequency Response

Functions (FRFs) in the frequency domain, or Impulse

Response Functions (IRFs) in the time domain.

However, the use of multiple inputs and the measure-

ment of these functions would be difficult in the field

test and for large structures.

As a consequence, EMA is usually conducted in the

lab environment since tests normally interfere with the

operating condition of structures and thus, they may

not be conducted routinely and economically. There-

fore, in recent decades, dynamic tests based on

ambient vibrations methods, have rapidly gained

ground, especially in the structural health monitoring

field, leading to the development of Operational

Modal Analysis (OMA) techniques.

As a matter of fact, the modal identification

associated with OMA techniques requires the record-

ing of response signals (output only) of the structure,

subjected to ambient noise vibrations (wind, traffic,

water waves, man-made excitations and so on),

without the need to measure the dynamic forces

exciting structures. Hence, tests can be also carried out

under structural operating conditions making them

cheaper and faster than EMA.

As far as both EMA and OMA are concerned,

several studies have demonstrated how both frequency

and time domain approaches can be appropriate to

estimate the structural modal parameters of a large

variety of structures [4]. However, since the external

forces are not recorded in OMA identification meth-

ods, the application of concepts from stochastic

mechanics is required [5, 6].

Classical OMA frequency domain techniques gen-

erally extract the modal parameters from the biased

frequency response functions (FRFs) or from the auto

power spectral density functions (PSDs) and cross

power spectral density functions (CPSDs) of the

outputs. Among OMA procedures, Peak-picking

(PP) combined with the Half power (PP?HP) [7]

and Frequency Domain Decomposition (FDD) [8, 9]

procedures are often utilized. These methods are

generally based on the input-output PSD relationship

[7]. However, as previously stated, since in this case

the input signal is not recorded, OMA refers to a key

assumption. The basic idea of OMA hypothesises that

the excitation source, due to natural or operative

loadings, yields an input force which can be modeled

as a white Gaussian noise [5, 8].

In this case, modes can be estimated from the

amplitude of their peaks at the correspondent main

frequencies of the system [10].

As it is well known, since frequency domain-based

methods depend strongly on the frequency resolution

of the PSDs, the identified modal parameters, and

especially the damping estimation, might not be very

accurate when the damping is very high or the modes

are very close to each other [7].

Generally, however, classical FDD-based proce-

dures might be suitable only for weakly-damped

structures [2, 11]. These kinds of drawbacks led

researchers to start looking at time domain system-

identification OMA techniques as a promising alter-

native. Different time domain methods have been

developed such as the Least-square curve fitting

technique, the Auto-Regressive model with a Moving

Average of white noise (ARMA) [12], the Stochastic

Subspace Identification techniques (SSI) [13], the

Natural Excitation Technique (NExt) [14, 15] and so

on [16]. Further, correlation functions can also be

employed for the modal identification for OMA just

like IRFs for EMA [14]. In particular, auto correlation

functions (CORs) and cross correlation functions

(CCORs) of the output data can be expressed as a

summation of decaying functions, each one charac-

terized by a damped natural frequency, a damping

ratio and mode shape. Since the covariance function

(COV) is equal to the correlation function for zero

mean random processes, many methods have been

developed to decompose the covariance matrix into

single-mode dependent functions. In this way, the

obtained functions are dominated by a specific struc-

tural mode and the extraction of the modal parameters

can be achieved [4]. However, the main disadvantage

of some of these methods seems to be the tendency to

yield non-conservative damping estimates with noisy

data [3] and to encounter problems in distinguishing

structural modes from spurious or noise modes.

On this base, the present study proposes an

identification technique combining a proper mode

decomposition algorithm with the application of the

Hilbert Transform (HT) [17–20] to the output response

data. Specifically, HT properties are exploited to

obtain the so-called analytical signal (AS) in terms of
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correlation functions. The AS is defined as a complex

representation of a time domain signal. The contribu-

tion of the imaginary part makes the AS highly

sensitive to variations of some signal quantities, such

as phase and instantaneous frequency, so that it seems

to be an appealing tool to detect the modal parameters

of a structure with high precision [20]. Notably, since

no equipment is requested to excite the structure, and

considering the accuracy of the proposed procedure,

this technique can be easily applicable also to historic

buildings.

In particular, this paper is organized as follows:

Sect. 2 contains the description of the identification

algorithm and numerical analyses carried out on a

single degree of freedom (SDOF) system. In Sect. 3

the algorithm is presented for the more general case of

a multi degree of freedom (MDOF) structure and

additional analyses are performed on a 3DOF system

to prove the efficiency of the proposed method also on

multi-story structures. Furthermore, in order to take

into account real structures, in Sect. 4 the identifica-

tion method is extended to the case study of an existing

historic building. The presented case study concerns

the Chiaramonte Palace, a rare and precious example

of Sicilian fourteenth-century architecture.

2 Identification algorithm for SDOF systems

In this paper, an innovative ambient vibration identi-

fication method to estimate the frequencies and the

damping ratios of a structure from the AS of the output

vibration data is proposed. In particular, the estimation

of the modal parameters is achieved by considering the

properties of the AS defined in terms of correlation

functions.

Specifically, once the output signals of a system,

subjected to environmental noise, have been acquired

in terms of accelerometer data, PSDs and CPSDs

response functions are determined in the frequency

domain. Thus, by using the Wiener–Khinchine theo-

rem [7], CORs and CCORs of the output data can also

be obtained in the time domain.

Finally, by means of the HT, it is possible to define

the AS in terms of correlation fucntions. The AS is a

complex signal which allows the dynamic character-

istics (frequencies, damping coefficients) to be easily

extracted from its properties, namely the envelope and

phase.

