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Abstract Zaera et al. (Int J Eng Sci 138:65–81,

2019) recently showed that the nonlocal strain gradi-

ent theory (NSGT) is not consistent when it is applied

to finite solids, since all boundary conditions associ-

ated to the corresponding problems cannot be simul-

taneously satisfied. Given the large number of works

using the NSGT being currently published in the field

of generalized continuum mechanics, it is pertinent to

evince the shortcomings of the application of this

theory. Some authors solved the problem omitting the

constitutive boundary conditions. In the current paper

we show that, in this case, the equilibrium fields are

not compatible with the constitutive equation of the

material. Other authors solved it omitting the non-

standard boundary conditions. Here we show that, in

this case, the solution does not fulfil conservation of

energy. In conclusion, the inconsistency of the NSGT

is corroborated, and its application must be prevented

in the analysis of the mechanical behaviour of

nanostructures.

Keywords Ill-posedness � Nonlocal strain gradient �
Nanobeams � Non-standard boundary conditions �
Conservation of energy

1 Introduction

Although the origin of higher order continuum theo-

ries can be found in the second part of nineteenth

century and in the beginning of twentieth century, the

explosive growth of the application of nanostructures

in several scientific and technological fields has

renewed the interest on developing this kind of

approaches. The reasons can be found in: (i) the

impossibility to address with the classical approaches

(scale-free) the size effect, which commonly appears

in nanotechnology applications; (ii) the lower com-

putational cost in comparison to molecular dynamic

techniques.

In the last 15 years, the most widely used gener-

alized continuum approaches to address mechanical

problems at nanoscale are the modified strain gradient

elasticity theory and the nonlocal elasticity frame-

works. The modified strain gradient theory [1] is based

in previous formulations by Mindlin [2] and Fleck and

Hutchinson [3], and only three size-dependent con-

stants are needed for the case of linear isotropic elastic

materials. Thai et al. [4] recently published relevant

examples of the application of this theory to the
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Universidad Carlos III de Madrid, Madrid, Spain

e-mail: ramon.zaera@uc3m.es
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analysis of the mechanical behaviour of nanostruc-

tures. Moreover, it is worth to cite the works by

Morassi and coworkers [5–9] to address problems

related with nanosensors. Other widely used

approaches to address the mechanical behaviour of

nanomechanical systems fall into the nonlocal contin-

uum mechanics framework. The bases of the theory

were formulated by different authors in the 60s of the

twentieth century [10–12]. Some time later, an inte-

gral constitutive model valid for linear isotropic elastic

materials was proposed by Eringen et al. [13–16]. The

main characteristics of the so called strain-driven

nonlocal elasticity is that the stress at any point of the

domain depends on the strain at each point in the solid

through a convolution integral with a smoothing

kernel. The nonlocal constitutive equation can be

written in differential form, if a Helmholtz-type kernel

is used in the integral formulation [16]. Based on this

transformation, the differential approach has been

widely used in a very large numbers of papers, starting

with the work of Peddieson et al. [17]. The reader can

found more details on the application of this differ-

ential model in the reviews recently published by

Eltaher et al. [18], Rafii-Tabar et al. [19], and Thai

et al. [4]. However, Romano et al. [20] recently

pointed out that the pure nonlocal strain-driven

elasticity theory leads to problems with no solution

in general, due to the ill-posedness of the model. The

reason is the requirement to accomplish additional

boundary conditions related to the integral nature of

the constitutive equations. To overcome these draw-

backs, several alternatives have been developed inside

the framework of nonlocal theories. Romano et al. [21]

proposed the so-called stress-driven nonlocal model,

in which the elastic strain at a certain point in the solid

is related to the stress at all points of the domain by a

convolution integral with a smoothing kernel of the

Helmholtz-type. This approach allows to obtain

consistent solutions corresponding to the mechanical

behaviour of several kinds of nanostructures [22–26].

The mentioned ill-posedness affecting the pure strain-

driven nonlocal approach can be also avoided using

the two-phase local/nonlocal strain-driven constitutive

approach, proposed by Eringen [13, 27] and recently

applied by different authors to analyse both the static

and dynamic behaviour of nanostructures [28–32].

