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Abstract The paper deals with the dynamics of a

lumped mass mechanical system containing two

nonlinear springs connected in series. The external

harmonic excitation, linear and nonlinear damping are

included into considerations. The mathematical model

contains both differential and algebraic equations, so it

belongs to the class of dynamical systems governed by

the differential–algebraic system of equations

(DAEs). An approximate analytical approach is used

to solve the initial value problem for the DAEs. We

adopt the multiple scales method (MSM) that allows

one to obtain the sufficiently correct approximate

solutions both far from the resonance and at the

resonance conditions. The steady and non-steady

resonant vibrations are analyzed by employing the

modulation equations of the amplitudes and phases

which are yielded by the MSM procedure.

Keywords Lumped system � Nonlinear dynamics �
Asymptotic analysis � Resonance � Modulation

equations

1 Introduction

The mechanical systems which contain parallel or

serially connected massless springs are widely inves-

tigated and discussed in the theoretical and applied

mechanics. They have found applications in mechan-

ical and civil engineering, mechatronic devices, and

more recently in micromechanical systems. Various

configurations of the connections between the springs,

including also their spatial orientation, can lead to the

complex dynamical behavior of those systems, espe-

cially when the elastic elements have the nonlinear

characteristics. Such systems could exhibit a variety of

interesting behaviors, sometimes even surprising

which especially concern the resonance states.

Models of many real systems demand to introduce

rigid body approximation where some springs and

dampers are connected in various configurations. The

car suspension containing systems of the parallel and

serially connected springs is investigated in [1, 2]. The

authors showed that such connections have a great

impact on the vibration transmissibility from the rough

road to the car body.

Telli and Kopmaz [3] studied a one-dimensional

oscillator mounted via two springs wherein one of

them is linear and the second one has nonlinear

features. They proposed two mathematical models for

the system considered. The differential–algebraic

equations on which the first approach is employed

have been solved numerically. The second model
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based on a single differential equation, obtained using

the relative displacement variables allows for achiev-

ing the approximate analytical solution. Comparing

the results obtained using the two approaches they

determined the values of the parameters describing

elastic properties of the springs for which the high

agreement is observed.

The system similar to the one analyzed by us is the

subject of the paper [4], where tethered satellites are

modeled by two serially connected springs. Another

application of the similar system one can find in the

paper [5], where the springs assembled both in the

serial and parallel configurations are used by the

authors as a model of the structural equivalent

stiffness. In that way, they produce a powerful

procedure to study structural behavior. A one-dimen-

sional mass-spring system of two degrees of freedom

is studied in [6]. Its mathematical model consists of

two strongly coupled differential equations. The

analytical method of nonlinear normal modes was

successively applied to qualitative analysis of the

behavior of that system.

Manevitch and Musienko [7] investigated, two

systems with one- and two degrees-of-freedom having

the serially connected springs. The equations gov-

erned the systems contain both differential and

algebraic equations. The appropriately adopted mul-

tiple scales method (MSM) has been presented and

successfully applied by the authors in the case of the

undamped free vibration.

In this paper, a wider analysis of the one degree-of-

freedom system containing two serially connected

nonlinear springs is presented. The damped and forced

vibration are analyzed using the asymptotic approach.

The paper is organized in the following way. In

Sect. 2, the mechanical model is described and then

the mathematical model is derived. Section 3 deals

with the asymptotic solution to the set of the differ-

ential–algebraic equations obtained using MSM. Sec-

tion 4 is devoted to the vibrations far from resonance,

while in Sect. 5, the main resonance case is analyzed.

In that part, both the steady and nonsteady states are

investigated. Nonlinear damping is included into the

mathematical model in Sect. 6. Concluding remarks

regarding the obtained results are outlined in Sect. 7.

2 Mathematical model of the oscillator

A rigid body of mass m due to the constraints imposed

moves only in the horizontal direction. The body is

connected to the immovable wall by two serially

linked springs and the viscous damper with the

damping coefficient equal to C. Moreover, the body

is excited by the force of the harmonically changing

value F0 sin Xtð Þ. The physical model of the system is

shown in Fig. 1.

The position of the massless point S at which the

springs are connected to each other is L01 þ X1 tð Þ, and

the body position equals L01 þ L02 þ X2 tð Þ, where L01

and L02 are the nominal lengths of the springs.

The kinetic energy of the system has the form

T ¼ 1

2
m _X1 þ _X2

� �2
: ð1Þ

The springs have nonlinear properties of the cubic

type, thus the potential energy is as follows

V ¼ k1

1

2
X2

1 þ
1

4
K1X

4
1

� �

þ k2

1

2
X2 � X1ð Þ2þ 1

4
K2 X2 � X1ð Þ4

� �
; ð2Þ

where ki and Ki stand for the stiffness coefficients of

the i-th spring.

The external excitation and the damping force are

considered as the generalized force

Q ¼ F0 sin Xtð Þ � C _X2: ð3Þ

Since the springs are connected serially, the

following equilibrium equation for the massless point

S must be satisfied

Fig. 1 The mechanical system with two springs connected

serially
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k1X1 1 þ K1X
2
1

� �
þ k2 X1 � X2ð Þ 1 þ K2 X1 � X2ð Þ2

� �
¼ 0:

ð4Þ

The equation of motion of the system is derived

using Lagrange’s formalism and then transformed into

a more convenient dimensionless form. Similarly, the

equilibrium equation and the initial condition are also

formulated in the dimensionless form. The governing

equations supplemented with the initial conditions

have the form

€x2 þ 1 þ kð Þ x2 � x1ð Þ þ c _x2 þ a2 1 þ kð Þ x2 � x1ð Þ3

¼ f0 sin psð Þ;
ð5Þ

x1 1 þ a1x
2
1

� �
þ k x1 � x2ð Þ 1 þ a2 x1 � x2ð Þ2

� �
¼ 0;

ð6Þ

x2 0ð Þ ¼ x0; _x2 0ð Þ ¼ v0: ð7Þ

Let us introduce the reference mechanical system

with the analogous structure to the considered one but

with the springs whose elastic properties are linear.