The present identification technique, denoted as

Analytical Signal-based method (ASM), can be sum-

marized in the following steps:

(1) Acquisition of the structural response signals;

(2) Estimation of the PSDs and CPSDs from output

data (Welch’s Method);

(3) Estimation of the CORs and CCORs from the

PSDs and CPSDs, by means of the inverse fast

Fourier transform (IFFT);

(4) Estimation of the AS (by means of the HT) and

its properties (Envelope, phase);

(5) Identification of the modal parameters (e.g.

instantaneous frequencies and damping ratios).

The meaning of each step will be explained in detail in

the following resorting to a linear SDOF structural

system with mass M1, stiffness K1 and damping C1,

characterized by a damping ratio f1 ¼ C1=2
ffiffiffiffiffiffiffiffiffiffiffiffi

K1M1

p

and a natural frequency f1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K1=M1

p

=ð2pÞ. These
two parameters represent the modal properties to be

identified with the proposed procedure.

When the signal of the input force is not acquired

and the excitation source is due to ambient vibrations,

the key hypothesis of OMA is that the structure can be

considered as excited by a white noise process W(t),

defined as in [7, 21]. This assumption ensures that all

the vibration modes are excited at the same amplitude

since the power spectrum of the input is flat.

Let x1ðtÞ denote the displacement response of the

SDOF system relative to the ground. The dynamic

behavior of the SDOF system is governed by the

following equation of motion:

€x1ðtÞ þ 2x1f1 _x1ðtÞ þ x1
2x1ðtÞ ¼ WðtÞ ð1Þ

where x1 ¼ 2pf1 represents the circular frequency.
Once the structural response is obtained from

Eq. (1), theWelch’sMethod is applied to the structural

acceleration €x1ðtÞ in order to estimate the output in

terms of PSD [22]. Specifically, the application of the

Welch’s Method requires some parameters such as the

window function (Hanning, Hamming, etc...), the sub-

segments length and the percentage of overlap, to be

set [23]. As a matter of fact, the original signal €x1ðtÞ is
divided into �N sub-segments, overlapped in time. To

each one a window function is applied in the time

domain so that the sub-signal tends to zero at the

edges. Then, by means of the Fast Fourier Transform

(FFT), computed for each r-th sub-signal with
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(r = 1,2,..., �N), the two-sided PSD of the structural

acceleration €x1ðtÞ, denoted as S€x1 €x1ðf Þ can be obtained

by:

S €x1 €x1ðf Þ ¼
1

2p
lim
T!1

1

2T
E½jX1;rðf Þj2� ð2Þ

with (r = 1,2,..., �N) and where X1;rðf Þ is the Fourier

transform of each sub-signal contained in €x1ðtÞ.
According to the Wiener–Khinchine theorem, the

IFFT of the S €x1 €x1ðf Þ yields the corresponding correla-

tion function R €x1 €x1ðsÞ:

R €x1 €x1ðsÞ ¼
Z þ1

�1
S€x1 €x1ðf Þei2pf sdf ð3Þ

where i is the imaginary unit. At this point, the Hilbert

transform (HT) operator can be straightforwardly

applied to the correlation function. Its HT is defined

as:

R̂ €x1 €x1ðtÞ ¼
1

p
P

Z þ1

�1

R€x1 €x1ðsÞ
t � s

ds ð4Þ

where P stands for the principal value. The complex

analytical signal z€x1 €x1ðsÞ, in terms of the correlation

function, is defined as:

z€x1 €x1ðsÞ ¼ R€x1 €x1ðsÞ þ iR̂ €x1 €x1ðsÞ ð5Þ

The AS is a complex representation of a time domain

signal. Specifically, in this case, the real part is the

correlation function itself R €x1 €x1ðsÞ, while the imagi-

nary part is its Hilbert transform R̂ €x1 €x1ðsÞ. The two

main properties characterizing the AS are the ampli-

tude (or envelope) A1ðsÞ and the phase angle h1ðsÞ,
respectively defined as:

A1ðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R €x1 €x1ðsÞ
2 þ R̂€x1 €x1ðsÞ

2
q

ð6Þ

h1ðsÞ ¼ arctan
R̂€x1 €x1ðsÞ
R€x1 €x1ðsÞ

� �

ð7Þ

These two functions allow the damping ratio and the

main frequency of the system to be derived. In

particular, from the phase angle h1ðsÞ is possible to

estimate the structural frequency while the damping

ratio can be determined from the amplitude. Accord-

ing to [24] and considering the Bedrosian theorem

[25, 26], the correlation function and its Hilbert

transform can be expressed in the form:

R €x1 €x1ðsÞ ¼ E1e
�i2pf1f1ssinð2p �f 1sþ /1Þ ð8Þ

R̂ €x1 €x1ðsÞ ¼ �E1e
�i2pf1f1scosð2p �f 1sþ /1Þ ð9Þ

where E1 is a constant, �f 1 ¼ f1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� f21

q

the natural

damped frequency of the system and /1 the phase.