Moreover, Barretta et al. [33, 34] have recently

developed the two-phase local/nonlocal stress-driven

formulation.

Lim et al. [35] combined both the fully nonlocal

elasticity theory of Eringen and the strain gradient

elasticity in a single framework called nonlocal strain

gradient elasticity theory (NSGT). The new formula-

tion allows to analyse stiffer (or more flexible)

structures than those corresponding to the classical

case, appropriately selecting the two scale-dependent

material parameters included in the model. The theory

has become very popular, and nowadays it is being

currently used by a large number of authors, see

[36–45] just to mention a few. When it is applied to

bounded domains, the fulfilment of both standard and

non-standard boundary conditions, together with the

constitutive boundary conditions are required. In some

of the quoted papers the solution only satisfies the

standard and the non-standard boundary conditions,

dismissing the constitutive ones [36, 37, 38, 39,

42,45], meanwhile in other works only satisfies the

standard and the constitutive boundary conditions,

dismissing the non-standard ones [40, 41, 43, 44]. In

this respect Zaera et al. [46] showed the inconsistency

of the NSGT when applied to finite solids. The

requirement to meet the three types of boundary

conditions at once, standard, non-standard, and con-

stitutive, makes the problem overconstrained, with no

solution in general. Yet, given the large number of

works using the NSGT being currently published in the

field of generalized continuum mechanics, it is

pertinent to evince the shortcomings of the application

of this theory. Indeed, in a recent paper [44] it is

claimed that, if the NSGT is properly formulated in

variational terms, only the standard and the constitu-

tive boundary conditions are required, thus amending

the quoted inconsistency of the theory.

In order to stress the aforementioned inconsistency,

in the present work we point out the consequences of

dismissing certain mandatory boundary conditions,

either non-standard or constitutive, to derive an

apparently well-posed problem from a factually over-

constrained problem. In particular, we analyse the

bending behaviour of a simply supported Bernoulli–

Euler beam subjected to an uniformly distributed static

load, which was considered in different works

[39, 44, 46]. Through this straightforward example

we show that: (i) if constitutive boundary conditions

are omitted, the equilibrium fields are incompatible

with the constitutive equations of the material, as it

was pointed out by Barretta and de Sciarra [40]; (ii) if

non-standard boundary conditions are omitted, the
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energy conservation principle is infringed. Therefore

the NSGT is inconsistent because, in general, there is

no solution if it is applied to bounded solids. Conse-

quently, its use must be definitely prevented to assess

scale effects in mechanical nanosystems.

The paper is organised as follows. Section 2

presents the formulation of the studied problem. In

Sect. 3, the consequences of dismissing the constitu-

tive boundary conditions are highlighted, whereas

Sect. 4 points out those of disregarding the non-

standard ones. Finally, Sect. 5 stresses the main

conclusion of this work.

2 Static bending of a NSGT Bernoulli–Euler beam

The essential hypothesis for the constitutive behaviour

of the NSGT considers that the internal elastic energy

is composed by two terms: one accounting for the

nonlocal effects of the classical strain field and another

one accounting for the nonlocality of the strain

gradient field [35]. From this assumption and applying

a classical variational principle it is possible to

identify the total stress as the difference between the

classical stress (work conjugate of classical strain) and

the gradient of the higher order stress (work conjugate

of strain gradient).

2.1 Governing equation, standard and non-

standard boundary conditions

Let us consider a simply supported beam of length L

and uniform section area A, inertia I, and Young

modulus E, subject to a distributed transverse load qz.