The effective stiffness of the reference system of two

spring connected in series is ke ¼ k1k2

k1þk2
: Taking into

account various reasons of the geometric, strength, or

structural nature one can determine an admissible

value of the static elongation of the springs. Having

denote it by D, we write D ¼ mF0

ke
; where m � 1:

Assuming so understood parameter as the reference

length, we define the dimensionless coordinates x1 ¼
X1

D and x2 ¼ X2

D . The coordinates x1 and x2 are functions

of the dimensionless time s ¼ tx, where x ¼
ffiffiffiffiffiffiffiffiffiffi
ke=m

p
:

The other dimensionless parameters are defined as

follows: k ¼ k2

k1
, a1 ¼ K1D

2, a2 ¼ K2D
2, c ¼ C

mx,

f0 ¼ F0

Dke
, and p ¼ X

x.

The mathematical model describing the dynamics

of the system under consideration contains one

algebraic and one differential equation of the second

order. The latter one is supplemented by the initial

condition. Some special MSM approach is needed to

solve the mathematical problem of such kind.

3 An analytical solution to the problem

The differential–algebraic Eqs. (5)–(7) are solved

analytically in the asymptotic sense using the MSM.

Let us introduce the small parameter e; where

0\e � 1. The approximate solution, in asymptotic

sense, to the problem (5)–(7) is assumed to be equal

the sum of few products of the small parameter in

various powers and the unknown functions n1k and n2k

dependent on several time variables termed as the time

scales sk ¼ eks for k ¼ 0; . . .; n� 1. So, we write

x1 s; eð Þ ¼
Xn�1

k¼0

ekn1k s0; . . .; sn�1ð Þ þ O enð Þ; ð8Þ

x2 s; eð Þ ¼
Xn�1

k¼0

ekn2k s0; . . .; sn�1ð Þ þ O enð Þ: ð9Þ

The differential operators take the form

d

ds
¼
Xn�1

i¼0

ei
o

osi
;

d2

ds2
¼ o2

os2
0

þ 2e
o2

os0os1

þ e2 o2

os2
1

þ 2
o2

os0os2

� �
þ � � � þ O enð Þ:

ð10Þ

Limiting our considerations to the weakly nonlinear

type of the system, we assume the smallness of some

parameters. The smallness can be strictly expressed

using the small parameter e. Introducing the notation

with tilde we assume:

a1 ¼ er1 ~a1; a2 ¼ er2 ~a2; c ¼ er3 ~c; f0 ¼ er4 ~f0; ð11Þ

where rie 1; 2f g and ~a1; ~a2; ~c; ~f0 are of the order O 1ð Þ:
To solve problem (5)–(7) two variants of MSM

with two and three time scales have been applied and

compared. The exponents in definitions (11) in the

case of two time scales equals: r1 ¼ r2 ¼ r3 ¼ r4 ¼ 1,

whereas r1 ¼ r2 ¼ r3 ¼ 1; r4 ¼ 2 when three time

scales are adopted.

4 Vibration far from resonance

Relations (8)–(11) substituted into Eqs. (5)–(6) yield

the equations in which the small parameter e appears in

a few different powers. We order the left sides of the

equations according to the powers of the small

parameter. We require each of the both equations to
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be satisfied for any value of the small parameter e. So,

omitting all terms of the order O enð Þ and higher ones,

we equate to zero the coefficients standing at the

particular powers of e. This procedure leads to the

equations of the subsequent order approximation.

In the case of two time scales, the substitution of

definitions (8)–(11) into Eqs. (5)–(6) and equating

components at the same powers of e leads to the

equations of the first and second-order approximation

of the following form:

(i) equations of the approximation of the order e0

o2n20

os2
0

þ 1 þ kð Þ n20 � n10ð Þ ¼ 0; ð12Þ

kn20 � 1 þ kð Þn10 ¼ 0; ð13Þ

(ii) equations of the approximation of the order e1

o2n21

os2
0

þ 1 þ kð Þ n21 � n11ð Þ

¼ � 1 þ kð Þ~a2 n20 � n10ð Þ3�~c
on20

os0

� 2
o2n20

os0os1

þ ~f0 cos psð Þ;

ð14Þ

kn21 � 1 þ kð Þn11 ¼ k~a2 n10 � n20ð Þ3þ~a1n
3
10:

ð15Þ

In the case of three time scales, the first, second and

third order approximation are obtained similarly as

above. They are as follows:

(i) equations of the approximation of the order e0

o2n20

os2
0

þ 1 þ kð Þ n20 � n10ð Þ ¼ 0; ð16Þ

kn20 � 1 þ kð Þn10 ¼ 0; ð17Þ

(ii) equations of the approximation of the e1

o2n21

os2
0

þ 1 þ kð Þ n21 � n11ð Þ

¼ � 1 þ kð Þ~a2 n20 � n10ð Þ3�~c
on20

os0

� 2
o2n20

os0os1

;

ð18Þ

kn21 � 1 þ kð Þn11 ¼ k~a2 n10 � n20ð Þ3þ~a1n
3
10;

ð19Þ

(iii) equations of the approximation of the e2

o2n22

os2
0

þ 1 þ kð Þ n22 � n12ð Þ

¼ ~f sin ps0ð Þ
þ 3 1 þ kð Þ n10 � n20ð Þ2 n11 � n21ð Þ~a2

� ~c
on20

os1

� o2n20

os2
1

� 2n20n21
~b
on20

os0

� ~c
on21

os0

� 2
o2n20

os0os2

� 2
o2n21

os0os1

;

ð20Þ

kn22 � 1 þ kð Þn12 ¼ 3k~a2 n10 � n20ð Þ2 n11 � n21ð Þ
þ 3~a1n

2
10n11:

ð21Þ

The above DAEs (12)–(15) or (16)–(21) is solved

recursively, i.e. the solutions to the lower order

approximation equations are introduced into the ones

of the higher order.

