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Abstract Composites are experiencing a new era.

The spatial resolution at which is to date possible to

build up complex architectured microstructures

through additive manufacturing-based and sintering

of powder metals 3D printing techniques, as well as

the recent improvements in both filament winding and

automated fiber deposition processes, are opening new

unforeseeable scenarios for applying optimization

strategies to the design of high-performance structures

and metamaterials that could previously be only

theoretically conceived. Motivated by these new

possibilities, the present work, by combining compu-

tational methods, analytical approaches and experi-

mental analysis, shows how finite element Design

Optimization algorithms can be ad hoc rewritten by

identifying as design variables the orientation of the

reinforcing fibers in each ply of a layered structure for

redesigning fiber-reinforced composites exhibiting at

the same time high stiffness and toughening, two

features generally in competition each other. To

highlight the flexibility and the effectiveness of the

proposed strategy, after a brief recalling of the

essential theoretical remarks and the implemented

procedure, selected example applications are finally

illustrated on laminated plates under different bound-

ary conditions, cylindrical layered shells with varying

curvature subjected to point loads and composite tubes

made of carbon fiber-reinforced polymers, recently

employed as structural components in advanced

aerospace engineering applications.

Keywords Design optimization �Cylindrical shells �
Carbon fiber reinforced polymer � Layered plates

1 Introduction

Fiber reinforced composites (FRC) have found exten-

sive use in advanced applications of many engineering

fields thanks to their high stiffness/weight ratio and

high structural performances, which are often the

result of specific design and manufacturing strategies

that aim to optimize the response of these composite

structures to specific working conditions. This deter-

mined an increasing interest in the study of new

possible design solutions aimed to enhance the

performances of laminate shell structures under pre-

scribed regimes through the appropriate choice of

materials and the determination of the optimal fiber
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orientation for each FRC layer [21, 47]. Experiments

have shown that the optimal fiber orientation can

increase structural stiffness, failure loading and buck-

ling stress over the traditional quasi-isotropic fiber

distribution without increasing the weight

[27, 43, 52, 54], resulting particularly attractive for

applications where weight is critical [31, 34]. It is well

known that the composite stiffness is significantly

higher in the direction of fibers, and therefore different

strategies, such as sizing, shape and topology opti-

mization (TO), have been presented in the literature to

optimize the fiber orientation in a way to gain higher

mechanical performance. The optimization process is

usually gradient-driven. The so-called strain-based

method [25, 40, 41], the stress-based method

[14, 17, 25] and the energy-based method [35]

represent in particular three principal approaches,

corresponding to three different orthotropic material

TO strategies, proposed to solve the optimal orienta-

tion problems. All these procedures consider the effect

of the material orientation on the internal strains and

stresses, by exploring the condition that returns the

stiffest structure possible, which represents the one

whose material symmetry planes allow to minimize

the total elastic energy and thus minimize mean

compliance. Moreover, all methods assume the invari-

ance of strain and stress fields inside each design cell.

The optimality criterion of the strain- and stress-based

methods is formulated in the stress and strain form,

respectively. On the other hand, the energy-based

method requires that the dependency of strain and

stress fields on the material orientation needs to be

explored by involving an energy factor in the inclusion

model.

Different gradient-driven procedures are repre-

sented by material selection methods, such as the

optimal material selection technique [46] adapted by

[47] in the so-called discrete material optimization for

the design of laminated composite structures, shape

function with penalization (SFP) [12] and bi-value

coding parameterization (BCP) [24]. An improved

curvilinear parameterization method [51, 54] exploits

the Level Set method to optimize fiber paths by

enforcing the continuity of fiber angles at the element

interfaces [10]. In [56] the authors proposed a non-

deterministic robust topology optimization of ply

orientation for multiple fiber-reinforced plastic mate-

rials under loading uncertainties.

Other wide applications of TO strategies are based

on the exploration of the optimal material distribution

within a prescribed design domain, to maximize the

stiffness of the structure by fixing the volume or the

mass of the system [8, 19]. These methods employ

particularly advantageous distribution methods, i.e.

the homogenization approach [6] and the solid

isotropic material with penalization method (SIMP)

[5], in which the material properties are interpolated

by using smooth functions of the material density,

which serves as design variable.

The above discussed pioneering contributions have

been recently extended to a wide range of design

problems, including heat transfer [11, 49], acoustics

[18], fluid flow [9], electromagnetics [13, 16], biome-

chanics [22, 28] and many other multi-physics appli-

cations [20, 30, 38, 50].

Different criteria have been developed to drive the

optimization processes, extensively reviewed by Sig-

mund and Maute [45]. Some of them adopt continuous

density design variables with gradient-based opti-

mization algorithms [7, 57] or level set operating with

boundaries instead of local densities [2, 53], while

other evolutionary approaches instead provide the

removal of the elements with lowest strain energy

density [55]. The technique proposed by Stolpe [48]

investigated, in topology optimization problems, the

differences in selecting continuous and discrete

variables.

