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Abstract Fluid flows reveal a wealth of structures,

such as vortices and barriers to transport. Usually,

either an Eulerian or a Lagrangian frame of reference

is employed in order to detect such features of the

flow. However, the two frameworks detect structures

that have different properties. Indeed, common Eule-

rian diagnostics (Hua-Klein and Okubo-Weiss crite-

rion) employed in order to detect vortices do not

always agree with Lagrangian diagnostics such as

finite-time Lyapunov exponents. Besides, the former

are Galilean-invariant whereas the latter is objective.

However, both the Lagrangian and the Eulerian

approaches to coherent structure detection must show

some links under any inertial-frame. Compound

channels flows have been accurately studied in the

past, both from a Lagrangian and an Eulerian point of

view. The features detected do not superimpose:

Eulerian vortices do not coincide with barriers to

transport. The missing link between the two

approaches is here recovered thanks to a spectral

analysis.

Keywords Lyapunov exponents � River dynamics �
Lagrangian Coherent Structures (LCS) � Power
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1 Introduction

Natural and artificial rivers are quite often character-

ized by cross-sections composed by a deeper main

channel and shallower floodplains. For this reason

they are usually referred as ‘‘compound channels’’.

Flows of these streams are defined as predominantly

horizontal since their horizontal dimensions greatly

exceed the vertical one [10].

The analysis of mixing processes in natural streams

has already been investigated both from an Eulerian

and a Lagrangian point view [19, 21]. Eulerian and

Lagrangian approaches are well-known frameworks

employed in order to characterize features of the fluid

flow as vortices [17] and barriers to transport [4, 6]. In

particular, the Eulerian approach uses a fixed frame

and focuses on instant velocity fields whereas the

Lagrangian approach aims to analyse particle trajec-

tories over fixed time intervals. As a result, both

coherent structures and dispersion properties can be

analysed under such an approach [7, 13]. Haller [9]

pointed out how the two approaches should not be

considered interchangeable . However, it is reasonable

to assume a link since the basis of these approaches is

the same, i.e. the velocity fields. Such a link is still
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lacking in the scientific literature and we argue that it

could be fostered through the analysis of the spectral

properties of the quantities at hand.

Previous studies aimed to evaluate transport pro-

cesses in compound channels using Eulerian diagnos-

tic [3, 23, 24] such as the Okubo-Weiss criterion, usual

Lagrangian statistics, e.g. absolute and relative dis-

persion, and Lagrangian Coherent Structures [5].

These studies were carried out upon surface velocity

fields recorded during laboratory experiments via

Particle Image Velocimetry (PIV). The present con-

tribution relies upon the same velocity fields since they

are validated by the previous cited papers. Stocchino

et al. [23] evaluated velocity energy spectra of the

streamwise component in compound channels point-

ing out the presence of an inverse cascade in the

energy spectrum depending on the flow conditions.

This work aims to clarify whether it is possible to

recover the same information by calculating the

eulerian spectrum of a classical Lagrangian diagnos-

tic, i.e. the Lyapunov exponents. We would like to find

a direct link between Eulerian and Lagrangian frame-

works through a spectral analysis.

The paper proceeds with Sect. 2 where the theoret-

ical background is laid. The laboratory experiments

are described in Sect. 3. The Results are detailed in

Sect. 4. Eventually, the conclusions are drawn in Sect.

5.

2 Energy spectrum calculations

Let us consider two initial close particles advected in a

two-dimensional turbulence flow. We can introduce

Eulerian coordinates as

x ¼ U t; t0; nð Þ ð1Þ

where U is the flow map and n the Lagrangian

coordinates. The trajectories of the particles can be

obtained by solving the following set of two ordinary

differential equations with appropriate initial

conditions

dx

dt
¼ u x; tð Þ ð2Þ

where u ¼ ðu; v;wÞ is the velocity field. We can

evaluate Eq. (2) on a finite time interval 0; T½ � in order
to compute the final distance that particles can

experience. Therefore, if we consider as initial con-

ditions n0 and n0 þ �we can evaluate the final distance

between the two particles applying a linearisation [1]:

Dx Tð Þ ¼ U T ; 0; n0ð Þ �U T ; 0; n0 þ �ð Þ � rU T ; 0; n0ð Þ�
ð3Þ

The magnitude of the final distance can be evaluated

as [20]:

jDx Tð Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dx Tð Þ � Dx Tð Þ
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rUDx 0ð Þ½ � � rUDx 0ð Þ½ �
p

¼

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dx 0ð Þ � CDx 0ð Þ½ �
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� � C�ð Þ
p

ð4Þ

where C is the Cauchy-Green tensor defined as C ¼
rUð ÞTrU where �ð ÞT denotes the transpose. It is

possible to prove that matrix C is positive definite and

symmetric. Since we analyse 2D velocity fields, C has

two eigenvectors e1 and e2 associated with two

eigenvalues 0\k1 � k2, respectively.
Among the infinite directions, in order to experi-

ence the maximum separation the two particles must

be aligned along the direction pointed out by the

eigenvector e2 associated with the maximum eigen-

value of the Cauchy-Green tensor. Therefore,

max DxðTÞj j � eTr
t0þT
t0 Dexðt0Þj j ð5Þ

where the superscript e� indicates alignment with the

eigenvector e2 and

rt0þT
t0

xð Þ ¼ 1

Tj j log
ffiffiffiffiffiffiffiffiffi

k2ð Þ
p

ð6Þ

is the Finite-Time Lyapunov Exponent (FTLE) cal-

culated over the finite-time interval T. FTLE can be

considered a finite-time average of the maximum

expansion rate that a pair of close initial particles

advected by the flow can experience in a finite-time

interval T.

An analysis based on velocity separations s

between particles [12] in a two-dimensional turbulent

flow with stationary statistics can be enlightening for

joining Eulerian and Lagrangian perspectives. The

separation velocity s (i.e., the Lagrangian velocity

difference) can be written in terms of Eulerian velocity

as:
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jsðDÞj2 ¼ juðxþ D; tÞ � uðx; tÞj2 ð7Þ

where D ¼ ðDx;Dy;DzÞ is the separation vector with

magnitude Dj j ¼ D and the overline represents the

expected value, �ð Þ ¼ E½ �ð Þ�. If we note that DðtÞ ¼
DxðtÞj j � etr

t0þt
t0 jDxðt0Þj and assuming that the inte-

gration is forward in time, we get (the dependence

from t is dropped for simplicity):

jsðDÞj2 ¼ dD

dt

�

�

�

�

�

�

�

�

2

� d

dt
etr

t0þt
t0

�

�

�

�

�

�

�

�

2

jDxðt0Þj2 ð8Þ

The behavior of separation velocities, i.e. of the

structure function, at the varying of the separation has

already been analysed by [23]. In the present contri-

bution we would like to analyse the links with

Lyapunov exponents. The fundamental relation

between the energy spectrum E(k) and the auto-

correlation of velocity is written adopting Taylor’s

hypothesis of frozen turbulence. Therefore, the energy

spectrum is obtained in terms of wavenumbers k,

dividing frequencies by the time and space-averaged

surface velocities Us, k ¼ f
Us
. As a result, we carry out

the analysis along the streamwise direction x [11]:

EðkÞ ¼ 1

2p

Z þ1

�1
RðDÞe�ikDdD ð9Þ

RðDÞ ¼
Z þ1

�1
EðkÞeikDdk ð10Þ

where

RðDÞ ¼ uðxþ D; tÞuðx; tÞ ð11Þ

Therefore, we can write (all quantities refer to the

streamwise component now):

jsðDÞj2 ¼ ju2ðxþD; tÞ þ u2ðx; tÞ � 2uðxþD; tÞuðx; tÞj
ð12Þ

If we recall that:

u2ðx; tÞ ¼
Z þ1

�1
EðkÞdk ¼ Et ð13Þ

and we assume independence from a translation of the

coordinate system, we also get that:

u2ðxþ D; tÞ ¼
Z þ1

�1
EðkÞdk ¼ Et ð14Þ

As a result, we could compute the Fourier transform of

jsðDÞj2 as:

FðkÞ ¼ 1

2p

Z þ1

�1
jsðDÞj2e�ikDdD ¼

¼ � 1

2p

Z þ1

�1
2RðDÞe�ikDdD

þ 1

2p

Z þ1

�1
u2ðxþ D; tÞe�ikDdDþ

þ 1

2p

Z þ1

�1
u2ðx; tÞe�ikDdD ¼

¼ �2EðkÞ þ 2EtdðkÞ ¼ �2EðkÞ for k[ 0

ð15Þ

where dðkÞ is the Dirac delta since:
Z þ1

�1
e�ikxdx ¼ 2pdðkÞ: ð16Þ

As a result, substituting Eq. 8 in 15, we obtain:

FðkÞ ¼ 1

2p

Z þ1

�1
jsðDÞj2e�ikDdD

� 1

2p

Z þ1

�1

d

dt
etr

t0þt
t0

�

�

�

�

�

�

�

�

2

e�ikDdD / EðkÞ:
ð17Þ

We define F(k) as the eulerian spectrum of finite-time

Lyapunov exponents since we compute such a spectra

from a fixed frame, i.e from an eulerian one. Using

Parseval’s theorem, it is possible to computeE(k) directly

from the streamwise velocity. Thus, we can write:

EðkÞ ¼ 1

2p

Z þ1

�1
RðDÞe�ikDdD

¼ lim
X!1

1

2p

Z þX

�X

uðx; tÞe�ikxdx

�

�

�

�

�

�

�

�

2

¼ Su

ð18Þ

where X is the lenght of the domain we take into

consideration. Since we cannot extend the above limit

to infinity, we have to admit that the above equality

holds also for a finite space. The final objective

consists in comparing Su and F(k) in order to underline

the connection between the Lagrangian and the

Eulerian framework as shown in Eq. 17. Energy

spectra will be evaluated in Sect. 4.
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3 Experimental flow fields

The present analysis is based on the experimental

measurements of the free-surface Eulerian velocity

fields described in [5, 23, 24]. Herein, we briefly recall

the main characteristics of the apparatus and of the

measuring system. The flume was 20 m long, 60 cm

wide and the trapezoidal cross-section was composed

by a central main channel ðWmc ¼ 20 cmÞ, two lateral

flat floodplains ðWfp ¼ 18 cmÞ and a transition region

ðWtr ¼ 2:5 cmÞ. Figure 1 shows the cross section of

the flume.

Velocity measurements have been performed by

means of a two-dimensional Particle Image Velocime-

try system on a field of view of ð1:2� 0:6Þm2. The

acquisition rate was between 100 and 250 Hz,

depending on the flow velocity. Each acquisition

was made of a number of frames between 2000 and

4000. Several series of experiments have been carried

out spanning a quite large range of values of the main

physical parameters. In Table 1 we summarize the

experimental conditions, providing the values of the

ratio between the main channel water depth (hmc) and

that of the floodplains (hfp), rh ¼ hmc=hfp, and the

Froude number, Fr ¼ Um=
ffiffiffiffiffiffi

gR
p

, where R is the

hydraulic radius, g is gravity and Um is the peak

velocity in the main channel. Moreover, S represents

the longitudinal bed slope. The experiments under

analysis are the same as those studied in [5] in order to

allow for a direct comparison with Lagrangian

Coherent Structures.

We keep the same distribution of the flow regimes

depending on rh introduced in [15] and used in [23]. As

pointed out by [15] three different flow regimes can be

identified depending on the value of rh. For rh [ 3 the

flow is defined as ‘‘Shallow’’. In this case, intense

velocity gradients occur at the transition between the

main channel and the floodplains, leading to a strong

shearing and a generation of vorticity associated with

the flow depth jump [22]. For values of rh\2, the flow

is defined as ‘‘Deep’’, characterized by a weaker shear

in the transition region. The flow depth jump, in this

case, is unable to greatly influence the free-surface

flow. Finally, ‘‘Intermediate flows’’ are defined when

2\rh\3.