The Eqs. (12)–(13) and (16)–(17) of the lowest

order (i.e. e0) have the same form when using two or

three time scales. The general solution to these

equations are

n10 ¼ k
1 þ k

Beis0 þ k
1 þ k

Be�is0 ; ð22Þ

n20 ¼ Beis0 þ Be�is0 ; ð23Þ

where B and its complex conjugate B are the unknown

complex-valued functions of the slower time scales.

Inserting the solution of the lower order approxi-

mation to the equation of the higher order approxi-

mation implies appearing so-called secular terms, that

should be eliminated due to the requirement to obtain

the limited solutions. The procedure is described in

detail in the paper [7]. Elimination of the secular terms

leads to the solvability conditions, that are differential

equations of the first order with unknown functions B

and B.

It is convenient to express the complex functions B

and B in the exponential form

B ¼ 1

2
aeiw; B ¼ 1

2
ae�iw; ð24Þ
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where a and w are unknown real-valued functions and

stand for the amplitude and the phase of the first term

of the asymptotic solutions (9).

Introducing relationships (24) into the solvability

conditions (not given here explicitly), then returning to

the original notations according to (11) and using the

definition of the differential operator (10)1 allow us to

write the modulation equations.

When two time scales are adopted, the modulation

equations have the form of the following differential

equations of the first order

da sð Þ
ds

¼ � 1

2
ca sð Þ; ð25Þ

dw sð Þ
ds

¼
3 a2 þ k3a1

� �
a sð Þ2

8 1 þ kð Þ3
: ð26Þ

Assuming the initial conditions in the form

a 0ð Þ ¼ a0;w 0ð Þ ¼ w0; ð27Þ

we obtain the solution to the problem (25)–(27) as

follows

a sð Þ ¼ a0e
�cs

2 ;w sð Þ

¼ w0 þ
3a2

0 1 � e�csð Þ a2 þ a1k
3

� �

8c 1 þ kð Þ3
: ð28Þ

The motion of the body can be now described by the

approximate function of the analytical form. The

expressions for the amplitude and phase (28) are

substituted into relations (24), and then into solutions

of the first and second order. Finally, from the

expansions (8)–(9), and using the original notations

according to (11) we get, the dimensionless displace-

ments of the body as follows:

x2 sð Þ ¼ a sð Þ cos sþ w sð Þð Þ � f0 sin psð Þ
p2 � 1

þ
a2 þ a1k

3
� �

a sð Þ3
cos 3 sþ w sð Þð Þð Þ

32 1 þ kð Þ3
; ð29Þ

where a sð Þ and w sð Þ; given by (28), are solutions to the

modulation problem (25)–(27). The analytical form of

the modulation problem solution allows one to asses

which of the terms occurring in Eq. (29) is significant

when the variable s tends to the infinity. Calculating

the limits of both functions in Eqs. (28) we get a sð Þ !

0 and w sð Þ ! w0 þ
3a2

0
a2þa1k

3ð Þ
8c 1þkð Þ3 . So, as expected only

the second term on the right side of Eq. (29) describe

the vibrations after the transient stage.

In the case of the solution basing on the approach

with three time scales, the modulation equations have

the form:

da sð Þ
ds

¼ � 1

2
ca sð Þ þ

3c a2 þ a1k
3

� �

16 1 þ kð Þ3
a sð Þ3; ð30Þ

dw sð Þ
ds

¼ � c2

8
þ

3 a2 þ k3a1

� �
a sð Þ2

8 1 þ kð Þ3

�
15 �30a1a2k

3 þ a2
1k

5 16 þ kð Þ þ a2
2 1 þ 16kð Þ

� �
a sð Þ4

256 1 þ kð Þ6
:

ð31Þ

Equations (30)–(31), together with initial condi-

tions (27), form the initial value problem, that cannot

be solved analytically. So, the modulation problem

must be solved numerically in this case.

Now, the approximate analytical solution to the

governing Eqs. (5)–(6) for the body displacement x2

has the following form

x2 sð Þ¼� f0 sin psð Þ
p2 �1

þa sð Þcos sþw sð Þð Þ

�
a sð Þ5

3a2
1k

5 7kþ40ð Þ�198a1a2k
3 þ3a2

2 40kþ7ð Þ
� �

cos 3 w sð Þþ sð Þð Þ
1024 kþ1ð Þ6

�
a sð Þ3 �4a1k

3 �4a2

� �
cos 3 w sð Þþ sð Þð Þ

128 kþ1ð Þ3

þ
3ca sð Þ3 a1k

3 þa2

� �
sin 3 w sð Þþ sð Þð Þ

128 kþ1ð Þ3

þ
a sð Þ5 a2

1 k�8ð Þk5 þ18a1a2k
3 þa2

2 1�8kð Þ
� �

cos 5 w sð Þþ sð Þð Þ
1024 kþ1ð Þ6

ð32Þ

where a sð Þ and w sð Þ are solutions to the modulation

problem (30)–(31).

The time histories of the body displacement

obtained using the asymptotic solution (29) and (32),

respectively for two and three time scales, are

presented in Fig. 2. They show the body vibrations

for the transient vibration stage. The solution obtained

by the numerical integration of the governing

Eqs. (5)–(6) are given in the same graphs to verify

the accuracy of the approximate analytical solution.

The relationship between initial conditions (7) and

(27) has been determined using the analytical form of

the solution (29) or (32) for the two and three time

scales, respectively.