By invoking the theory of homogenization for

anisotropic materials, Esposito et al. [20] adapt the

topology optimization to fiber-reinforced composites,

by prescribing the materials of both matrix and

reinforcement and also constraining within techno-

logical (process-induced) ranges the volume fraction

of fibers, in this manner searching elastic solutions at

minimal energy over all the possible families of curves

that the continuous fibers can draw in any composite

layer. Furthermore, Minutolo et al. [36] proposed to

abandon the classical design and topology optimiza-

tion approaches by introducing a ‘‘third way’’ for

mechanically optimizing materials and structures,

baptized as Galilei’s Optimization. Based on the

concept of equalizing a proper stress measure at any

point of the body andmaximizing the global toughness

of a given structure, the proposed strategy traded

spatially homogeneous stress maps with spatially

inhomogeneous resizing, with the toughening effect
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of killing stress peaks that are potentially onset of

crack nucleation and fracture initiation.

In the present work, the optimal orientation of fibers

in multilayer composite shells is pursued through

design optimization method by assuming as objective

function the strain energy of the structure and as

design variables the orientation of the fibers in the

plies.

Different examples of plane and curved shells,

subjected to several load and boundary conditions,

have been analyzed using custom-made routines

developed in APDL (Ansys Parametric Design Lan-

guage) in Ansys� Multiphysics environment (Ansys

Inc., [1]. In particular, the case studies described in the

following sections analyze the behavior of a rectan-

gular panel subject to in-plane boundary conditions

and torsional regime, and a square panel subject to out-

of-plane loading, such as symmetric and asymmetric

bending regime. In these examples, the quality of the

optimization procedure has been evaluated through a

specific indicator, i.e. the strain energy gain (SEG),

which measures the perceptual variation of strain

energy before and after the optimization. Besides, the

response of three-dimensional structures is investi-

gated. In particular, a layered cylindrical shell sub-

jected to one point concentrated force is first studied.

Lastly, the proposed procedure is applied to optimize

the mechanical performances of carbon fiber rein-

forced polymer (CFRP) composite cylinders under

high compression regimes, used as primary structural

components for advanced applications in aerospace

engineering. However, the generality of these results

suggests their possible extension to many other

applications in which the prevention of critical load

conditions is crucial to ensure the functionality of the

structure [23, 37, 39]. Here, design optimization leads

to conceive a new possible optimal microstructural

arrangement of the CFRP able to avoid critical stress

conditions that are associated with the instability

mechanisms observed in composites with standard

fiber orientation.

The remainder of the paper is organized as follows.

The following section presents a remark on the design

optimization formulation, firstly describing the ruling

equations in a general form and then detailing them for

the optimal orientation in FR composites. Section 3

illustrates and discusses the results obtained from the

application of the described design optimization

procedure to plane and curved FRC panels subject to

in-plane or out-of-plane loading conditions. Section 4

closes with a conclusion and outlook.

2 Optimal orientation in FR composites: remarks

on problem formulation

The general problem of Design Optimization can be

classically stated as:

minimize = tð Þ ðobjective function)

subject to sLj � sj tð Þ� sUj j ¼ 1; ::;m ðstate constraints)

TL
i � ti � TU

i i ¼ 1; ::; n ðdesign constraints)

ð1Þ

where = tð Þ is the cost or objective function to be

minimized. The n design variables ti are the indepen-

dent quantities, collected into the vector t, that varies

to pursue the optimum design. The domain of the

design variables is defined by the design constrains

(1)3, while additional constraint equations can be

stated as in (1)2 in terms of the state functions sj tð Þ,
which depend on the design variables. In the work by

Esposito et al. [20], an analytical solution is provided

for an orthotropic layer where the optimal orientation

of the fibers has been determined by minimizing the

mean compliance of the structure under either pre-

scribed tractions or imposed displacements. By con-

sidering the total potential energy U, the weak

formulation of the linear elastostatic problem for a

plane structure under the action of both body forces

f xð Þ; x 2 X, surface tractions t xð Þ; x 2 oXt and pre-

scribed displacements u0 xð Þ; x 2 oXu, requires that

min
v

U;

U ¼
Z

X

1

2
Cijkl

oui
oxj

ovk
oxl

dX�
Z

X

fividX�
Z

oXt

tividC

ð2Þ

where Cijkl are the components of the 4th order

stiffness tensor of the orthotropic material that here

depends on the fiber orientation h, while ui and vi are

the displacement satisfying the first momentum bal-

ance and a kinematically admissible virtual displace-

ment, respectively.

The stiffest structure guarantees the minimum

amount of total internal elastic energy, or, equiva-

lently, the minimum compliance. Therefore, the
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objective function to be minimized can be identified

by the elastic energy:

2P ¼
Z

X

rijeijdX ¼
Z

X

CijkleijekldX

¼
Z

X

Cijkl
oui
oxj

ouk
oxl

dX ð3Þ

defined in terms of the Cauchy stresses rij and of the

strains eij when the solution is found for any value of h,
here representing the design variable. The optimality

condition is obtained by imposing stationarity of

P hð Þ, that is:

oP
oh

¼
Z

X

oCijkl

oh
oui
oxj

ouk
oxl

þ 2Cijkl
o

oh
oui
oxj

� �
ouk
oxl

� �
dX

¼ 0

ð4Þ

By virtue of the principle of virtual displacements,

under the condition vk ¼ uk, the following relation

through direct derivation with respect to h:
Z

X

oCijkl

oh
oui
oxj

ouk
oxl

dX ¼ �
Z

X

Cijkl
o

oh
oui
oxj

� �
ouk
oxl

dX;

ð5Þ

can be finally obtained. Substituting Eq. (5) in Eq. (4)

gives the optimality condition:

oP
oh

¼ �
Z

X

oCijkl

oh
oui
oxj

ouk
oxl

dX ¼ 0 ð6Þ

Finite element-based discretization of the domainX
in m elements implies that the optimality condition is

rewritten as:

oP
ohe

¼ �
Z

Xe

oCijkl

ohe

oui
oxj

ouk
oxl

dXe ¼ �
Z

Xe

oCijkl

ohe
eijekldX

e

¼ 0

ð7Þ

where Xe represents the measure of the eth design cell.