Axial, out-of-plane, and transverse coordinates are

represented respectively as x, y, z, and the correspond-

ing displacements as Ux, Uy, Uz. According to the

Bernoulli–Euler beam kinematics, we have

Ux ¼ �z w0; Uy ¼ 0; Uz ¼ w; ð1Þ

where w represents the displacement of the section’s

centroid in the transverse direction and, for simplicity,

�ð Þ0 denotes the derivative with respect to the spatial

variable x. The axial strain, e, is given by

e ¼ U0
x ¼ �z w00: ð2Þ

Specialising the general NSGT constitutive equation

for the one dimensional problem, the normal axial

stress is given by [35, 46]

r ¼ r0 � r01; ð3Þ

where r0 and r1 represent nonlocal and higher order

stresses, respectively defined as

r0 xð Þ ¼ E

Z b

a

k jx� �xj; jð Þ e �xð Þ d�x; ð4Þ

r1 xð Þ ¼ El2
Z b

a

k jx� �xj; jð Þ e0 �xð Þ d�x; ð5Þ

l and j being parameters accounting for scale effects

related to the strain gradient field e0 and to the nonlocal

stress field respectively. The kernel appearing in above

equations is given by

k jx� �xj; jð Þ ¼ 1

2j
e�

jx��xj
j : ð6Þ

Assuming the previous hypotheses, the bending

moment is given by

M ¼
Z
A

rz dA ¼ M0 �M0
1; ð7Þ

with

M0 ¼ �EI

Z L

0

k jx� �xj; jð Þw00 �xð Þ d�x ð8Þ

and

M1 ¼ �l2EI

Z L

0

k jx� �xj; jð Þw000 �xð Þ d�x ð9Þ

being respectively nonlocal and higher order

moments.

According to Lim et al. [35], and particularizing the

general 3D formulation to the 1D case, the internal

energy density potential (per unit volume) U is given

by the product of work conjugate pairs r0 and e, on one

side, and r1 and e0, on the other
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U ¼ 1

2
r0eþ

l2

2
r1e

0

¼ 1

2
eE
Z L

0

k jx� �xj; jð Þe �xð Þd�x

þ l2

2
e0E
Z L

0

k jx� �xj; jð Þe0 �xð Þd�x:

ð10Þ

From the kinematics of the Bernoulli–Euler beam

model, the internal energy of the whole beam is

derived as

U ¼ UM0
þ UM1

ð11Þ

with

UM0
¼ 1

2
EI

Z L

0

Z L

0

k jx� �xj; jð Þw00 �xð Þ d�x
� �

w00 xð Þ dx;

ð12Þ

UM1
¼ l2

2
EI

Z L

0

Z L

0

k jx� �xj; jð Þw000 �xð Þ d�x
� �

w000 xð Þ dx:

ð13Þ

Due to the conservative character of the system,

governing equation and boundary conditions are

derived from the principle of minimum total potential

energy dP ¼ dU � dV ¼ 0, where P and V are the

total potential energy and the potential of applied

forces, respectively. This principle implicitly imposes

the equivalence between the work of external forces

and the internal energy of the solid, implying conser-

vation of energy.

Now, integrating by parts and considering the

symmetry of the 1D kernel [Eq. (6)] with respect to

axial coordinates x and �x, we get the first variation

dU ¼ dUM0
þ dUM1

, with

dUM0
¼ EI

Z L

0

k jx� �xj; jð Þw00 �xð Þ d�x
� �

dw0 xð Þ
����
L

0

� EI

Z L

0

k jx� �xj; jð Þw00 �xð Þ d�x
� �0

dw

�����
L

0

þ
Z L

0

EI

Z L

0

k jx� �xj; jð Þw00 �xð Þ d�x
� �00

dwdx;

ð14Þ

dUM1
¼ l2EI

Z L

0

k jx� �xj;jð Þw000 �xð Þd�x
� �

dw00 xð Þ
����
L

0

� l2EI

Z L

0

k jx� �xj;jð Þw000 �xð Þd�x
� �0

dw0 xð Þ
�����
L

0

þ l2EI

Z L

0

k jx� �xj;jð Þw000 �xð Þd�x
� �00

dw

�����
L

0

� l2EI

Z L

0

Z L

0

k jx� �xj;jð Þw000 �xð Þd�x
� �000

dwdx:

ð15Þ

The first variation of dV is given by

dV ¼
Z L

0

qz dwdx: ð16Þ

By virtue of the principle of minimum total potential

energy [47], we get the equilibrium equation

M00 þ qz ¼ 0; ð17Þ

as well as the standard essential and natural boundary

conditions to be imposed at x ¼ 0 and x ¼ L

w ¼ 0; or M0 ¼ 0; ð18Þ

w0 ¼ 0; or M ¼ 0; ð19Þ

as well as non-standard ones

w00 ¼ 0; or M1 ¼ 0: ð20Þ

It should be noted that non-standard boundary condi-

tions (20)—whether essential or natural—have to be

fulfilled, together with the standard boundary condi-

tions (18) and (19), to achieve equilibrium (dP ¼ 0).