4 Results and discussion

Compound channel flows present different behaviours

depending on Froude number (supercritical or sub-

critical conditions) and on the depth jump (shallow,

intermediate and deep flows). In particular, an inverse

energy cascade can be observed for high Froude

number flows [16] and in shallow and intermediate

flows [23].

Evidence of the presence of an inverse energy

cascade occurring in shallow flow conditions can be

found by means of the dimensionless Eulerian power

Fig. 1 Sketch of the cross section of the flume

Table 1 Main parameters of the experiments under analysis

Exp. rh (–) Fr (–) S (–) Re� 104 (–)

201 4.16 0.60 0.0032 20.1

105 2.15 1.05 0.0064 84.9

205 2.57 0.69 0.0032 41.4

207 2.26 0.73 0.0032 51.8

213 1.68 0.82 0.0032 130.1
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spectral density (PSD) function SuðkLÞ of the stream-

wise velocity component, where the wavenumber k

has been made dimensionless usingWtr ¼ L [23]. The

PSD functions have been normalized with the friction

velocity u� defined as u� ¼
ffiffiffiffiffiffiffiffi

ghS
p

. Owing to the

limited size of the velocity series in space, the

computation of the PSD has been carried out in terms

of frequency Suðf Þ and, subsequently, evaluated in

terms of wavenumbers by dividing each frequency by

the time and space-averaged surface velocity Us,

k ¼ f=Us, under the assumption of ‘‘frozen turbu-

lence’’, as suggested by [16].

The presence of an inverse energy cascade can be

further assessed by analysing the Kolmogorov S3
structure function [25]. Such a function can be defined

as S3 ¼ hduðDÞ3i, with duðDÞ ¼ uðxþ DÞ � uðxÞ. The
evaluation of the Kolmogorov structure function is

carried out in agreement with [16]. The transverse

component of velocity has at least one order of

magnitude less than the streamwise component since

the flow is mainly unidirectional. Thus, structure

functions and spectra reveals the behaviour of the

streamwise component.

For all experiments, the spatial structure functions

were negative at small separations D. Such a

behaviour is expected, in general, for reasonably small

scales where energy transfer is directed from larger

eddies to smaller eddies, in agreement with the

classical picture of open channel flow. With an

increase in D the structure functions change their sign

from negative to positive suggesting an inverse energy

cascade at larger scales. Figure 2 shows the structure

function for the analysed experiments. S3 is made

nondimensional with the friction velocity whereas

separations D with the Lagrangian Integral Length

Scale LuL [8]. As expected, the shallow case (exp. 201)

and the intermediate subcritical cases (exp. 205 and

207) show an inverse energy cascade. The deep case

and the intermediate supercritical cases (exp. 213 and

105, respectively) do not show such an inversion.

Details about the root causes of such an inversion are

detailed in [23]. Summarising such results, it is

possible to argue that in shallow flows, i.e. when the

depth jump is great, eulerian macro-vortices are

triggered by the mechanism described by [22] and

the injection scale is the depth jump itself. These flows

present an inverse energy cascade. For Intermediate

flows, it seems that only for subcritical conditions does

an inverse energy cascade survive (the injection scale

always related to the flow depth jump as in the shallow

flow conditions), whereas only an enstrophy cascading

process occurs for supercritical flows. In deep flows

the influence of the depth jump is low and only a

typical direct energy cascade is present. Therefore,

considerations about the structure functions are here

reported in order to strengthen our conclusions circa

the spectra of the Lyapunov exponents.