Assuming, for a sufficiently small element size, a

uniform strain and stress fields within each homoge-

neous design cell, the optimality condition in terms of

strains (prescribed displacements) reads as:

oPe

ohe
¼ �eTe

oC

ohe
eeAe ¼ 0 e ¼ 1; 2; . . .;m ð8Þ

where ee represents the strain vector, C is the rotated

orthotropic stiffness matrix and Ae is the area of the e
th

design cell, set as unity. Dually, the optimality

condition in the stress form (prescribed tractions) is:

oPr

ohe
¼ �rTe

oS

ohe
re ¼ 0 e ¼ 1; 2; . . .;m ð9Þ

where re is the stress vector and S is the rotated

orthotropic compliance matrix [32, 42].

For the design cell element, the orthotropic stress–

strain equations, as well as the uncoupled constitutive

equations for interlaminar shear stresses, can be

written as [3, 4]:

r1
r2
r6

8><
>:

9>=
>;

e

¼

E1

1� t12t21

t12E2

1� t12t21
0

t12E2

1� t12t21

E2

1� t12t21
0

0 0 G12

2
66664

3
77775
e

e1
e2
e6

8><
>:

9>=
>;

e

and
r4
r5

� �
e

¼
G23 0

0 G13

� �
e

e4
e5

� �
e

ð10Þ

where subscripts 1 and 2 denote the fiber and the

orthogonal-to-the-fiber directions, respectively,

E1;E2ð Þ are the orthotropic Young moduli, G12;ð
G13;G23Þ are the shear moduli and t12 is the Poisson’s
ratio in the plane referred to the subscripts. The inverse

relationships is:

e1
e2
e6

8<
:

9=
;

e

¼

1

E1

� t12
E1

0

� t12
E1

1

E2

0

0 0
1

G12

2
666664

3
777775
e

r1
r2
r6

8<
:

9=
;

e

and
e4
e5

� �
e

¼

1

G23

0

0
1

G13

2
64

3
75
e

r4
r5

� �
e

ð11Þ

By introducing the rotation matrix T:

T ¼
cos2 h sin2 h 2 cos h sin h
sin2 h cos2 h �2 cos h sin h

� cos h sin h cos h sin h cos2 h� sin2 h

2
4

3
5

ð12Þ

the stress and strain vectors, as well as the compliance

and stiffness matrices, can be transformed from the
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material coordinate system 1; 2; 3ð Þ of the fibers to the
global coordinate system x; y; zð Þ—for which an over-

lined notation is adopted in what follows—so that:

C ¼ T�1CT�T

S ¼ T�1ST�T
ð13Þ

Specifically, the elastic moduli Eij for the ortho-

tropic design cell element are [29]:

E11 ¼ E11 cos
4 hþ 2ðE12 þ 2E66Þ sin2 h cos2 h

þ E22 sin
4 h

E12 ¼ ðE11 þ E22 � 4E66Þ sin2 h cos2 h
þ E12ðsin4 hþ cos4 hÞ

E22 ¼ E11 sin
4 hþ 2ðE12 þ 2E66Þ sin2 h cos2 h

þ E22 cos
4 h

E16 ¼ ðE11 � E12 � 2E66Þ sin h cos3 h
þ ðE12 � E22 þ 2E66Þ sin3 h cos h

E26 ¼ ðE11 � E12 � 2E66Þ sin3 h cos h
þ ðE12 � E22 þ 2E66Þ sin h cos3 h

E66 ¼ ðE11 þ E22 � 2E12 � 2E66Þ sin2 h cos2 h
þ E66ðsin4 hþ cos4 hÞ

�E44 ¼ E44 cos
2 hþ E55 sin

2 h

�E55 ¼ E44 sin
2 hþ E55 cos

2 h
�E45 ¼ ðE55 � E44Þ sin h cos h

ð14Þ

where:

E11 ¼
E1

1� m12m12
; E12 ¼

m12E1

1� m12m12
;

E22 ¼
E2

1� m12m12
; E66 ¼ G12; E44 ¼ G23;

E55 ¼ G13:

ð15Þ

Similarly, the components Sij of the rotated com-

pliance matrix can be obtained as:

S11 ¼ S11 cos
4 hþ 2ðS12 þ S66Þ sin2 h cos2 hþ S22 sin

4 h

S12 ¼ ðS11 þ S22 � S66Þ sin2 h cos2 hþ S12ðsin4 hþ cos4 hÞ
S22 ¼ S11 sin

4 hþ ð2S12 þ 2S66Þ sin2 h cos2 hþ S22 cos
4 h

S16 ¼ ð2S11 � 2S12 � S66Þ sin h cos3 h
� ð2S22 � 2S12 � S66Þ sin3 h cos h

S26 ¼ ð2S11 � 2S12 � S66Þ sin3 h cos h
� ð2S22 � 2S12 � S66Þ sin h cos3 h

S66 ¼ 2ð2S11 þ 2S22 � 4S12 � S66Þ sin2 h cos2 h
þ S66ðsin4 hþ cos4 hÞ

�S44 ¼ S44 cos
2 hþ S55 sin

2 h

�S55 ¼ S44 sin
2 hþ S55 cos

2 h
�S66 ¼ S55 � S44ð Þ sin h cos h

ð16Þ

where:

S11 ¼
1

E1

; S12 ¼
�m12
E1

; S22 ¼
1

E2

; S66 ¼
1

G12

;

S44 ¼
1

G23

and S55 ¼
1

G13

ð17Þ

Algebraic manipulations allow rewriting the opti-

mality conditions (8) and (9) respectively as:

oPe

ohe
¼ 1

2
½ðE11 � E22Þe6ðe1 þ e2Þ

þ 2ð�E44 þ E55Þe5e4� cos 2he

þ 1

2
ðE11 � 2E12 þ E22 � 4E66Þe6ðe1 � e2Þ cos 4he

� 1

2
½ðE11 � E22Þðe1 � e2Þðe1 þ e2Þ

� ðE44 � E55Þðe6 � e5Þðe6 þ e5Þ� sin 2he

� 1

4
ðE11 � 2E12 þ E22 � 4E66Þðe1 � e6 � e2Þ

ðe1 þ e6 � e2Þ sin 4he
¼ 0

ð18Þ

and:
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oPr

ohe
¼ ½ðS11 � S22Þr6ðr1 þ r2Þ þ ð�S44 þ S55Þr5r4� cos 2he

þ ðS11 � 2S12 þ S22 � S66Þr6ðr1 � r2Þ cos 4he

� 1

2
½ðS11 � S22Þðr1 � r2Þðr1 þ r2Þ

� ðS44 � S55Þðr5 � r4Þðr5 þ r4Þ� sin 2he

� 1

4
ðS11 � 2S12 þ S22 � S66Þ½�4r26 þ ðr1 � r2Þ2� sin 4he

¼ 0

ð19Þ

where both strain and stress components refer to

values at the centroid of the design cell. Both Eqs. (18)

and (19) are of the type:

a cos 2he þ b cos 4he þ c cos 2he þ d sin 4he ¼ 0

ð20Þ

where the coefficients a; b; c and d are:

a ¼ 1

2
½ðE11 � E22Þe6ðe1 þ e2Þ þ 2ð�E44 þ E55Þe5e4�

b ¼ 1

2
ðE11 � 2E12 þ E22 � 4E66Þe6ðe1 � e2Þ

c ¼ 1

2
½�ðE11 � E22Þðe1 � e2Þðe1 þ e2Þ

þ ðE44 � E55Þðe5 � e6Þðe5 þ e6Þ�

d ¼ � 1

4
ðE11 � 2E12 þ E22 � 4E66Þðe1 � e6 � e2Þðe1 þ e6 � e2Þ

ð21Þ

in the strain formulation and:

a ¼ ðS11 � S22Þr6ðr1 þ r2Þ þ ð�S44 þ S55Þr5r4
b ¼ ðS11 � 2S12 þ S22 � S66Þr6ðr1 � r2Þ

c ¼ 1

2
½�ðS11 � S22Þðr1 � r2Þðr1 þ r2Þ

þ ðS44 � S55Þðr5 � r4Þðr5 þ r4Þ�

d ¼ � 1

4
ðS11 � 2S12 þ S22 � S66Þ½�4r26 þ ðr1 � r2Þ2�

ð22Þ

for prescribed tractions. It is worth noticing that the

coefficients listed in Eqs. (21) and (22) depend both on

stiffness and compliance moduli and on the stress and

strain levels, including interlaminar shear stresses and

strains. By setting x ¼ 2he and by substituting t ¼ tg x
2
,

Eq. (20) can be finally expressed as:

c1t
4 þ c2t

3 þ c3t
2 þ c4t þ c5 ¼ 0 ð23Þ

where c1 ¼ b� a, c2 ¼ 2c� 4d, c3 ¼ �6b, c4 ¼
2cþ 4d and c5 ¼ aþ b. The fourth-order polynomial

Eq. (23) admits analytical solutions ti by virtue of the

Ferrari–Cardano formula, so that the fiber angles in the

design element cell are finally obtained as:

hei ¼ arctg tið Þ ð24Þ

Among the real solutions, the optimal fiber orien-

tation hOPT provides the minimum value of the strain

energy. To avoid undesired computational costs

related to the implementation of numerical procedures

based on theoretical variational approaches including

constraints (for instance Lagrange multipliers and

inequalities), the optimization algorithm is designed to

control, step-by-step, that the von Mises stress does

not overcome a prescribed yield value. Nevertheless, a

selected criterion for redistributing the exceeding

stresses at the subsequent step of the analysis, in case

of critical stress occurrence, was a priori established.

As a consequence, in case of over-load at a given

optimization step, the algorithm was written to

perform two parallel analyses. A first one is launched

by starting from a trial configuration by assigning ply-

by-ply sets of fibers orientation characterized by

angles placed at intermediate positions between the

ones obtained at the previous step (when no critical

stresses occurred) and the ones corresponding to the

step at which inadmissible stresses were somewhere

found.