The results presented in Fig. 2 are obtained for the

following fixed values of the parameters: a1 ¼ 0:87;
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a2 ¼ 1:21; k ¼ 0:7; f0 ¼ 0:08; p ¼ 0:215; c ¼
0:07; x0 ¼ 0:1; and v0 ¼ 0. The compatibility of the

two curves is very high, which confirms the correct-

ness of the derived analytical solutions in both cases

i.e. with two and three time scales.

Moreover, we propose some objective measure of

the analytical solution correctness. It is checked the

fulfillment of the governing equation by the asymp-

totic solution. For this purpose, we rewrite the

governing Eqs. (5)–(6) in the compact form

G1 x1; x2ð Þ ¼ 0;

G2 x1; x2ð Þ ¼ 0;
ð33Þ

where G1 x1; x2ð Þ ¼ €x2 þ 1 þ kð Þ x2 � x1ð Þ þ c _x2 þ
a2 1 þ kð Þ x2 � x1ð Þ3�f0 sin psð Þ and G2 x1; x2ð Þ is the

left side of Eq. (6).

The error of the satisfying of Eqs. (5)–(6) is defined

as follows

di ¼
1

se � ss
r
se

ss

Gi x1a sð Þ; x2a sð Þð Þ2ds

 !1=2

; i ¼ 1; 2;

ð34Þ

where x1a sð Þ; x2a sð Þ are the approximate solutions (29)

or (32), depending on the context, obtained employing

the MSM, and ss, se denote the chosen instants.

Calculating the error of the analytical solutions

according to definition (34) for the results presented in

Fig. 2, we assume: ss ¼ 0 and se ¼ 1000. In the case

of solution (32), obtained using three time scales,

d1 ¼ 0:0009073, d2 ¼ 0:00004152, whereas for the

more rough approximated solution (29), using only

two time scales, d1 ¼ 0:0009076, d2 ¼ 0:00004151;

which can be considered as very good results. It turns

out that two time scales are enough to obtain high

accuracy for non-resonant vibration. It means that the

more sophisticated analysis with three time scales

insignificantly improves the results.

5 Vibration at resonance

The main resonance appears in the system when the

frequency of the external force is close to the

eigenfrequency of the analogous linearized system,

i.e. p � 1. To investigate this case let us introduce the

detuning parameter r in the following way

p ¼ 1 þ r: ð35Þ

After substituting relationship (35) into Eq. (5), the

procedure analogous to the one discussed in Sect. 4 is

carried out. Two variants of MSM with two and three

time scales have been applied. The modulation

equation obtained using two time scales are

da sð Þ
ds

¼ � 1

2
ca sð Þ � f0

2
cos rs� wð Þ; ð36Þ

dw sð Þ
ds

¼
3 a2 þ k3a1

� �
a sð Þ2

8 1 þ kð Þ3
� f0

2a sð Þ sin rs� wð Þ:

ð37Þ

The approximate analytical form of the function

describing the body displacement using two time

scales is as follows

x2 sð Þ ¼ a sð Þ cos sþ w sð Þð Þ

þ
a2 þ a1k

3
� �

a sð Þ3
cos 3 sþ w sð Þð Þð Þ

32 1 þ kð Þ3
: ð38Þ

whereas, the calculations performed with three time

scales give modulation equations in the following

form

da sð Þ
ds

¼ � f0
2

cos rs� w sð Þð Þ � 1

2
ca sð Þ

þ
3c a2 þ a1k

3
� �

16 1 þ kð Þ3
a sð Þ3; ð39Þ

dw sð Þ
ds

¼ � f0
2a sð Þ sin rs� w sð Þð Þ � c2

8
þ

3 a2 þ k3a1

� �
a sð Þ2

8 1 þ kð Þ3

�
15 �30a1a2k

3 þ a2
1k

5 16 þ kð Þ þ a2
2 1 þ 16kð Þ

� �
a sð Þ4

256 1 þ kð Þ6
;

ð40Þ

and the approximate analytical form of the function

describing the body displacement for the resonant

motion is as follows

x2 sð Þ
¼ a sð Þ cos w sð Þ þ sð Þ

�
a sð Þ5

3a2
1k

5 7kþ 40ð Þ � 198a1a2k
3 þ 3a2

2 40kþ 7ð Þ
� �

cos 3 w sð Þ þ sð Þð Þ
1024 kþ 1ð Þ6

�
a sð Þ3 �4a1k

3 � 4a2

� �
cos 3 w sð Þ þ sð Þð Þ

128 kþ 1ð Þ3
þ

3ca sð Þ3 a1k
3 þ a2

� �
sin 3 w sð Þ þ sð Þð Þ

128 kþ 1ð Þ3

þ
a sð Þ5 a2

1 k� 8ð Þk5 þ 18a1a2k
3 þ a2

2 1 � 8kð Þ
� �

cos 5 w sð Þ þ sð Þð Þ
1024 kþ 1ð Þ6

;

ð41Þ
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where a sð Þ and w sð Þ occurring in (38) and (41) denote

the solutions to the modulation Eqs. (36)–(37) or

(39)–(40), respectively. Unfortunately, the modula-

tion equations cannot be solved analytically, therefore

a hybrid method must be used to solve the original

problem i.e. the numerical solution of the modulation

equations should be introduced into the analytical

description of the body displacement (38) or (41).