Thus, the amplitude A1ðsÞ and the phase angle h1ðsÞ of
the analytical signal assume the following

expressions:

A1ðsÞ ¼ E1e
�i2pf1f1s ð10Þ

h1ðsÞ ¼ 2p �f 1sþ /1 ð11Þ

Although the frequency is known from the PSD

analysis and it could be identified by the use of the PP

method, it is worth noting that the first derivative of the

phase angle h1ðsÞ (considered as an unwrapped

function as discussed in [19]) yields a time dependent

function, termed instantaneous frequency:

�f 1;istðsÞ ¼
_h1ðsÞ
2p

ð12Þ

The �f 1;istðsÞ is an almost constant function, so the

natural damped frequency of the system �f 1ðsÞ can be

identified as its mean value:

�f 1ðsÞ ¼ E½ �f 1;istðsÞ� ð13Þ

with E½�� denoting the expectation operator. Further,

from the logarithmic representation of the amplitude,

the damping ratio can be derived. Note that the natural

logarithm of the amplitude, defined in Eq. (10), can be

represented by a straight line of coefficients c1 and c2
as follows:

lnðA1ðsÞÞ ¼ lnðE1Þ � 2pf1f1s ¼ c1sþ c2 ð14Þ

Consequently, the damping ratio f1, associated with

the instantaneous frequency f1, is given by the

relationship between the tangent to the logarithmic

representation of A1ðsÞ and the frequency:

f1 ¼
tan½lnðA1ðsÞÞ�

2pf1
ð15Þ

2.1 A numerical example: SDOF system

In this section, a numerical example as an application

of the identification algorithm to a linear SDOF

structural model, shown in Fig. 1, is given in order to
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demonstrate the validity of the theoretical background

of the procedure.

The SDOF structural properties are set so that the

value of the damping ratio f1 is 0.0500 and the natural
damped frequency �f 1 ¼ 29:9625Hz. These two

parameters represent the reference exact values to be

identified with the proposed procedure. Taking into

account these parameters, the response acceleration

€x1ðtÞ is obtained by numerical integration of Eq. (1). In

this manner, the PSD can be obtained employing the

Welch method. Specifically, S€x1 €x1ðf Þ, has been com-

puted according to Eq.(2) using a Hamming window,

an overlap of 50% between adjacent segments and a

sample rate of 1000 Hz. Next, by transforming

frequency-domain data to the time domain, R €x1 €x1ðsÞ
has been obtained as in Eq. (3) (Fig. 2b).

The tridimensional representation of z€x1 €x1ðsÞ in

Fig. 3, with its projected real and imaginary parts,

shows the complex nature of the AS.

While, the AS properties, instantaneous frequency

and amplitude are depicted in Fig. 4a, b, respecitvely.

As it can be seen in Fig. 4a, the function �f 1;istðsÞ shows
steady values over the time with its mean value

yielding the natural damped frequency of the system.

For this example, the identified natural damped

frequency �f 1ðsÞ is equal to 29.9278 Hz with a

discrepancy of 0.1156% with respect to the exact

value. From Fig. 4b it emerges that the logarithmic

representation of the amplitude can be clearly approx-

imated by a straight line so that the damping ratio can

be identified as in Eq. (15).

Results obtained from the application of the

proposed identification algorithm on this SDOF sys-

tem are summarized in Table 1. In particular, Table 1

shows the natural damped frequency and the damping

ratio estimated by the ASM proposed method and the

classical PP?HP, as well as the discrepancies com-

puted with respect to the exact values

( �f 1 ¼ 29:9625Hz, f1 ¼ 0:0500) (Case 1). As it can

be seen, both methods lead to similar results, although

Fig. 1 SDOF structural model

Fig. 2 a PSD function of the structural acceleration response;

b COR function of the structural acceleration response

Fig. 3 Analytical signal: complex representation of a time

domain signal (AS-black thick line; real part-black line;

imaginary part-dashed dotted black line; phase diagram-dotted

black line)
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the ASM yields slightly more accurate estimates

compared to PP?HP.

Importantly, the small differences occurring

between exact and identified values, computed for

both the modal parameters, prove the reliability of the

proposed approach as an output data-based tool for the

estimation of modal parameters. Furhter, an additional

analysis has been carried out increasing the damping

ratio of the system. Specifically, it has been proved

that methods based on the knowledge of auto and

cross-spectra of the output (such as PP?HP) are more

accurate for damping ratio lower that 0.05 [7].

Therefore, in order to investigate the capability of

the ASM to overcome limits involved in frequency

domain-methods, the damping ratio of the system has

been increased to f1 ¼ 0:0100. The obtained values

and discrepancies on the identification of frequency

and damping ratio are reported in Table 1 under the

’’Case 2’’label.

As shown in Table 1, using both PP?HP and the

ASM methods, the natural damped frequency is still

well estimated, whereas the ASM can achieve a better

estimation for higher damping ratios.

Notably, for the Case 2, it clearly emerges that

lower errors are obtained from the ASMmethod with a

discrepancy equal to 0.62% compared to the 2.64%

achieved by the PP ? HP.

In order to assess the reliability of the proposed

method, further additional analyses have been per-

formed by taking into account a wider range of

variation of the damping value. Specifically, Fig. 5

shows the percentage discrepancy e between the

natural damped frequencies estimated by the PP?HP

(line with squares) and the ASM method (line with

circles) with respect to the theoretical values of f1
variable in the interval [0.05–0.10]. As can be seen in

Fig. 5, for f1 ¼ 0:0500 the two methods yield almost

the same values of frequencies. However, as the

damping ratio of the structure increases, significant

discrepancies are achieved from the PP?HP method,

while the ASM method always leads to a steady trend

with smaller errors on the identified values of damping

ratios. This result suggests that the ASM, overcoming

the limitations involved in frequency domain-based

methods, can be adopted as a reliable identification

method even when dealing with structures character-

ized by damping ratios greater than 5%.