3 Results and discussion

3.1 Optimization of plane and curved shells

Design Optimization procedures have been applied to

optimize the mechanical response of different com-

posite structures. In order to catch the optimal

composite stacking sequences, a FE design optimiza-

tion algorithm has been developed with the aid of

Ansys solver. The algorithm uses the subproblem

approximation method (an advanced zero-order

method) that can be efficiently applied to many

engineering problems [33]. The algorithm considers

the reinforcement orientations of laminae as design

variables and the Strain Energy as objective function

to be minimized. This section illustrates and discusses

the results obtained from the application of the

described design optimization procedure to plane

and curved FRC panels subject to in-plane or out-of-
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plane loading conditions. More in detail, the addressed

examples concern composite materials made of two

symmetrically positioned components, each compris-

ing four adjacent orthotropic layers containing fibers

arranged to form angles of 0�, 90�, 45� and - 45�,
respectively, to generate a symmetrical stacking

sequence, from here on identified as

0�; 90�; 45�;�45�ð Þs. The material properties consid-

ered in the FEM simulations for the single layer are

relative to the ThermoPlastic Composite APC-2/AS4.

Therefore, with reference to a local (i.e. layer-specific)

orthogonal coordinate system x1; x2; x3ð Þ having the

x1-axis aligned along the fibers direction, the nine

elastic constants for each layer are the following:

E1;E2;E3ð Þ ¼ 138; 10; 10ð Þ MPa;

G12;G13;G23ð Þ ¼ 5:65; 5:65; 3:7ð Þ MPa

t12; t13; t23ð Þ ¼ 0:28; 0:28; 0:33ð Þ

Based on the adopted stacking sequence, the overall

behavior of the multi-ply deriving from the assembly

of the eight single layers can be assumed as quasi-

isotropic. For those composite systems, optimized

distributions of the fibers orientations in each layer,

leading to a strain energy minimization for prescribed

geometries and boundary conditions, have been

determined through a custom-made procedure devel-

oped by APDL (Ansys Parametric Design Language)

and implemented in Ansys� Multiphysics environ-

ment (Ansys Inc., [1].

The effects of the optimization process are

described in the following paragraphs, and compared

with the original case of symmetrical sequence. In

particular, to measure the advantage obtained by

adopting an optimally configured structure in place of

the original quasi-isotropic one, the strain energy gain

(SEG) parameter, defined as the strain energy per-

centage difference for the structure before and after the

optimization:

SEG ¼ SEPRE�OPT � SEOPT

SEOPT
ð25Þ

is calculated for each investigated example.

3.1.1 Rectangular panel under in-plane loading

conditions

The first example concerns the optimization of a

rectangular panel (length = 500 mm, height = 200

mm, thickness = 2.24 mm) laying in the classical

cantilever-like configuration pictorially represented in

Fig. 1b, with one of the shorter sides fully constrained

and the opposite subject to a vertical load F ¼ 1000N.

The FE model of the structure has been achieved by

hexahedral multi-layer solid-shell element type, with

eight nodes having three degrees of freedom for each

node and linear shape functions. The starting, sym-

metrical, sequence of layers 0�; 90�; 45�;�45�ð Þs,
generating a quasi-isotropic structure, and the opti-

mized sequence 46�; 0�; 0�; 0�ð Þs are respectively

illustrated in Fig. 1a, c for one half of the structure,

the other being symmetrical. It is worth noticing that

the proposed approach allows to choose any real value

for the orientation angles of the reinforcing fibers,

although the angle values resulting from the numerical

procedure and reported in the next figures, are

approximated to the closest integer. As a matter of

fact, as not hardly predictable, the resulting optimal

orientations of the fibers approximately follow the

principal directions of stress and strain in the bending

cantilever.

Figure 1d–g shows the vertical displacements and

the von Mises stresses arising within the panel in both

the original and the optimized configuration. In this

regard, it is worth noting that, in the optimized case,

the magnitude of the vertical displacement is signif-

icantly reduced with respect to the quasi-isotropic

configuration and the von Mises stress results to be

homogeneous almost everywhere, with the higher

values localized around the force application point.

The advantage—in terms of strain energy reduc-

tion—deriving from the optimization process for the

considered application is expressed by a SEG equal to

29.77%.

3.1.2 Square panel bending under normal force

The present paragraph focuses on the design opti-

mization of the square panel (side length = 500 mm,

thickness = 2.24 mm) shown in Fig. 2b. The panel is

constrained on two of its edges and subjected to a force

F = 10 N orthogonal to the panel’s plane. The anal-

yses are performed by employing the same FE

discretization adopted in the previous application.

The starting and optimized fibers orientations maps

are shown in Fig. 2a, c, respectively. In particular, the

latter shows that, resembling the previous outcomes,
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the optimal orientations of the fibers result to nearly

coincide with the principal directions of stress and

strain in the bending plate. In addition, the vertical

displacements, reported in Fig. 2e, appear reduced in

magnitude in the optimized condition with respect to

the quasi-isotropic structure (Fig. 2d) and the von

Mises stresses exhibit a distribution mainly oriented

toward the external load (Fig. 2f, g). The advantage

Fig. 1 a The symmetrical stacking sequence generating the

quasi-isotropic rectangular FRC panel; b Sketch of the geometry

and boundary conditions considered for the rectangular FRC

panel; c Fibers’ orientations for (one half of) the optimized

configuration of the structure; Contour plots of the d–e vertical
displacement and f–g Von Mises stress through the first layer of

the panel in the quasi-isotropic and optimized case
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deriving from the optimization process for this case

turns out to be higher than the previous one, with a

resulting SEG of about 48.80%.