The absolute body displacements are presented in

Figs. 3 and 4. The graphs are obtained for the

following fixed values of the parameters: a1 ¼
1:025; a2 ¼ 1:1; f0 ¼ 0:00205; k ¼ 0:9; r ¼ 0:03685;

c ¼ 0:001; x0 ¼ 0:1; v0 ¼ 0:

In Fig. 3, the transient vibrations are presented. In

the graph on the left side, the approximate solution

obtained using the variant of MSM with two time

scales is compared with the numerical solution

obtained using standard NDSolve procedure of

Fig. 4 Time history of the amplitude and the body displacement for the steady-state resonant vibration: (a) x0 ¼ 0:1; v0 ¼ 0; (b)

x0 ¼ �0:65; v0 ¼ 0:01. (Color figure online)

Fig. 3 The body displacement in time for the transient resonant vibration: solid line—asymptotic solution for two and three time scales

(MSM2 and MSM3), and dashed line—numerical solution

Fig. 2 Body displacement in time for the transient non-resonant vibration; solid line—asymptotic solution for two and three time scales

(MSM2 and MSM3), whereas dashed line—numerical solution
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Mathematica software. The graph placed on the right

side presents the comparison of the approximate

analytical solution (42) with the same numerical

solution. The vibrations observed in a sufficiently

long time range stabilize itself. Depending on the

initial conditions the amplitude of the steady state

vibration can set itself on two values.

Similarly as in the non-resonant case, the asymp-

totic solutions regarding to the main resonance are

highly compatible with the numerical solution, irre-

spectively of the applied variant of MSM. The error

calculated according to the definition (34) is now d1 ¼
0:000015; d2 ¼ 7:145389 � 10�8 for three time scales

and d1 ¼ 0:0000181; d2 ¼ 2:8904498 � 10�6 for two

time scales, assuming ss ¼ 0 and se ¼ 800, which

validates the very high accuracy of the used analytical

approach. Analyzing the error values one can state that

the solution that utilizing three time scales is visibly

more accurate than the one with two time scales in the

case of the main resonance. Thus, we decide to base

the detailed study of the main resonance on the results

obtained using the variant of MSM with three time

scales.

The results presented above confirm the usefulness

of the employed approximate analytical method.

5.1 Steady-state resonant responses

In further analysis, it is convenient to introduce into

modulation Eqs. (39)–(40) the modified phase

h sð Þ ¼ rs� w sð Þ. That allows to transform the equa-

tions into the autonomous form more suitable for

analysis of the stationary and nonstationary motion.

The amplitude and modified phase that are constant

in the steady-state motion correspond to the fixed point

of the modulation equations. To avoid introducing

additional symbols we denote them as a and h (without

the argument s). According to the assumption about

steady state, zeroing the time derivatives in modula-

tion Eqs. (39)–(40) yields the following set of the

algebraic equations that correspond to the steady-state

conditions:

� 1

2
caþ

3c a2 þ a1k
3

� �

16 1 þ kð Þ3
a3 � f0

2
cos hð Þ ¼ 0; ð42Þ

rþ c2

8
�

3 a2 þ k3a1

� �
a2

8 1 þ kð Þ3

þ
15 �30a1a2k

3 þ a2
1k

5 16 þ kð Þ þ a2
2 1 þ 16kð Þ

� �
a4

256 1 þ kð Þ6

þ f 0

2a
sin hð Þ

¼ 0:

ð43Þ

Using trigonometric identity one can obtain the

amplitude-frequency relationship in the form

a2 �
15a4 a2

1 kþ 16ð Þk5 � 30a1a2k
3 þ a2

2 16kþ 1ð Þ
� �

256 kþ 1ð Þ6

 

þ
3a2 a1k

3 þ a2

� �

8 kþ 1ð Þ3
� c2

8
� r

!2

þ a2c2

256

3a2 a1k
3 þ a2

� �

kþ 1ð Þ3
� 8

 !2

¼ f 2
0

4
:

ð44Þ

The resonance curves presenting the amplitude and

the modified phase, obtained as solutions of Eqs. (42)–

(43) are shown in Figs. 5, 6 for the following fixed

parameters: a1 ¼ 1:025; a2 ¼ 1:1; k ¼ 0:9; f0 ¼
0:00205; c ¼ 0:001. The same parameters have been

adopted to obtain time histories presented in Fig. 4.

Studying the amplitude resonance response depicted

in Fig. 5, one can state that for r = 0.03685 there are

two stable values of the amplitude, namely 0.623505

and 0.0278721. The same values are drawn in Fig. 4 in

red line as the steady-state amplitudes.

In Figs. 5, 6 the stable branches of the resonace

response curves are depicted in red color, whereas the

unstable ones in blue color.

5.2 Stability of the resonance curves

To examine the stability of the steady-state solution in

the sense of Lyapunov, we analyze the non-stationary

solutions of Eqs. (39)–(40) that are close to the steady-

state solutions ðas; hsÞ. Introducing the functions

~a sð Þ; ~h sð Þ that can be treated as small perturbations,

one can assume the following form of the non-

stationary solution

a sð Þ ¼ as þ ~a sð Þ; h sð Þ ¼ hs þ ~h sð Þ: ð45Þ

123

760 Meccanica (2021) 56:753–767



Next, substituting expressions (45) into Eqs. (39)–

(40), linearizing the obtained equations and noting that

ðas; hsÞ are the steady-state solutions, we get the

perturbation equations

d ~a sð Þ
ds

¼ � 1

2
c~a sð Þ þ

9asc a2 þ a1k
3

� �
~a sð Þ

16 kþ 1ð Þ3

þ 1

2
f 0 sin hsð Þ~h sð Þ; ð46Þ

d~h sð Þ
ds

¼
15a3

s a2
2 � 30a1a2k

3 þ a2
1k

6
� �

~a sð Þ
64 1 þ kð Þ6

þ
15a3

sk a2
2 þ a2

1k
4

� �
~a sð Þ

4 1 þ kð Þ6
�

3as a2 þ k3a1

� �
~a sð Þ

4 1 þ kð Þ3

� f 0

2a2
s

sin hsð Þ~a sð Þ þ f 0

2as
cos hsð Þ~h sð Þ;

ð47Þ

for which the components of the characteristic matrix

A ¼ A11 A12

A21 A22

	 

ð48Þ

are as follows: A11 ¼ � c
2
þ 9a2

s c a1k
3þa2ð Þ

16 kþ1ð Þ3 , A12 ¼
f0
2

sin hsð Þ, A21 ¼ 15a2
s a2

2
�30a1a2k

3þa2
1
k6ð Þ

64 1þkð Þ6 þ 15a3
sk a2

2
þa2

1
k4ð Þ

4 1þkð Þ6

� 3as a2þk3a1ð Þ
4 1þkð Þ3 � f0

2a2
s
sin hsð Þ, A22 ¼ f0

2as
cos hsð Þ.