Now introducing the following nondimensional

variables and parameters

�w ¼ w

L
; n ¼ x

L
; s ¼ �x

L
;

�M ¼ L

EI
M; �M0 ¼ L

EI
M0; �M1 ¼ 1

EI
M1;

�qz ¼ �q ¼ qL3

EI
; h ¼ j

L
; g ¼ l

L
;

ð21Þ

the dimensionless governing equation is given by

�M
00 þ �qz ¼ 0: ð22Þ

Standard and non-standard boundary conditions to be

imposed at n ¼ 0 and n ¼ 1 are written as
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�w ¼ 0; or �M
0 ¼ 0; ð23Þ

�w0 ¼ 0; or �M ¼ 0; ð24Þ

�w00 ¼ 0; or �M1 ¼ 0; ð25Þ

where now �ð Þ0 represents derivative with respect to

the nondimensional spatial variable n. For the study

case (simply supported beam), the standard boundary

conditions read �w 0ð Þ ¼ �w 1ð Þ ¼ 0, �M 0ð Þ ¼ �M 1ð Þ ¼ 0.

Non-standard essential boundary conditions, i.e.

�w00 0ð Þ ¼ �w00 1ð Þ ¼ 0, have been selected as in [39].

The integral constitutive equations read

�M ¼ �M0 � �M
0
1; ð26Þ

where nonlocal moment is given by

�M0 ¼ �
Z 1

0

1

2h
e�

jn�sj
h �w00 sð Þ ds; ð27Þ

and higher order moment by

�M1 ¼ �g2

Z 1

0

1

2h
e�

jn�sj
h �w000 sð Þ ds: ð28Þ

2.2 Constitutive boundary conditions

The equivalence between the integral and differential

constitutive equations, the last one equipped with

constitutive boundary conditions, can be set as

follows [48].

The linear Fredholm integral equation of first kind

with exponential kernel

Z b

a

eljn�sj u ds ¼ f ; �1\a\b\1 ð29Þ

is equivalent to a boundary value problem consisting

on the ordinary differential equation

u ¼ 1

2l
f 00 � l2f
� �

: ð30Þ

As stated by Romano et al. [20], the quoted integral

equation implicitly contains the boundary conditions

f 0 að Þ þ lf ðaÞ ¼ 0; f 0ðbÞ � lf bð Þ ¼ 0: ð31Þ

which are necessary and sufficient for the existence

and uniqueness of its solution.

The constitutive equation (27) relates the nonlocal

moment with the curvature through the integral

equation (29), with a ¼ 0, b ¼ 1, l ¼ �1=h,

u ¼ �w00 sð Þ, and f ¼ �2h �M0, thus being equivalent to

the differential constitutive equation

�w00 ¼ h2 �M
00
0 � �M0 ð32Þ

subject to the constitutive boundary conditions

�M0 0ð Þ � h �M
0
0 0ð Þ ¼ 0; �M0 1ð Þ þ h �M

0
0 1ð Þ ¼ 0:

ð33Þ

Likewise, the integral constitutive equation (28)

relates the higher order moment with the derivative

of the curvature through the integral equation (29),

with a ¼ 0, b ¼ 1, l ¼ �1=h, u ¼ �w000 sð Þ, and

f ¼ �2h=g2 �M1, thus being equivalent to the differen-

tial constitutive equation

�w000 ¼ h2

g2
�M
00
1 �

1

g2
�M1 ð34Þ

subject to the constitutive boundary conditions

�M1 0ð Þ � h �M
0
1 0ð Þ ¼ 0; �M1 1ð Þ þ h �M

0
1 1ð Þ ¼ 0:

ð35Þ

The differential equation relating the total moment and

the curvature is derived from the two previous BVPs.