3.1.3 Square panel under pure bending regime

The optimal configuration of the same composite

square structure considered above is here addressed

for boundary conditions reproducing the pure bending

regime illustrated in Fig. 3b. In this case, the four

Fig. 2 a The symmetrical stacking sequence generating the

quasi-isotropic square FRC panel; b Sketch of the geometry and

boundary conditions considered for the square FRC panel;

c Fibers’ orientations for (one half of) the optimized

configuration of the structure; Contour plots of the d–e vertical
displacement and f–g Von Mises stress through the first layer of

the panel in the quasi-isotropic and optimized case
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corners are fully constrained and all the edges of the

structure are loaded via external bending moments

M ¼ 2:24 Nmm.

The main outcomes of the optimization procedure

related to this application are shown in Fig. 3, in

comparison with the mechanical response provided by

the non-optimized configuration.

It is worth underling that the present case is the one

attaining the lowest advantage from the optimization

process in terms of strain energy reduction, with an

estimated SEG value to be approximately 12.25%.

Fig. 3 a The symmetrical stacking sequence generating the

quasi-isotropic square FRC panel; b Sketch of the geometry and

boundary conditions considered for the square FRC panel under

pure bending; c Fibers’ orientations for (one half of) the

optimized configuration of the structure; Contour plots of the d–
e vertical displacement and f–g Von Mises stress through the

first layer of the panel in the quasi-isotropic and optimized case
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3.1.4 Rectangular panel under torsion

The design optimization is here performed on a

rectangular panel (length = 500 mm, height = 200

mm, thickness = 2.24 mm) fully constrained at the

center of both its shorter edges and subject, through

the imposition of linearly variable vertical forces, to a

torsion moment M = 5 Nmm and vanishing resultant

force. The described boundary conditions are sketched

in Fig. 4b, while the fibers distributions for the

original and optimized systems are shown, in the

order, in Fig. 4a, c. It is possible to observe that, even

Fig. 4 a The symmetrical stacking sequence generating the

quasi-isotropic rectangular FRC panel; b Sketch of the geometry

and boundary conditions considered for the rectangular FRC

panel under torsion; c Fibers’ orientations for (one half of) the

optimized configuration of the structure; Contour plots of the d–
e vertical displacement and f–g Von Mises stress through the

first layer of the panel in the quasi-isotropic and optimized case
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in this case, optimal orientations for the fibers

essentially coincide with the principal stress direc-

tions. Additionally, the results achieved in terms of

out-of-plane displacements and von Mises stress maps

in the case of isotropic composite (Fig. 4d, f) and

optimized structure (Fig. 4e, g), still show a lower

displacements magnitude and a smoother and widely

spread distribution of von Mises stress in the opti-

mized case. Under these conditions, the SEG results to

be about 34.40%.

3.1.5 Cylindrical vault under prescribed point-force

The previously described design optimization exam-

ples deal with the optimization of the fibers’ distribu-

tion in multi-ply composite plates, aimed to minimize

the strain energy of the system under prescribed

loading conditions. In all the analyzed cases, the

optimized structures show preferential alignment of

the fibers very close to the principal stress and strain

directions and, as highlighted by the lower displace-

ments magnitude, they exhibit a stiffer response in

comparison with the non-optimized, quasi-isotropic,

composites.

An advanced application of the same strategy

regards the characterization of optimal fibers maps in

three-dimensional FRC shells discussed in the

following.

By way of example, a parametric analysis of the

cylindrical vault illustrated in Fig. 5, fully constrained

at its edges and loaded by a vertical point-force

F = 10 N at a prescribed position, has been performed

through the implementation of a FE model employing

a classical laminated shell element with four nodes and

six degrees of freedom for each node. In this way,

different results have been provided by the optimiza-

tion algorithm depending on the span-to-rise ratio of

the vault—namely by varying the rise (h) as a function

of the span (d)—in terms of optimal angles’ sequences

and corresponding SEG values, as reported in Table 1.

The plots of the vertical displacements and the von

Mises stresses induced by the application of the

vertical point-load on both the quasi-isotropic and

optimized structures, are reported in Fig. 6. Therein, it

is worth highlighting that the same maximum value of

stress is reached, with a different distribution, in the

original and optimized configurations of the system. In

particular, in the quasi-isotropic structure, high stress

values are localized around the point of application of

the force, resulting distributed with low magnitudes

over wider areas in the corresponding optimized

solutions.

Figure 6 clearly shows that the stiffness optimiza-

tion process is generally accompanied by an improve-

ment of the average stress level everywhere: in fact,

when this improvement does not correspond to a

reduction of the stress magnitude (as it happens for

statically determinate problems, for example), the

same stress level leads however to have a greater

Fig. 5 a Sketch of the geometry and boundary conditions

considered for the studied FRC cylindrical vault under external

point-load; b Schematization of the structure’s cross section for

different rise-to-span (i.e. h-to-d) ratios and fixed (not symmet-

rical) point of application of the external force

Table 1 Stacking sequence and strain energy gain resulting by

the optimization procedure for a FRC cylindrical vault under

external point-force

h Optimized stacking sequence SE gain (%)

d/2 [80�/90�/90�/0�]s 100

d/4 [88�/90�/62�/0�]s 92

d/8 [88�/90�/60�/0�]s 86

0 [0�/48�/0�/86�]s 14
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safety factors with respect to the not-optimized case,

because the optimized materials is solicited along

directions of maximum stiffness that are often asso-

ciated to maximum strength as well.