The fixed point ðas; hsÞ relating to the steady-state

solution is asymptotically stable in the sense of

Lyapunov if the real parts of all eigenvalues of the

matrix A are negative.

The Eqs. (42)–(43), which determine the resonance

response curves, predict the system behavior that

depends on a few parameters. The influence of the

external excitation amplitude f0 on the shape of the

response curves is presented in Figs. 7, 8 for the

following fixed parameters: a1 ¼ 0:05; a2 ¼ 0:05;

k ¼ 0:9; c ¼ 0:001.

Fig. 7 Influence of the external force amplitude on the

resonance response amplitude

Fig. 8 Influence of the external force amplitude on the modified

phase in main resonance

Fig. 5 Resonance curve for the amplitude of x2 sð Þ

Fig. 6 Resonance curve for the modified phase of x2 sð Þ
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The influence of the other parameters k, a1, a2 or c,

can be also easily investigated using Eqs. (42)–(43).

5.3 Non-stationary vibration

Usually, when investigating an anharmonic oscillator,

high emphasis is placed on steady-state vibrations as

the most simple and practically important process.

However, in many mechanical systems relaxation to

steady-state continues for a long time. The reasons can

be a strong resonance and small damping. Therefore

analysis of the non-stationary motion could be also

important. Usually, this problem is studied numeri-

cally due to the occurred essential mathematical

difficulties.

The MSM with two time scales gives a significantly

simpler form of the solution than using three scales.

However, the results obtained in this way are still very

good to describe the behavior of the system. There-

fore, further analysis is performed employing a 2-scale

variant of MSM.

A good way to qualitatively examine the system is

to analyze the non-damped vibration, that can be

studied analytically. When ignoring the energy dissi-

pation (c ¼ 0), the modulation Eqs. (36)–(37) take the

form

da sð Þ
ds

¼ � f 0

2
cos h sð Þð Þ; ð49Þ

a sð Þ dh sð Þ
ds

¼ a sð Þr�
3 a2 þ k3a1

� �
a sð Þ3

8 1 þ kð Þ3

þ f 0

2
sin h sð Þð Þ: ð50Þ

The exact differential equation corresponding to the

set (49)–(50) of the form

�a
f 0

2
cos hð Þdh

� ar�
3 a2 þ k3a1

� �
a3

8 1 þ kð Þ3
þ f 0

2
sin hð Þ

 !

da

¼ 0; ð51Þ

has the first integral

H ¼
3a4 a2 þ a1k

3
� �

32 1 þ kð Þ3
� a2r

2
� af 0 sin hð Þ

2
¼ const:

ð52Þ

The Eq. (52) governs phase trajectories on the

plane (a; h). The constant on the right side depends on

the initial conditions of the system (49)–(50).

Let us analyze the case when the maximum of the

energy transfer between the system and the external

loading appears. This situation takes place for const ¼
0 at Eq. (52), for which the first integral has the form

~H0 ¼ �
3a3 a2 þ a1k

3
� �

8 1 þ kð Þ3
þ 2arþ 2f 0 sin hð Þ ¼ 0;

ð53Þ

where a ~H0 ¼ H0:
The trajectory in the plane (a; h) corresponding to

the maximum energy transfer H0 ¼ 0 is called the

Limiting Phase Trajectory (LPT) [8]. From the total

differential dH0 ¼ 0; we obtain

da

dh
¼ 2f 0 cos hð Þ

� 9a2 a2þa1k
3ð Þ

8 1þkð Þ3 þ 2r
; ð54Þ

and hence the maximum amplitudes are achieved at

h ¼ p=2 þ kp, for k 2 {. Let us consider h ¼ p=2. The

number of the real roots of Eq. (53) for r[ 0 and

f0 [ 0 depends on the sign of the expression

D ¼ 64f 2
0 1 þ kð Þ6

9 a2 þ a1k
3

� �2
� 4096 1 þ kð Þ9r3

729 a2 þ a1k
3

� �3
: ð55Þ

The discriminant D depends on five parameters. A

qualitative change in the system behavior occurs when

sign ofD changes itself. The critical value of any of the

five parameters causes D ¼ 0. For example, the

critical value a1cr of the nonlinearity parameter a1

while other parameters are fixed is

a1cr ¼
�81f 2

0a2 þ 64 1 þ kð Þ3r3

81f 2
0k

3
: ð56Þ

The important qualitative transition in the dynam-

ical behavior of the system appears when the value of

the parameter a1 crosses its critical value a1cr. Three

limiting phase trajectories, for a1 ¼ a1cr , a1\a1cr and

a1 [ a1cr, are presented in Fig. 9. The graph is drawn

for the data: f0 ¼ 0:001; k ¼ 0:7; r ¼ 0:004; a2 ¼ 0:1,

for which a1cr � 0:4328.