Fig. 4 a Instantaneous frequency function; b Logarithmic

representation of the amplitude of the AS

Table 1 Estimated natural

frequency and damping

ratio for the exact values of

f1 ¼ 0:0500 (Case 1) and

f1 ¼ 0:0100 (Case 2)

PP ? HP Discrepancy (%) ASM Discrepancy (%)

Case 1

f1 0.0512 2.3067 0.0506 1.1026

�f 1 (Hz) 29.9323 0.1007 29.9331 0.0982

Case 2

f1 0.1026 2.6410 0.1006 0.6219

�f 1 (Hz) 29.6505 0.6671 29.7683 0.2725
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3 Identification algorithm for MDOF systems

This section presents the identification algortihm

extended to the more general case of MDOF systems.

To deal with a MDOF system, the proposed procedure

has to take into account that the initial PSD matrix of

the response data contains multicomponent PSDs and

CPSDs characterized by the contribution of all the

modes for each degree of freedom.

In this case, the modal parameters cannot be

extracted directly from the derived analytical signals

in the time domain. Consequently, the use of AS is

combined with a proper mode decomposition algo-

rithm. By assuming a stationary white noise input

signal, the initial output PSD matrix is decomposed in

a summation of monocomponent functions. Specifi-

cally, after the second step, described in Sec.2,

concerning the PSD estimation by the Welch’s

Method, a decomposition of the PSD matrix into

’’filtered’’ PSDs and CPSDs (FPSDs and FCPSDs), by

means of proper filters, is applied in order to estimate

the corresponding filtered FCORs and FCCORs.

In this regard, consider the dynamic behavior of a

MDOF system with n degrees of freedom, subjected to

an input force modeled as a white noise process W(t),

that can be expressed in compact form as:

M€xðtÞ þ C _xðtÞ þKxðtÞ ¼ �MrWðtÞ ð16Þ

where M, C, K denote the mass, damping, and

stiffness n� nmatrices respectively and r is the n� 1

influence vector. The structural displacements relative

to the ground xjðtÞ (with j ¼ 1; 2; . . .; n) are collected

in the vector xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . .; xnðtÞ�T (with T

denoting matrix transposition).

As well known, from modal analysis, the response

of a MDOF linear system is the sum of the modal

responses:

xjðtÞ ¼
X

n

p¼1

/jpqpðtÞ ¼
X

n

j¼1

xjpðtÞ ð17Þ

(with j =1,2,..n and p mode)

where /jp is the (jp) element of the system modal

matrix and qpðtÞ the displacement in the modal space.

From the superposition formula it emerges that the

response xjðtÞ of each degree of freedom j is influenced

by all the structural modes /jp. As a consequence,

moving to the frequency domain, also the response

PSDs and CPSDs will contain the contribution of all

the modes.

Firstly, aiming at the detection of the main

frequencies, a frequency domain representation of

the response data is obtained. To this end, the Welch’s

Method is applied to the response accelerations €xjðtÞ.
Similar to the SDOF case, dividing each response into
�N sub-signal components (r =1,..., �N) and considering

the mean of all the contributes in the frequency

domain, the final two-sided auto and cross power

spectral density functions S €xj €xkðf Þ (with j, k =1, 2,...,n)

of the MDOF system can be obtained as follows:

S €xj €xkðf Þ ¼
1

2p
lim
T!1

1

2T
E½Xj;rðf ÞXk;rðf Þ�� ð18Þ

where * denotes the conjugate transpose and Xj;rðf Þ is
the Fourier transform of the r-th subsignal €xjðtÞ.
Specifically, when k=j the PSDs S€xj €xjðf Þ are obtained,
while if k 6¼j, S€xj €xkðf Þ represent the CPSDs of the

system.

Thus, the two-sided PSD matrix S€x€xðf Þ, containing
the auto PSDs S€xj €xj;rðf Þ and the cross ones S€xj €xk ;rðf Þ as
diagonal and off-diagonal terms respectively, can be

written as:

S€x€xðf Þ ¼

S€x1 €x1ðf Þ S€x1 €x2ðf Þ . . . S€x1 €xnðf Þ
S€x2 €x1ðf Þ S€x2 €x2ðf Þ . . . S€x2 €xnðf Þ
. . . . . . . . . . . .

S€xn €x1ðf Þ S€xn €x2ðf Þ . . . S€xn €xnðf Þ

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

It is worth stressing that each term of S€x€xðf Þ, obtained
by the use of the Welch’s Method, is a multicompo-

nent function.

Fig. 5 Discrepancy e between the natural damped frequencies

estimated by the PP ? HP and the ASM method with respect to

the theoretical values
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At this stage, the ASM requires operating on

monocomponent signals and to derive the damping

from the analytical signals in the time domain. In this

regard, to decompose multicomponent signals many

kinds of filters exist in literature: Butterworth, Elliptic

or Chebyshev and so on, with different specifications

[27]. In order to isolate the contribution of each mode,

the use of filters requires the definition of a frequency

range centered on the frequency of the analyzed mode.

However, frequencies can be easily obtained by means

of the Fourier transform of the structural response.

Once the filter has been applied to each multicom-

ponent PSDs and CPSDs of the original PSD matrix,

as many ’’filtered’’ PSDs and CPSDs (FPSDs and

FCPSDs) as the number of DOFs are obtained for each

mode, each one containing characteristics of only one

individual mode.

From this point, the identification procedure for

each signal is the same as that described for the SDOF

case. Clearly, for a SDOF structure, the procedure

leads to a unique set of identified modal parameters,

while for a MDOF system, the mean of the values

obtained for each degree of freedom should be

considered.

Then, by means of the IFFT, from the previous

FPSDs and FCPSDs, the estimation of the FCORs and

FCCORs FR €xj €xkðf Þ is achieved.
Finally, by applying the HT to the FCORs and

FCCORs, the filtered analytical signals are derived

too, and the same procedure shown for the SDOF case

can be carried out.