From Eqs. (26), (32), and (34) we get the constitutive

equation

� �w00 þ g2 �wIV ¼ �M � h2 �M
00
; ð36Þ

Differentiating Eq. (26) and considering Eq. (34)

�M
0 ¼ �M

0
0 �

1

h2
�M1 þ g2 �w000� �

: ð37Þ

Particularizing Eq. (37) for n ¼ 0 and using BCs (33)

and (35), we get

�M
0

0ð Þ � 1

h
�M 0ð Þ ¼ � g2

h2
�w000 0ð Þ: ð38Þ

Similarly for n ¼ 1, we get

�M
0

1ð Þ þ 1

h
�M 1ð Þ ¼ � g2

h2
�w000 1ð Þ: ð39Þ

The constitutive boundary conditions (38) and (39)

are necessary and sufficient for the existence and

uniqueness of the solution of the integral constitutive

relation (26) [40]. Similarly, the integral constitutive
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equation (26) is equivalent to the differential consti-

tutive equation (36) equipped with constitutive

boundary conditions (38) and (39).

2.3 Formulation in the displacement variable

Now the problem will be formulated in terms of the

displacement �w. From Eqs. (36) and (22), the total

bending moment follows the expression

�M ¼ �h2�qz � �w00 þ g2 �wIV : ð40Þ

Taking now �M
00

from Eq. (40), the governing Eq. (22)

can be written as

g2 �wVI � �wIV � h2�q00z þ �qz ¼ 0; ð41Þ

The previous equation is subject to the following

boundary conditions:

• Four standard boundary conditions: �w 0ð Þ¼
�w 1ð Þ¼0, �M 0ð Þ¼ �M 1ð Þ¼0.

• Two non-standard boundary conditions: �w00 0ð Þ ¼
�w00 1ð Þ ¼ 0.

• Two constitutive boundary conditions for the total

moment �M: expressed, using Eqs. (40), (38)

and (39), as

h �qz 0ð Þ � h �qz
0 0ð Þ

� �
þ 1

h
�w00 0ð Þ � 1 � g2

h2

� �
�w000 0ð Þ

� g2

h
�wIV 0ð Þ þ g2 �wV 0ð Þ ¼ 0;

ð42Þ

h �qz 1ð Þ þ h �qz
0 1ð Þ

� �
þ 1

h
�w00 1ð Þ þ 1 � g2

h2

� �
�w000 1ð Þ

� g2

h
�wIV 1ð Þ � g2 �wV 1ð Þ ¼ 0:

ð43Þ

For the reasons stated above, the previous eight

boundary conditions are all of them mandatory, and

the sixth-order governing Eq. (41) has more boundary

conditions than those required. In the following

sections, we outline the serious implications of

dismissing the constitutive boundary conditions, as

well as those of not using the non-standard ones. To

that aim, we consider the bending behaviour of a

simply supported Bernoulli–Euler beam subjected to

an uniformly distributed static load �qz ¼ �q, which was

considered in different works [39, 44, 46] as pointed

out in the introduction section. After that, the incon-

sistence of the NSGT clearly emerges.

3 Consequences of dismissing the constitutive

boundary conditions

The general solution of Eq. (41) for uniformly

distributed load (�qz ¼ �q) is given by

�w ¼ �q
n4

24
þ A0 þ A1nþ A2n

2 þ A3n
3 þ A4 sinh

n
g

þ A5 cosh
n
g

ð44Þ

A0 to A5 being six arbitrary constants that have to be

determined imposing six boundary conditions.

First, the problem is solved with the four classical

boundary conditions ( �w 0ð Þ ¼ �w 1ð Þ ¼ 0, �M 0ð Þ ¼
�h2�q� �w00 0ð Þ þ g2 �wIV 0ð Þ ¼ 0, �M 1ð Þ ¼ �h2�q�
�w00 1ð Þ þ g2 �wIV 1ð Þ ¼ 0), and two non-standard

boundary conditions ( �w00 0ð Þ ¼ �w00 1ð Þ ¼ 0), thus

disregarding the two constitutive boundary condi-

tions (42) and (43). In this case, and after some

algebra, the displacement field is given by

�w ¼ �q

�
n4

24
� n3

12
þ 1

2
ðg� hÞðgþ hÞn2 þ 1

24

�
� 12g2

þ 12h2 þ 1Þn � g2ðg� hÞðgþ hÞ

�
�
sech

1

2g

� �
cosh

1 � 2n
2g

� �
� 1

��
;