The comparison presented in Fig. 9 shows the

qualitative change in the trajectory corresponding to

the maximum energy exchange, i.e. for H ¼ 0. For

a1 ¼ 0:30\a1cr there are two trajectories. One of
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them encircles quasilinear center at h ¼ �p=2 or at

h ¼ 3p=2, and the maximum value of the amplitude

reaches 0.3 (point ‘‘4’’ in Fig. 9). The second one is

open and does not describe vibrations. At a1 ¼ a1cr ¼
0:4328 the qualitative transition appears and the

trajectory changes its shape and location. Then, for

a1 ¼ 0:56[ a1cr the trajectory encircles strongly

nonlinear center at h ¼ p=2, and the maximum

amplitude of the vibration equals now 0.69 (point

‘‘2’’ in Fig. 9). The above results indicate strong

modulation of the amplitude in the case of the

resonance. One can observe the long term history of

the non-steady resonance vibration of the undamped

system. The result obtained according to the analytical

solution (38) for a1 ¼ 0:43\a1cr is presented in

Fig. 10 for the following fixed parameters:

f0 ¼ 0:001; k ¼ 0:7; r ¼ 0:004; a2 ¼ 0:1.

Similarly, the time history of x2 sð Þ for the slightly

greater nonlinearity a1 ¼ 0:48[ a1cr is presented in

Fig. 11. The values of other parameters are the same as

above.

The time history of the displacement of the body

obtained numerically for the original problem (5)–(7)

is qualitatively and quantitatively very similar to the

one obtained analytically which is seen in Figs. 10, 11.

That validates the correctness of the analytical

approach. The results presented in these figures show

that the long term amplitude modulation is qualita-

tively different in the case of the quasilinear vibration

for a1\a1cr than in the case of strongly nonlinear

vibration i.e. for a1 [ a1cr .

6 Non-linear damping

In the analysis carried out in the previous sections, the

elasticity was assumed as the only source of the

nonlinearities in the system. However, among many

possible reasons of the nonlinearity in structural

dynamics, also the energy dissipation mechanism

can cause nonlinear behaviors that often play a

dominant role in many real-world engineering sys-

tems. The problem of the nonlinear damping and its

modeling is described among others by Elliot et al. [9].

Let us analyze the system presented in Fig. 12.

Roughly, this is the same system that was the object of

our considerations in the previous sections but now the

Fig. 10 Time history of the function x2 sð Þ for a1 ¼ 0:4 (a1 below a1cr)

Fig. 9 Limiting phase trajectories for various values of the

nonlinearity parameter a1; points 1, 2, 3, 4 correspond to the real

roots of Eq. (53) for h ¼ �p=2 and h ¼ p=2
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nonlinearity is caused by the elasticity and the

damping.

The system description and all denotations intro-

duced in Sects. 2, 3, 4, 5 are still valid. It is assumed,

however, that the damping force according to the

Rayleigh model depends on the 3rd power of the

velocity. So, the external excitation and the damping

force considered as the generalized force are as

follows

Q ¼ F0 sin Xtð Þ � Cþ B _X
2

2

� �
_X2: ð57Þ

The following initial value problem written in the

dimensionless form is obtained using the Lagrange

formalism

€x2 þ 1 þ kð Þ x2 � x1ð Þ þ cþ b _x2
2

� �
_x2

þ a2 1 þ kð Þ x2 � x1ð Þ3

¼ f 0 sin psð Þ; ð58Þ

x1 1 þ a1x
2
1

� �
þ k x1 � x2ð Þ 1 þ a2 x1 � x2ð Þ2

� �
¼ 0;

ð59Þ

x2 0ð Þ ¼ x0; _x2 0ð Þ ¼ v0; ð60Þ

where c ¼ C
mx,b ¼ BD2

mx , and the other parameters are

defined the same as in Sect. 2.

The non-linear damping model adopted in the

article may lead to self-excited vibrations. Such

phenomena were investigated by Rayleigh [10] for

vibration maintained by wind, heat, or friction.

Governing Eqs. (58)–(59) are solved using the

procedure presented in Sects. 3 and 4. Let us assume

the smallness of the following parameters:

a1 ¼ e~a1; a2 ¼ e~a2; c ¼ e~c; b ¼ e~b; f 0 ¼ e2~f 0: ð61Þ

The variant of MSM with three time scales is

applied in solving the problem governed by Eqs. (58)–

(60). The amplitude and frequency modulations are

given by the following modulation equations:

da sð Þ
ds

¼ � 1

2
ca sð Þ þ 3

8
�2bþ

c a2 þ a1k
3

� �

2 1 þ kð Þ3

 !

a sð Þ3

�
3b a2 þ a1k

3
� �

32 1 þ kð Þ3
a sð Þ5;

ð62Þ

dw sð Þ
ds

¼ � c2

8
þ

3 a2 þ k3a1

� �
a sð Þ2

8 1 þ kð Þ3

þ
3 150a1a2k

3 þ 3b2 1 þ kð Þ6�5a2
1k

5 16 þ kð Þ � 5a2
2 1 þ 16kð Þ

� �
a sð Þ4

256 1 þ kð Þ6
:

ð63Þ

The asymptotic analysis leads to the following form

of the solution to the initial-value problem given by

Eqs. (58)–(60):

Fig. 11 Time history of the function x2 sð Þ for a1 ¼ 0:48 (a1 above a1cr)

Γ, Β

S
1, Λ1 2, Λ2

X
1
(t) X

2
(t)

0 sin(Ω )

L
01

L
02

Fig. 12 The mechanical system with nonlinear elasticity and

damping
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x2 sð Þ¼� f0 sin psð Þ
p2 �1