The evaluation of eulerian spectra of finite-time

Lyapunov exponents F is compared with the PSD of

the streamwise component of the velocity Su in the

following pictures. The spectra are calculated as the

absolute value of the Fourier Transforms and therefore

they have the same monotonicity, instead of the

opposed one of Eq. 15. It is possible to appreciate the

same scalings, showing the desired link between the

Eulerian and the Lagrangian approaches. The analysis

of the spectral properties is a unique way to underline

that the energy content is preserved adopting special

diagnostic to capture the pattern of the flow, for

example through LCS. This result guarantees that

Eulerian and Lagrangian frames do show a link and

that the use of Lyapunov exponents do not alter the

properties of the flow keeping unaltered the turbulence

properties. The computations are carried out over a

domain X ¼ 1:2 m long and considering surface

velocities recorded along the depth jump. The final

spectra reported represent a space-averaged spectra

that are commonly adopted in geophysical studies also

from large-scale numerical modelling [14]. Figure 3

10-1 100 101
-12

-10

-8

-6

-4

-2

0

2

4

6

Fig. 2 S3 Kolmogorov structure function normalized with the

friction velocity. Lengths D are made non-dimensional through

the longitudinal Lagrangian Integral Length Scale LuL
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shows an inverse energy cascade as predicted by the

structure function. Both F and Su shows the same

trends. Figure 4 shows a direct enstrophy cascade with

a trend proportional to k�3. Analogous result can be

recovered for Fig. 5. Conversely, Figs. 6 and 7 show an

inverse energy cascade analogous to Fig. 3. In general,

the PSD Su of the streamwise component of the

velocity shows a quite smooth trend since we

employed a Welch’s windowing. On the contrary,

the eulerian spectrum of finite-time Lyapunov expo-

nents F shows noisier signals since we carried out the

computation of the Fourier Transform shown in Eq. 17

directly applying a Fast Fourier Transform algorithm.

It is worth to remember that this analysis is carried out

on experimental velocity fields whereas typical results

in scientific literature are deduced from numerical

simulations [2, 26].

5 Conclusions

Compound channels have been studied in several

research works pointing out the spectral properties of

such flows. Among the vast literature, it is worth to cite

[16, 18, 23] where under some circumstances the

structure of the surface resembles that of two-dimen-

sional turbulence with an inverse energy cascade. This

10-1 100 101
10-3

10-2

10-1

100

101

102

Fig. 3 Experiment 201, subcritical shallow flow. An inverse

energy cascade is shown with the typical powers of - 5/3 and

- 3. Such a trend is also idenfied in Fig. 2

10-1 100
10-3

10-2

10-1

100

101

102

Fig. 4 Experiment 105, supercritical intermediate flow. A

direct energy cascade is present

10-1 100 101
10-4

10-3

10-2

10-1

100

101

102

Fig. 5 Experiment 205, subcritical intermediate flow. Analo-

gously to Fig. 3 a inverse energy cascade is present

10-1 100 101
10-4

10-3

10-2

10-1

100

101

Fig. 6 Experiment 207, subcritical intermediate flow. Similar

to Fig. 6
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behaviour occurs when the flow is in subcritical

conditions ðFr\1Þ and enough shallow ðrh\3Þ. A
recent contribution [5] aimed at evaluating Lagrangian

Coherent Structures on such flows and concluded

stating that ‘‘a link between the two frameworks

(Eulerian and Lagrangian) based on the spectral

properties of Eulerian velocity fields and FTLE fields

would then be desirable’’. The present work fills this

need and proves that it is possible to find a connection

thanks to an analysis based on energy considerations.

Adopting a Lagrangian framework can have several

advantages. Primarily, the ability of locating barriers

to transport which are difficult to locate in an Eulerian

frame. However, a connection with the Eulerian frame

seems to be missing. This work aims at linking the

Eulerian and the Lagrangian frame of reference

comparing the spectral properties of the streamwise

component of the velocity with those of a classic

Lagrangian quantity, i.e. the finite-time Lyapunov

exponent. This link is found and is presented through

energy spectra whose behaviour is in agreement with

the Kolmogorov structure function S3. Such results

also validate the use of Eulerian and Lagrangian

diagnostic since they preserve the turbulence proper-

ties of the flow. These results are Galilean-invariant.

For any inertial-frame of reference such results are

valid, apart for the contribution of the mean velocity.

Indeed, the characteristics of the flow are preserved in

both Eulerian and Lagrangian frameworks, reinforc-

ing the known results and showing how they not only

unveil possible features of the flow (i.e. barriers to

transport and vortical structures), but carry also the

fingerprints of turbulence with them.
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