ð45Þ

which provides the same results presented in Table 2

of [39] for the parameters considered in that work. The

displacement field does not fulfil the constitutive

boundary conditions since both left terms of expres-

sions (42) and (43) are non-nil in general

�qðg� hÞðgþ hÞ 2g tanh 1
2g

	 

� 1

	 


2h2
6¼ 0:

ð46Þ

Thus the bending moment field derived from the

constitutive equation is different to that derived from

the internal equilibrium equation, as it will be shown

next.
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Using expressions (27) and (28), the nonlocal and

higher order bending moments read, respectively

�M0 ¼ 1

4
�q 4g2 cosh

n
g

� �
þ h� 2gh tanh

1

2g

� �� ��

� e
n�1
h þ e�

n
h

	 

� 2 2g2 tanh

1

2g

� �
sinh

n
g

� ��

þ 2g2 þ ðn� 1Þn
�#

;

ð47Þ

�M1 ¼ 1

4
g2�qe�

nþ1
h �2e

nþ1
h 2g sech

1

2g

� �
sinh

1 � 2n
2g

� ���

þ 2n� 1Þ þ 1 � 2g tanh
1

2g

� �� �
e

2n
h � e

1
h

	 
�
:

ð48Þ

Finally, the bending moment field derived from the

nonlocal strain gradient constitutive equation is given

by

�M¼ �M0 � �M
0
1 ¼

�q

4h

"
�2hðn�1Þn

þ 2g tanh
1

2g

� �
�1

� �
g�hð Þ gþhð Þ e

n�1
h þe�

n
h

	 
#
;

ð49Þ

On the other side, due to the isostatic character of the

considered beam, the distribution of bending moments

can be also determined by integration of the internal

equilibrium Eq. (22) subject to the standard boundary

conditions �M 0ð Þ¼ 0 and �M 1ð Þ¼ 0, leading to

�M ¼ 1

2
�qn 1 � nð Þ: ð50Þ

Therefore, the bending moment field derived from the

constitutive equation, given by expression (49), is

incompatible with that derived from the equilibrium

equation. The mismatch is also evident in Fig. 1, and is

the consequence of dismissing the constitutive boundary

conditions in the integration of the governing equation.

4 Consequences of dismissing the non-standard

boundary conditions

Now, the sixth-order governing Eq. (41) is solved with

the four classical boundary conditions ( �w 0ð Þ ¼ 0,

�M 0ð Þ ¼ �h2�q� �w00 0ð Þ þ g2 �wIV 0ð Þ ¼ 0, �w 1ð Þ ¼ 0,
�M 1ð Þ ¼ �h2�q� �w00 1ð Þ þ g2 �wIV 1ð Þ ¼ 0), and the two

constitutive boundary conditions (42) and (43) as

presented in both [46] and [44], thus disregarding the

two non-standard boundary conditions. It has to be

noted that the solutions derived herein are fully

equivalent to that considered in [44] when the mixture

parameter a used in the quoted work is set to zero to

recover the pure NSGT theory. Nevertheless, the

inconsistency that will apear for a ¼ 0 still holds for a

mixed nonlocal strain gradient formulation with

a 6¼ 0.

In the present case (a ¼ 0), the displacement field is

given by

�w ¼ �q
n4

24
� n3

12
þ 1

2
ðg� hÞðgþ hÞn2

�

þ 1

24
�12g2 þ 12h2 þ 1
� �

n

þ 1

2
gðg� hÞðgþ hÞ sinh

n
g

� ��

� coth
1

2g

� �
cosh

n
g

� �
� 1

� ���
;

ð51Þ

which does not satisfy the non-standard boundary

conditions, neither essential nor natural, as shown

in [46]. Equation (51) provides results coincident to

those presented in Tables 3 and 4 of [44] for the

parameters considered in that work.