þa sð Þcos sþw sð Þð Þ

þ
3a sð Þ5

66a1a2k
3 þ9b2 1þkð Þ6�a2

1k
5 40þ7kð Þ�a2

2 7þ40kð Þ
� �

cos 3 w sð Þþ sð Þð Þ

1024 kþ1ð Þ6

þ
a sð Þ3

4a1k
3 þ4a2 þ3bc kþ1ð Þ3

� �
cos 3 w sð Þþ sð Þð Þ

128 kþ1ð Þ3

þ
a sð Þ3

4b 1þkð Þ3þ3c a2 þa1k
3

� �
þ3b a2 þa1k

3
� �

a sð Þ2
� �

sin 3 w sð Þþ sð Þð Þ

128 kþ1ð Þ3

�
a sð Þ5 �18a1a2k

3 �a2
1 �8þkð Þk5 þ3b2 1þkð Þ6þa2

2 �1þ8kð Þ
� �

cos 5 w sð Þþ sð Þð Þ

1024 kþ1ð Þ6

þ
ba sð Þ5 a1k

3 þa2

� �
sin 5 w sð Þþ sð Þð Þ

256 kþ1ð Þ3
:

ð64Þ

The time history of mass displacement is presented

in Fig. 13. The assumed fixed values of the parameters

are: a1 ¼ 0:05; a2 ¼ 0:05; k ¼ 0:7; f0 ¼ 0:08; c ¼
�0:005; b ¼ 0:01; p ¼ 0:215 and initial conditions

x0 ¼ 0:01; v0 ¼ 0. The negative value of c indicates

that self-induced vibration occurs in the system.

The graphs presented in Fig. 13 indicate that the

qualitative behavior of the system is well predicted by

the analytical solution. The objective measure of the

error made according to definition (34) gives the

following values: d1 ¼ 0:0008411 and d2 ¼
0:0001743 for Eqs. (58) and (59), respectively, and

for ss ¼ 0 and se ¼ 1000. This means that the

governing equations are satisfied with very good

accuracy.

6.1 Vibration at resonance

Let us examine the external resonance, i.e. p � 1. To

deal with this case, the detuning parameter r is

introduced to the Eq. (58) according to Eq. (35).

The MSM approach with three time scales yields

the modulation equation in the following autonomous

form

da sð Þ
ds

¼ � f 0

2
cos h sð Þð Þ � 1

2
ca sð Þ

þ 3

8
�bþ

c a2 þ a1k
3

� �

2 1 þ kð Þ3

 !

a sð Þ3�
3b a2 þ a1k

3
� �

32 1 þ kð Þ3
a sð Þ5;

ð65Þ

dh sð Þ
ds

¼ f 0

2a sð Þ sin h sð Þð Þ þ c2

8
þ r�

3 a2 þ k3a1

� �
a sð Þ2

8 1 þ kð Þ3

�
3 150a1a2k

3 þ 3b2 1 þ kð Þ6�5a2
1k

5 16 þ kð Þ � 5a2
2 1 þ 16kð Þ

� �
a sð Þ4

256 1 þ kð Þ6
:

ð66Þ

where h sð Þ ¼ rs� w sð Þ stands for the modified

phase.

The Eqs. (65)–(66) allow one to test both the steady

and the unsteady vibration. Let us examine the

relationships between the amplitude and the external

force frequency as well as between the modified phase

and the force frequency in the steady-state at the

external resonance. The curves depicting the reso-

nance responses are presented in Figs. 14 and 15 for

amplitude and modified phase, respectively. The

graphs are constructed assuming the following values

of the parameters: f0 ¼ 0:002; k ¼ 0:9; a1 ¼ 0:05;

a2 ¼ 0:05; c ¼ 0:001; b ¼ �0:001.

Self-induced vibration does not occur in the system

for the positive value of c, but the parameter b,

responsible for nonlinear damping, causes that only a

segment of the upper branch of the amplitude

resonance curve is stable. Moreover, there is an

interval for r (approximately for

r 2 0:0019; 0:003ð Þ), on which there is no stable solu-

tion at all. The numerical tests have demonstrated that

in this gap the vibration tends not to a limit cycle, but

to the infinity, which indicates that there are certain

parameters dangerous for the construction. Moreover,

there is a triple root in the curve of the modified phase

Fig. 13 Time history of the transient and steady non-resonant vibration: solid line—asymptotic solution for two and three time scales

(MSM2 and MSM3), and dashed line—numerical solution
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that could indicate the bifurcation point, which is not

typical for the Duffing equation. The unexpected

behavior in the resonance may indicate a limited scope

of the application of the adopted non-linear damping

model, which demands experimental validation.

7 Conclusions

The lumped system containing two serially connected

nonlinear springs has been investigated. The govern-

ing equations contain both differential and algebraic

equations. The dynamical problem of the forced

vibration of that system has been solved in an

asymptotic manner using the MSM, which had to be

appropriately modified to deal with the set of the

differential–algebraic system. The initial value prob-

lem has been solved by two variants of the MSM, i.e.

using two and three time scales. It turns out that for the

problem investigated for two time scales were enough

to obtain a very good solution, however more time

scales could be needed to deal with more sophisticated

systems in which geometric nonlinearities appear.

The analysis of vibration far from the main

resonance as well as near the resonance has been

presented. In the case of the resonance, both the

steady-state and the non-stationary vibrations were

analyzed.

The accurate solution has been obtained also for the

system with smooth nonlinear damping according to

the Rayleigh model.

Satisfaction of the governing equations by the

approximate analytical solution has been verified.

Small values of the root-mean-square error that have

been recorded prove the high accuracy of the method.

The correctness of the asymptotic approach has been

also confirmed in the confrontation with the numerical

simulation results.

It is well known that the analytical form of the

solution has a great advantage over the numerical one

because it allows for the qualitative analysis of the

system behavior.

Finally, we would like to emphasize the obtained

surprising novel results with regard to vibration with

nonlinear Rayleigh type damping at resonance.

Namely, we have detected that there is interval for

the parameter r for which there is no any stable pe-

riodic solution (the direct numerical tests indicate that

the solution tends to infinity, i.e. it is unbounded). This

result is obtained for the first time to the best of our

knowledge.

In addition, we have found the triple bifurcation

point shown in Fig. 15 which is not typical to the

known phenomena exhibited by the Duffing type

oscillators.
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