3.1 A numerical example: 3DOF system

In order to assess the reliability of the proposed

procedure, the identification of the modal parameters

of a linear 3DOF structural model (Fig. 6a), is

considered and results are compared with those

achieved by applying the PP?HP.

The mass of each storey is assumed to be the same

and equal to Mj=794 kg for j = 1,2,3. The natural

damped frequencies of the structure are �f j (Hz) =[6.23,

17.45, 25.22] and the system is assumed to be a

classically damped structure with damping ratio of

each mode fj=0.08.
The two-sided multicomponent PSDs, S €x1 €x1ðf Þ,

S€x2 €x2ðf Þ and S €x3 €x3ðf Þ are shown in Fig. 6b. In order to

isolate the contribution of each mode, in this case a

Butterworth band-pass filter of order 8 has been has

been applied to each multicomponent PSDs and

CPSDs of the original 6� 6 PSD matrix, so that

corresponding FPSDs and FCPSDs have been

obtained for each mode.

Thus, applying the filter to the original multicom-

ponent PSD S€x1 €x1ðf Þ for instance, in the frequency

range centered on the first frequency of the system

(5.46–7.03 Hz), a filtered PSD, denoted as FS €x1 €x1ðf Þ,
characterized by the contribution of the first mode

only, is obtained. Repeating the same procedure for

each original auto PSD S€xj €xjðf Þ, three auto FPSDs

FS €xj €xjðf Þ are obtained in total for the first mode

(Fig. 7a). They represent the PSDs of three single

oscillators dominated by the modal parameters of the

first mode only. In the same way, filtering the original

CPSDs S€xj €xkðf Þ, six FCPSDs FS€xj €xkðf Þ are obtained for

the first mode.

Fig. 6 a 3DOF structural model; b auto PSD functions of the

structural acceleration responses
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Adjusting the frequency range of the filter to the

second (15.03–19.34 Hz) and to the third mode

(22.38–28.78 Hz), the FPSDs, depicted in Fig. 7b, c,

and the FCPSDs are obtained. By considering these

FPSDs and FCPSDs in Eq. (3), the FCORs and

FCCORs can be computed. In Fig. 8a–c the FCORs

FR €xj €xjðf Þ are depicted for the first, the second and the

third mode.

Proceeding with the application of the HT to the

FCORs and FCCORs, the modal parameters are then

identified as the average of the values obtained by all

the filtered analytical signals.

The obtained values and discrepancies on the

identification of frequencies and damping ratios

derived from the application of the ASM are listed in

Table 2 along with those identified by the PP?HP

method.

Fig. 7 Auto FPSD functions of the structural acceleration

responses: a in correspondence of the first mode; b in

correspondence of the second mode; c in correspondence of

the third mode

Fig. 8 Auto FCOR functions of the structural acceleration

responses: a in correspondence of the first mode; b in

correspondence of the second mode; c in correspondence of

the third mode
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In particular, the present case, characterized by a

theoretical value of fj=0.08 is listed under the label

’’Case 2’’. Supplemental analyses have been per-

formed on the same benchmark structure aiming at

investigating the robustness of the ASM method by

considering a variation of the damping ratio. Specif-

ically, in Table 2, the results are presented also for the

exact values of fj ¼ 0:0500 (Case 1) and fj ¼ 0:0100

(Case 3), for j ¼ 1; 2; 3. As it can be observed in

Table 2, the ASM provides good estimates for both the

natural damped frequencies and damping ratios for all

the modes. Moreover, more accurate results are

obtained by the ASM than using the PP?HP method.

In particular, the ASM mehtod presents stable and

lower discrepancies in the entire range of interest of fj
for all three structural modes.

4 A case study: Chiaramonte Palace in Palermo

In this section a practical implementation of the

proposed procedure, applied to a real case study, is

presented and results have been compared with those

achieved by applying the PP?HP.

The building considered in this paper is the

Chiaramonte Palace, located in Palermo (Italy). This

imposing fortress-palace, also known as ’’Lo Steri’’

(from ’’hosterium’’, meaning a fortified place), is in

the city area called ’’Marina’’, a hinge between the

harbour and part of the ancient Arabic quarter named

Kalsa (Fig. 9a). The palace is a three-floor masonry

structure built in the 1307 by the will of Giovanni

Chiaramonte the ’’Old’’, member of the most powerful

and influent family of that time [28].

It represents a rare and precious example of XIV-

century Sicilian architectural style showing Arabics

and Normans influences. Its role as a symbol of the

royal power in Sicily justifies its dimensions and

peculiarities: its squared floor plans, gravitating on a

porticoed courtyard, hold broad delegation rooms for

public assemblies. The palace went through many

changes and restorations and it was used for different

scopes since the fifteenth century. Many spaces were

converted into and offices, exhibition areas and

museums [29] and currently it houses the rectorate

Table 2 Estimated natural

frequency and damping

ratio for the exact values of

fj ¼ 0:0500 (Case 1), fj ¼
0:0800 (Case 2) and fj ¼
0:0100 (Case 3), for

j ¼ 1; 2; 3

PP ? HP Discrepancy (%) ASM Discrepancy (%)