Using expressions (27) and (28), the nonlocal and

higher order bending moments read, respectively
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Fig. 1 Fields of bending moments �M obtained with the internal

equilibrium equation and with the constitutive equation.
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�M0 ¼ �q

4 e
1
g � 1

	 
 g �2gþ e
1
gð2g� 1Þ � 1

	 

e
n�1
h þ e�

n
h

	 
h

�2nþ 2 e
1
g �2g2 � n2 þ n
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1�n
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i
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ð52Þ

�M1 ¼
g �q

4 1� e
1
g

	 
 e
1
gð1�2gÞþ2gþ1

	 

h e

n�1
h � e�

n
h

	 
h

þ2g e
1
g�1

	 

ð2n�1Þþ e

1�n
g � e

n
g

	 
i
:

ð53Þ

It can be shown that now the bending moment field

�M ¼ �M0 � �M
0
1 is consistent with that derived from the

internal equilibrium equations, given by Eq. (50).

However, a deep inconsistency still arises when non-

standard boundary conditions are dismissed, as it will

be discussed next.

External work in the beam is given by

�Wext ¼
1

2

Z 1

0

�q �wdn

¼ 1

48
�q2 �2g2 þ12gðg2 �h2Þ coth

1

2g

� �
�2g

� ��

þ2h2 þ1

5

�
: ð54Þ

On the other side, the internal energy is calculated as

(see Eqs. (11)–(13) in this paper, or Eq. (10) in [44])

�U ¼ 1

2
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240 e
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h �120g4ðhþ 3Þ þ 10g2ð3hð8h� 1Þ � 2Þ þ 10h2 þ 1
� �

þ2e
1
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þ1

h
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� �

cosh
1

g

� �

þ 60gð2hþ 1Þðg� hÞðgþ hÞ sinh
1

g

� �!#
;

ð55Þ

where the minus sign in the integrands of Eq. (55)

appears due to the specific sign criterion considered

here. The previous expressions (54) and (55) show

that, in general, �Wext and �U are not equal (see Fig. 2 for

a comparison of both expressions for a particular case

with �q ¼ 1). The implications of the mismatch

between external work and internal energy are
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Fig. 2 Variation of the external work �Wext, of the strain energy
�U, and of the work due to the boundary term �WB with the

nonlocal parameter h, for a simply supported beam with

uniformly distributed load �q ¼ 1. a g ! 0; b g ¼ 0:1; c
g ¼ 0:2. Solution derived dismissing non-standard boundary

conditions. All energies have been nondimensionalized with the

external work corresponding to the classical (local) case,
�Wlocal ¼ �q2=240
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profound, since the conservation of energy is infringed

by a solution that only fulfils the standard and

constitutive boundary conditions, dismissing non-

standard ones.

Recently, in the paper by Barretta and Marotti de

Sciarra [44] it is claimed that no ill-posedness holds

when dismissing non-standard boundary conditions if

the NSGT is established by an adequate variational

formulation with appropriate test fields. This approach

is posed through the application of the principle of

virtual work (Eq. (1) in [44]), being fully equivalent to

the principle of minimum total potential energy for

elastic solids. This principle is stated through the

definition of the internal work as

�Wint ¼
1

2

Z 1

0

� �M �w00 dn; ð56Þ

where here we are considering the work variables

integrated along the loading process. This definition of

the internal work, valid for the classical bending

problem, is not applicable to NSGT beams. The correct

one has to be derived as the product of conjugate pairs

as in Eq. (11) [or Eq. (55)]. Therefore, in order to sort

out this shortcoming, these authors impose a second

variational condition (Eq. (11) in [44]) stating the

equivalence between internal work, defined as in (56),

and internal energy, defined as in Eq. (55) [or in

Eq. (10) of [44], taking the mixture parameter a ¼ 0].

When the first variation of the internal energy is

further developed, a boundary term appears [see

Eq. (12) of that paper]. This term is then dismissed

by choosing a virtual field of curvatures taking null

value at the boundaries, d �w00 0ð Þ ¼ 0 and d �w00 1ð Þ ¼ 0.