3.2 Carbon fiber-reinforced polymer (CFRP)

structures

Experimental studies on the mechanical performances

of combustion chambers made up with CFRP multi-

layer cylinders have been made, in order to highlight

the effects that specific fiber orientations and the

scaling of the mechanical properties of the cylindrical

laminae had on the onset of damages and their

propagation in both undamaged and repaired struc-

tures [26]. In particular, the two CFRP cylindrical

structures with diameter and height are about 377 mm

were manufactured by using a high strength carbon

fiber epoxy pre-preg tape by building up a quasi-

isotropic layup of 24 plies 02;�45; 902½ �2s
� 	

through

the Filament Winding technology. The constitutive

properties of each lamina (with thickness of about

0:195 mm) are collected in Table 2. Two identical

specimens were realized with the same procedure and,

successively, one of them was damaged and repaired

with a specific repair resin.

The mechanical response of both undamaged and

repaired cylinders have been tested under compressive

Fig. 6 Contour plots of the displacements (on the left column) and Von Mises stresses (on the right column) obtained for the original

and optimized cylindrical vaults under external point-load, for different rise-to-span ratios (from top to bottom)
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Table 2 Constitutive properties of the CFRP laminae

Elastic moduli Poisson’s ratios Shear moduli

Ex ¼ 153000MPa mxy ¼ 0; 39 Gxy ¼ 4900MPa

Ey ¼ 6900MPa mxz ¼ 0; 34 Gxz ¼ 4900 MPa

Ez ¼ 6900 MPa myz ¼ 0; 30 Gyz ¼ 3425 MPa

Fig. 7 Experimental setup. a Placement of the strain gauges

1 V, 2 V, 3 V, 4 V—(four of them in axial direction, spaced of

45� each other along the cylindrical surface; and others in

tangential direction, spaced out of 180� each other). b,

c Location of the LVDT sensors A, B, C, D (on the external

surface of the specimens) and N, O, B60 (fixed to the rigid

plates). d Complete setup
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load by means of a servoidraulic machine ITAL-

SIGMA—with a capability of 3000 kN in compres-

sion and a maximum crosshead displacement equal to

75 mm—with the aim to evaluate the stiffness of

cylinders, their elastic strength and the critical load at

which failure occurs. The experimental setup is shown

in detail in Fig. 7.

The compression tests reported in Fig. 8 mainly

evidenced the occurrence of structural damages close

to the potting zone, caused by the compressive over-

load associated with delamination phenomena and

followed by unstable buckling behavior due to the

high stresses in the constrained zone. These localized

damages under increasing load slowly propagated,

until the entire structure collapsed. Additional non-

axisymmetrical damages were also observed at the

ends of not-repaired cylinders, suggesting that potting

imperfections could cause an incorrect load transfer

along the thickness of cylinder, by inducing a prema-

ture failure of the system because of localized bulging

effects.

In the light of such experimental evidence, an

optimized design of the CFRP microstructure able to

improve the composite mechanical strength would

help to better resist to the high-pressure levels

occurring in the combustion chamber during the

flight, and an optimized stiffness allow to reduce the

stresses responsible for local damages and bulging

effects detected. Both these aspects are in fact diriment

to prevent—or at least contain—the undesired failure

mechanisms in CFRP above described, by preserving

its structural integrity. To this aim, the proposed

design optimization procedure has been applied to

obtain the optimal fiber orientation in the composite

laminae of the CFRP cylinder, in order to minimize the

von Mises stress in the critical distal region and to

preserve the composite longitudinal stiffness within

prescribed limits (±10%). To reduce the computa-

tional efforts, the geometry of the cylinder has been

meshed with 15,544 elements with bending and

membrane regimes and 15,776 nodes with six degrees

of freedom. The microstructural stacking sequence

across the thickness has been modeled through

multilayered shell features allowing large savings in

terms of computational efforts. Anisotropic constitu-

tive properties of the single lamina reproduced the

manufactured ones by modelling an initially 24-ply

structure with the symmetrical quasi-isotropic stack-

ing sequence 0�2=� 45�=45�=90�2
� 	

2


 �
S

shown in

Fig. 9. Herein, the applied boundary conditions are

also illustrated, which consist in both an imposed axial

displacements and vanishing rotations, in order to

induce a compressive state inside the cylinder and

reproduce the constraining effects of the potting,

respectively.

A first FE analysis has been performed to evaluate

the elastic stiffness of the undamaged pre-optimized

composites. In order to replicate the experimental

conditions an axial displacement DUz ¼ �0:85 mmð Þ
has been imposed at the cylinder bases, obtaining a

maximum value of the reaction force Fnum
MAX ’ 920 kN,

very close to the measured value achieved during

compression tests (Fmax ¼ 913 kN, see Fig. 10). By

considering both the initial height L0ð Þ and the initial

cross-section A0ð Þ of the composite structure, it is then

possible to estimate the homogenized Young modulus

of the composite [15] as:

Enum
Z ¼ rz

ez
¼ Fnum

Z L0
A0 DUZ

’ 66; 5 GPa ð26Þ

A successive eigenvalue analysis allowed to esti-

mate numerically the critical compressive loads at

Fig. 8 Highlights from compression tests on CFRP skirts showing the specific damaging mechanisms due to compression load
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which the wall of composite cylinder undergoes

buckling instability exhibiting specific deformation

modes. In particular, by considering a symmetrical

prescribed load in which the bases are moved in

parallel, the first four buckling modes corresponding

to load multipliers k1 ¼ 4:3221; k2 ¼ 4:3221; k3 ¼
4:4684; k4 ¼ 4:4684 are reported in Fig. 11. Due to

the higher values of the associated critical loads, these

deformation modes did not occur during experiments,

and a moderate asymmetry of the load at the top base

of the CFRP cylinder was considered in order to

simulate an undesired partial detachment of the

potting phase around the composites. This imperfec-

tion was numerically implemented by prescribing the

linear variation of the applied nodal displacement by

means:

DUASYM
Z ¼ DUZ þ

Rþ �xi
2R

� �
a DUZ ð27Þ

in which �xi; R and a are the position of the i-th node,

the radius of the cylindrical structure and the slope

assigned as imperfection, respectively. In this case, the

value of the critical loads decrease to about FASYM
MAX ’

1050 kN with multipliers k1 ¼ 1:9796; k2 ¼
1:9797; k3 ¼ 2:1346; k4 ¼ 2:1347. The associated

deformation modes, reported in Fig. 12, qualitatively

reproduce the localized failure mechanisms experi-

mentally observed, by confirming the hypothesis that

imperfections of the potting phase could induce

premature failure of the undamaged scaled skirt.

Starting from this these results, design optimization

was performed on the quasi-isotropic structure with

stacking sequence 0�2=� 45�=45�=90�2
� 	

2


 �
S
in order

to find a new possible microstructure of the laminae

able to prevent the undesired damaging phenomena

Fig. 9 FE model of the composite scaled cylinder, with the considered boundary conditions. The stacking sequence of composite

laminae in pre-optimized structure is also illustrated

Fig. 10 Comparison of experimental and FE results in terms of

load–strain curves
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experimentally observed and investigated by means of

the above described in silico simulations. By requiring

the minimization of von Mises stress in the potting

region and by choosing a constant axial stiffness as

design constraint, the implemented design optimiza-

tion routine highlights the possibility to determinate an

optimal fiber placement within the CFRP plies. In

particular, the stacking sequence in the post-optimized

situation showed angles equal to

90�2=88
�=33�=0�2

� 	
2


 �
S
. This particular arrangement,

although it does not change the quasi-isotropic global

behavior of the structure, reduce drastically the von

Mises stress in the potting region, where buckling

mechanisms occur, without compromising the axial

response of the cylinder. Results in Fig. 12 highlight

as the optimized composite structure exhibits

improved stress conditions with a volume-averaged

von Mises stress in the post-optimized case more of

one order of magnitude lower than the one in the pre-

optimized condition. Furthermore, lateral expansion

appears to be moderated by approximately 50% (see

Fig. 12a–c), whereas the specific fiber angles deter-

mined induce a sensible increase of the composite

axial stiffness in the post-optimized case with respect

to the initial disposition, also recalling the nonlinear

scaling of composite moduli with the fiber directions.

In addition, the reduced longitudinal stress peaks in

the potting zones of the post-optimized CFRP suggest

a minor risk of localized bulging phenomena

(Fig. 12d).

4 Conclusions

In the present work, the application of a classical

design optimization technique to fiber-reinforced

composites was discussed. In particular, it was aimed

to determine the optimal sequences of fibers orienta-

tions within plane and curved multilayered shells, to

minimize the strain energy of the system under

prescribed boundary conditions. The implementation

of the optimization strategy and all the simulations

were performed in Ansys�Multiphysics environment

(Ansys Inc., Canonsburg, PA, USA) by developing a

custom-made procedure based on the Ansys Paramet-

ric Design Language. The effectiveness of the opti-

mization was evaluated in relation to the mechanical

performances offered by quasi-isotropic composite

structures consisting in sequences of layers with

symmetrically oriented fibers. Specifically, a Strain

Energy Gain parameter was defined as the measure of

the advantage deriving from the employment of

optimally arranged structures, thus obtaining more or

less significant results depending on the specific

geometry and loading conditions of the systems. As

a matter of fact, in all the analyzed cases, the

optimization process provided anisotropic fiber-rein-

forced composites exhibiting reduced displacements

magnitude and, as a consequence, an overall stiffer

response with respect to the quasi-isotropic configu-

rations, the importance of this effect is being directly

correlated to the SEG value. On the other hand,

Fig. 11 First four deformation modes and associated critical loads resulting from the eigenbuckling FE analysis under symmetric (top)
and asymmetric (bottom) load conditions
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variations of the stress distributions—here evaluated

in terms of von Mises stress [44]—were also obtained

as a result of the optimization, with high stress levels

in some cases spread over wider areas of the optimized

structure compared to the non-optimized case, sug-

gesting that a different strategy could be hereafter

implemented if one needed to minimize the strain

energy by simultaneously containing the stress levels.

Finally, the proposed design optimization strategy

has allowed to find a new optimal fiber arrangement in

CFRPmulti-layer cylinders by ensuring minimum von

Mises stress and by preserving the longitudinal

response under compression, in a way to prevent

buckling phenomena associated to the failure mech-

anisms experimentally observed in the structures with

conventional quasi-isotropic stacking sequences.

Fig. 12 Results of the design optimization in the CFRP cylinder. a radial displacements; b circumferential stress; c von Mises stress

and d longitudinal stress
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