Case 1

f1 0.0521 4.1524 0.0496 0.8467

f2 0.0493 1.3871 0.0502 0.4096

f3 0.0484 3.1084 0.0504 0.8291

�f 1 (Hz) 6.2177 0.3750 6.2196 0.3446

�f 2 (Hz) 17.5190 0.1819 17.4595 0.1583

�f 3 (Hz) 25.6192 1.3830 25.3166 0.1857

Case 2

f1 0.0820 2.5214 0.0797 0.3609

f2 0.0786 1.7069 0.0807 0.8472

f3 0.0786 1.7635 0.0804 0.5036

�f 1 (Hz) 6.0772 2.4353 6.1914 0.6023

�f 2 (Hz) 17.2458 1.1870 17.3398 0.6485

�f 3 (Hz) 25.6217 1.5917 25.3560 0.5382

Case 3

f1 0.1024 2.3812 0.1001 0.1128

f2 0.0998 0.2279 0.1002 0.1677

f3 0.0940 5.9692 0.0990 0.9989

�f 1 (Hz) 6.0748 2.2967 6.1840 0.5399

�f 2 (Hz) 17.1337 1.6510 17.2546 0.9570

�f 3 (Hz) 25.6218 1.7766 25.3686 0.7708
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of the University of Palermo. The palace square plan,

with a side of about 40 meters, consists of four wings

surrounding the magnificent courtyard with its portico

on the ground floor and the upper loggia, anticipating

the Renaissance model of a mansion.

The courtyard (Fig. 9b) is the main architectural

element of the building and it is the object of the

present study. The magnificent dual arcade, sur-

mounted by a terrace, presents essential shapes with

ogival arches resting on columns with capitals of

different appearance and provenance. It extends over

an area of about 420 m2, with a 20.25 x 20.40 m

squared plan and an overall height of 19.50 m, on three

floors. Field tests have been performed to identify its

dynamic characteristics with the purpose of the

calibration of a numerical model for future evaluation

of the structural health in order to preserve the

historical and architectural uniqueness of the building

in a relevant seismic area as Palermo [30].

As far as the first step of the procedure is concerned,

the acceleration measurements have been acquired

using eight high-sensitivity piezoelectric mono-axial

accelerometers, whose characteristics are listed in

Table 3.

Four couples of the overall eight accelerometers

have been located at four measuring points to record

bi-axial accelerations, along the u1 and u2 directions,

respectively. Accelerometers n. 1–4 have been ori-

ented along the u1 axis while n. 5–8 along the u2 axis.

The couple fn.1, n.5g has been placed at the ground

floor, the another one, fn.2, n.6g, at the first floor and
the two couples fn.3, n.7g and fn.4, n.8g at the second
floor of the courtyard (Fig. 10). Six tests have been

performed considering an observation window of ten

minutes and acceleration data have been recorded by

sensors using a sampling frequency of 100 Hz. Further

details of the experimental setup are reported in

references [30]. Data in the following refer to one of

the six tests since no significant variations have been

found.

The structural recorded accelerations xjðtÞ (with

j =1, 2,..., N ), being N=8 the number of recording

channels, are assumed to be stationary and ergodic

random processes, outputs of a linear system excited

by white noise input.

Clearly, the considered case study taken into

account, represents a MDOF system so, similarly to

the 3DOF system previously analysed, the identifica-

tion of modal parameters starts from the evaluation of

the initial PSD matrix of the response data containing

multicomponent PSD and CPSD functions associated

to the acquired data and characterized by the contri-

bution of all the modes for each channel. The PSD

matrix is obtained using Welch’s Method which

subdivides each of the eight acceleration responses

Fig. 9 a Prospective view of Chiaramonte Palace in Palermo;

b The inner courtyard

Table 3 Accelerometers features

Feature Value

Sensitivity 1000 mV/g

Measuring range ± 5 g pk

Frequency range 0.06 to 450 Hz

Broadband Resolution 0.000003 g rms

Mass 50 g
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xjðtÞ into N sub-signals and computes a modified

periodogram for each segment.

In this study a length of the sub-segments of 40.95

sec (4096 sampling points) has been assumed. Each

segment has been multiplied by a Hamming function

for windowing and a 50% overlap between adjacent

segments have been set to avoid information loss at the

beginning and end of each segment.

The multicomponent PSDs S€xj €xjðf Þ and the cross

ones S€xj €xkðf Þ (with j,k =1, 2,..., N) which fill the two-

sided PSD matrix S€x€xðf Þ, as diagonal and off-diagonal
terms respectively, are obtained according to Eq. (18).

Figure 11a, b show auto PSDs functions S€xj €xjðf Þ
obtained from the acquired accelerations for channels

1–4 (u1-axis) and 5–8 (u2-axis), respectively. It can be

clearly pointed out the presence of structural modes in

the frequency range 0–6 Hz. Furthermore, it should be

also noticed that, in the frequency range between 3.0

and 4.2 Hz, PSDs exhibit a series of local maxima

representing possible multiple modes closely spaced.

Table 4 lists the first four identified natural fre-

quencies and the corresponding damping ratios, esti-

mated directly from the peaks of the PSDs using the

PP?HP method. Frequencies can be considered

accurate enough since the deviation from different

data sets was very small, while damping ratios appear

to be lower than expected for masonry buildings;

however, the structure has been investigated in

operational conditions and this is consistent with the

fact that the energy dissipation associated to micro-

Fig. 10 Location of measuring points and sensor labelling

Fig. 11 PSDs of acquired signals: a channels 1–4 u1-axis; b
channels 5–8 u1-axis

Table 4 Estimated natural

frequencies and damping

ratios with the PP ? HP

method

Mode n. �f (Hz) f (–)

1 2.7626 0.0134

2 3.5694 0.0245

3 3.8641 0.0167

4 4.7190 0.0163
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tremors is usually much smaller than during strong

excitation as earthquakes.