However, it has to be pointed out that selecting a

virtual field with null values at n ¼ 0 and n ¼ 1

implies that the primary variable �w00 has to be specified

at these points, i.e. essential boundary conditions are

imposed [49]. Alternatively, the boundary term could

be cancelled by imposing the natural boundary

conditions �M1 0ð Þ ¼ 0 and �M1 1ð Þ ¼ 0, or any other

suitable choice of essential and natural boundary

conditions. All in all, from the nature of the variational

problem, the fulfillment of the surplus non-standard

boundary conditions, not considered in the quoted

paper, are required. The verification of this statement

comes from the integration along the loading process

of the boundary term

�WB ¼
Z �q

0

� �M1 1ð Þ d �w
00 1ð Þ
d�q

� �M1 0ð Þ d �w
00 0ð Þ
d�q

� �
d�q

¼ � 1

2
�M1 1ð Þ �w00 1ð Þ � �M1 0ð Þ �w00 0ð Þð Þ

¼ 1

4
e�

1
2h�q2hðh2 � g2Þ coth

1

2g

� �
� 2g

� �2

sinh
1

2h

� �
:

ð57Þ

The addition of this term to the external work now

equals the strain potential, i.e., �Wext þ �WB ¼ �U, as it

can be deduced from Eqs. (54), (55) and (57) (see

Fig. 2).

There are specific cases where the equivalence
�Wext � �U holds. The first one, of limited conceptual

interest for the current discussion, is that correspond-

ing to h ¼ g, for which both energies are coincident

with those derived for the classical (local) beam
�Wlocal ¼ �U local ¼ �q2=240 (Fig. 2). In this case, the

stiffening effect of the gradient part appears to offset

the softening effect of the nonlocal part, and the

displacement field equals that of a classical supported

beam. The second case is of much greater interest and

deserves to be commented. If the nonlocal parameter h

tends to zero, the energy balance is also achieved for

any value of the gradient parameter g. Here the

nonlocal kernel becomes the Dirac delta and both the

constitutive and the governing equations drop to the

strain gradient ones, for which non-standard boundary

conditions are also required [50]. It may appear

contradictory that now a solution obtained without

imposing mandatory non-standard boundary condi-

tions does satisfy the energy balance. The rationale is

found in the imposed constitutive boundary condi-

tions (42) and (43) leading to �w000 0ð Þ ¼ 0 and

�w000 1ð Þ ¼ 0 when h ! 0, which are coincident with

the non-standard natural boundary contitions �M1ð0Þ ¼
0 and �M1ð1Þ ¼ 0 (notice that, if the nonlocal param-

eter tends to zero, �M1 ¼ �g2 �w000, see Eq. (82) in [46]).

As a particular case, the classical (local) formulation

recovered for h ! 0 and g ! 0 also satisfies the

energy balance between external work and internal

energy.

5 Conclusion

The mandatory character of the standard boundary

conditions, as well as of the non-standard and
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constitutive ones, leads to an overconstained problem

with no solution in general, as stated in [46]. In this

work it is showed that, if constitutive boundary

conditions are dismissed, the equilibrium fields are

not compatible with the constitutive equations of the

material. Moreover, we pointed out that if non-

standard boundary conditions are omitted, the energy

conservation principle is infringed. Therefore, the

inconsistency of the NSGT when applied to finite

structures is corroborated, and its use to assess scale

effects in nanostructures must be definitely prevented.

However, there are other fully consistent nonlocal

models: the two-phase local/nonlocal strain driven

elasticity [13, 29, 32], the nonlocal stress-driven

elasticity [21], or the two-phase local/nonlocal

stress-driven elasticity [33]. All of them emerge as

alternatives to the NSGT.

6 Remarks

A typo detected in the expression of the displacement

field �w in Section 6.3 of [46] has been corrected in

Eq. (51) of the current manuscript. However, the

expression of the curvature and the values presented in

Fig. 3a of the quoted work are correct.

All the closed-form expression in the present

communication have been obtained with the Mathe-

matica programming environment [51].
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A, Zaera R (2019) Mass detection in nanobeams from

bending resonant frequency shifts. Mech Syst Signal Pro-

cess 116:261–276

8. Dilena M, Fedele Dell’Oste M, Fernández-Sáez J, Morassi
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