In order to extract the filtered signals (FPSDs and

FCPSDs) a Butterworth band-pass filter of order 8 is

applied to each multicomponent PSD (auto and cross)

of the original PSD matrix.

Thus, by choosing the filter centered, for instance,

in the frequency range on the first frequency of the

system (2.62–2.89 Hz), from the original multicom-

ponent S€x1 €x1ðf Þ, the filtered function is obtained.

The procedure is repeated for each original PSD

S€xj €xjðf Þ, so that eight FPSDs FS€xj €xjðf Þ are obtained in

total for the first mode: four along the u1 axis and four

along the u2 axis.

In Fig. 12a the four filtered functions FS €xj €xjðf Þ in

terms of accelerations recorded along the u1 axis, are

depicted. They represent the PSDs of four single

oscillators dominated by the modal parameters of the

first mode only.

In the same way, filtering the original CPSDs

FS €xj €xkðf Þ, corresponding FCPSDs FS€xj €xkðf Þ are

obtained for the first mode.

Changing the frequency range of the filter to the

next modes, FPSDs and FCPSDs are obtained for the

other modes too. In Fig. 12b the four functions

FS €xj €xjðf Þ of acceleration responses only recorded along
the u1 axis are depicted considering this time the

filtering in the frequency range of the second mode

(3.38–3.74 Hz). As it can be seen, the contribution of

the first mode, highlighted in Fig. 12b by the peak in

the range 2.62–2.89 Hz, disappeared as well as all the

other modes except from the second one.

In this manner, henceforward themodal analysis for

each signal is retrieved to the simple case of a SDOF

system and at the end, the modal parameters of the

original MDOF system will be computed as the mean

of the frequency and damping ratio values obtained for

each channel. Next, the IFFT is applied to estimate the

FCORs adn FCCORs.

In Fig. 13a, b the FCORs, denoted as FR €xj €xjðf Þ of
the signals recorded along the u1 axis are shown.

Figure 13a shows the four functions FR€xj €xjðf Þ filtered
in correspondence of the first mode while Fig. 13b in

correspondence of the second one. Finally, by apply-

ing the HT to the FCORs and FCCORs, filtered

analytical signals are obtained and from their proper-

ties the modal properties are determined as shown

previously for the SDOF system. Table 5 shows

results derived from the application of the ASM for

the first four modes. Discrepancies have been com-

puted assuming the PP?HP method as reference. As

shown, by using the proposed approach, the identified

frequencies are almost identical to those estimated by

the PP?HP (Table 4).

Clearly, dealing with an existing historic building,

any exact theoretical values are not available.

Nevertheless, the good agreement between the

proposed procedure and the traditional PP?HP

method, suggests the reliability of the proposed

technique in terms of frequencies identification.

Larger differences are achieved in the definition of

damping coefficients. However, since the analytical

signal is more sensitive to changes in structural

characteristics over time, the extraction of modal

parameters from instantaneous frequency and
Fig. 12 FPSDs of the structural acceleration responses

(recorded along the u1 axis): a in correspondence of the first

mode; b in correspondence of the second mode

123

Meccanica (2021) 56:797–812 809



amplitude of monocomponent correlation functions

may be particularly efficient in the field of structural

monitoring.

5 Conclusion

In this paper, a novel identification procedure based on

ambient vibration data, denoted as Analytical Signal-

based method (ASM) has been developed. Themethod

aims at the estimation of the modal parameters of a

structure from the output data only, and it is based on

the use of the Analytical Signal and the Hilbert

Transform, applied to properly decomposed response

data. Indeed, when a MDOF system is considered, the

structural responses are characterized by all the

structural modes and modal parameters cannot be

extracted directly. The decomposition of the output

signal, by means of the Butterworth filter, leads to a set

of monocomponent signals corresponding to several

SDOF systems, each one containing information about

a specific structural mode.

As shown, natural frequencies and damping ratios

can be obtained from the analytical signal of the

estimated filtered correlation functions, which, in turn,

have been achieved from the filtered power spectral

density functions of the output signal.

In order to investigate the reliability of this

approach, the ASM has been applied to a SDOF and

a 3DOF building model. In particular, the present

method aims at overcoming the limit imposed by

traditional OMA approaches in frequency domain

which are generally more accurate for systems with a

damping ratio lower than 0.05. Therefore, in this study

a structural system characterized by several values of

the damping ratio greater than the 5% has been

considered. Results indicate that the present technique

can achieve a better estimation of frequencies and

damping ratios compared to the classical PP?HP

approach, even for highly damped systems.

Finally, the proposed approach has been used to

estimate dynamic characteristics of structures of the

cultural heritage. Specifically, ambient vibration tests

have been performed on the Chiamonte-Steri Palace, a

historical building located in Palermo. The ASM has

been applied to recorded signals of eight accelerom-

eters appropriately located in the inner courtyard of the

structure.

Results derived by the use of ASM, compared to the

classical PP?HP, suggest that the proposed approach

can be considered as a reliable output-only technique

for frequencies and damping ratios determination

from the analytical signal.

Fig. 13 FCORs of the structural acceleration responses

(recorded along the u1 axis) : a in correspondence of the first

mode; b in correspondence of the second mode

Table 5 Estimated natural

frequencies and damping

ratios with the ASM

Mode n. �f (Hz) Discrepancy (%) f [–] Discrepancy (%)

1 2.7649 0.3605 0.0126 4.9042

2 3.5585 0.1551 0.0144 29.9803

3 3.9159 0.9889 0.0164 26.1417

4 4.7226 0.0758 0.0144 20.6628
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On the basis of the encouraging results, future

research will aim at investigating the reliability of the

ASM to estimate the mode shapes so that the overall

dynamic behavior of the system can be detected.
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Studi di Palermo within the CRUI-CARE Agreement..

Compliance with ethical standards

Conflict of interest The authors declare that they have no

conflict of interest concerning the publication of this

manuscript.

Open Access This article is licensed under a Creative Com-

mons Attribution 4.0 International License, which permits use,

sharing, adaptation, distribution and reproduction in any med-

ium or format, as long as you give appropriate credit to the

original author(s) and the source, provide a link to the Creative

Commons licence, and indicate if changes were made. The

images or other third party material in this article are included in

the article’s Creative Commons licence, unless indicated

otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your

intended use is not permitted by statutory regulation or exceeds

the permitted use, you will need to obtain permission directly

from the copyright holder. To view a copy of this licence, visit

http://creativecommons.org/licenses/by/4.0/.

References

1. Ramli MI, Nuawi MZ, Abdullah S, Rasani MRM, Salleh

MS, Basar MF (2017) The study of EMA effect on modal

identification: a review. J Mech Eng Technol 9(1):103–121

2. Zhang L (2013) From traditional experimental modal

analysis (EMA) to operational modal analysis (OMA), an

overview. 5th International Operational Modal Analysis

Conference, IOMAC, pp 1–14

3. Maia NMM, Silva JMM (1997) Theoretical and experi-

mental modal analysis. Research Studies Press, Baldock

4. Rainieri C, Fabbrocino G (2011) Operational modal anal-

ysis for the characterization of heritage structures. Geofizika

28:109–126

5. Au SK (2017) Operational modal analysis. Modeling,

Bayesian inference, uncertainty laws. Springer, Berlin

6. Barone G, Marino F, Pirrotta A (2008) Low stiffness vari-

ation in structural systems: identification and localization.

Struct Control Health Monit 15:450–470

7. Bendat JS, Piersol AG (2011) Random data: analysis and

measurement procedures. Wiley, Hoboken

8. Brincker R, Zhang L, Andersen P (2001) Modal identifi-

cation of output only systems using frequency domain

decomposition. Smart Mater Struct 10(3):441–445

9. Brincker R, Zhang L, Andersen P (2000) Output-only modal

analysis by frequency domain decomposition. In: Proceed-

ings of the ISMA25 conference in Leuvcn

10. Bendat JS, Piersol AG (1993) Engineering applications of

correlation and spectral analysis. Wiley, Hoboken

11. Pioldi F, Ferrari R, Rizzi E (2016) Output-only modal

dynamic identification of frames by a refined FDD algo-

rithm at seismic input and high damping. Mech Syst Signal

Process 68:265–291

12. Lardies J (2010) Modal parameter identification based on

ARMAV and state-space approaches. Arch Appl Mech

80:335–352

13. Shokravi H, Shokravi H, Bakhary N, Rahimian K, Seyed S,

Petru M (2020) Health monitoring of civil infrastructures by

subspace system identification method: an overview. Appl

Sci 10(8):1–29

14. Siringoringo DM, Fujino Y (2008) System identification of

suspension bridge from ambient vibration response. Eng

Struct 30(2):462–477

15. Caicedo J (2011) Practical guidelines for the natural exci-

tation technique (NExT) and the Eigensystem Realization

Algorithm (ERA) for modal identification using ambient

vibration. Exp Tech 35:52–58

16. Singh H, Grip N (2019) Recent trends in operation modal

analysis techniques and its application on a steel truss

bridge. Nonlinear Stud 26(4):911–927

17. Feldman M (2011) Hilbert transform in vibration analysis.

Mech Syst Signal Process 25:735–802

18. Cottone G, Fileccia Scimemi G, Pirrotta A (2014) a-
stable distributions for better performance of ACO in

detecting damage on not well spaced frequency systems.

Probab Eng Mech 35:29–36

19. Cottone G, Pirrotta A, Salamone S (2008) Incipient damage

identification through characteristics of the analytical signal

response. Struct Control Health Monit 15:1122–1142

20. Lo Iacono F, Navarra G, Pirrotta A (2012) A damage

identification procedure based on Hilbert transform:

experimental validation. Struct Control Health Monit

19:146–160

21. Bilello C, Di PaolaM, Pirrotta A (2002) Time delay induced

effects on control of non-linear systems under random

excitation. Meccanica 37:207–220

22. Welch PD (1967) The use of fast Fourier transform for the

estimation of power spectra: a method based on time aver-

aging over short, modified periodograms. IEEE Trans

Audio Electroacoust 15(2):70–73

23. Barbé K, Pintelon R, Schoukens J (2010) Welch method

revisited: nonparametric power spectrum estimation via

circular overlap. IEEE Trans Signal Process 58:47–78

24. Agneni A (1992) Modal parameter estimates from auto-

correlation functions of highly noisy impulse responses. Int

J Anal Exp Modal Anal 7(4):285–297

25. Bedrosian E (1962) The analytic signal representation of

modulated waveforms. Proc IRE 50(10):2071–2076

26. Bedrosian E (1963) A product theorem for Hilbert trans-

form. Proc IEEE 51(5):868–869

123

Meccanica (2021) 56:797–812 811

http://creativecommons.org/licenses/by/4.0/


27. Van Valkenburg ME (1982) Analog Filter Design, Holt-

Saunders International Edition, Rinehart & Winston, 1982

28. Lima AI (2006) Lo Steri di Palermo nel secondo Novecento-

dagli studi di Giuseppe Spatri-sano al progetto di Roberto

Calandra con la consulenza di Carlo Scarpa. Dario Flacco-

vio Editore, Palermo
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