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Abstract In this investigation, a double brush

model, which aims at predicting both the longitudinal

and the lateral tyre characteristics during transient

phases, is developed. The solution of the tyre-road

contact equation is provided by using the method of

characteristics and a time delay of the bristles

deformation with respect to the time is also introduced

by modelling both the tyre tread and the carcass by

means of viscoelastic and elastic elements, respec-

tively. The temporal trend of some quantities of

interest such as the adherence length and the critical

slip value is then obtained as explicit function of the

time or, equivalently, of the travelled distance. A

preliminary analysis is carried out with reference to

the transition from a pure rolling condition to accel-

erating or braking ones. The tyre response to a

constant lateral slip input is also comprehensively

discussed. Finally, in the case of consecutive manoeu-

vre, the model shows that all the generalised forces

exerted by the road on the tyre vary continuously by

introducing a finite increase in the slip parameter.

Several examples are presented in order to

demonstrate the applicability of the proposed model

to severe braking or handling dynamic scenarios.

Keywords Tyre model � Brush model � Flexible
carcass � Transient interactions

List of symbols

Cx Braking stiffness

Cy Cornering stiffness

Fx Longitudinal force

Fy Lateral force

Mz Self-aligning moment

N Normal force

Gn nth function for the nth manoeuvre

R Vector position in the xz plane

R Pure rolling radius

Vs Slippage speed

b Tyre width

fx Shear force in x direction

fy Shear force in y direction

g Unknown function

kbx Longitudinal stiffness of the tread

kcx Longitudinal stiffness of the carcass

keqx Longitudinal equivalent stiffness

kby Lateral stiffness of the tread

kcy Lateral stiffness of the carcass

keqy Lateral equivalent stiffness

l Contact patch length

�p0 Nondimensional inflation pressure
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pz Contact pressure

t Time

t� Time between two consecutive manoeuvres

ub Displacement field of the tread bristle

uc Displacement field of the carcass bristle

ubx Displacement of the tread bristle in the

x direction

ucx Displacement of the carcass bristle in the

x direction

uby Displacement of the tread bristle in the

y direction

ucy Displacement of the carcass bristle in the

y direction

v Speed of a point of the tread bristle

�v Nondimensional speed of a point of the tread

bristle

�vx Nondimensional speed of the bristle in

x direction

�vy Nondimensional speed of the bristle in

y direction

X Component of the rolling speed parallel to the

road

C Control area

e Slip parameter

ex Longitudinal slip parameter

ecritx
Critical value of the longitudinal slip parameter

Dex Longitudinal slip variation

ey Lateral slip parameter

ecrity
Critical value of the lateral slip parameter

g Travelled distance

�g Nondimensional travelled distance

k Nondimensional adherence length

l1 Asymptotical value of the dynamic friction

coefficient

ld Dynamic friction coefficient

ls Static friction coefficient

m Contact pressure shape function

n Longitudinal coordinate
�n Nondimensional longitudinal coordinate

rx Damping of the tread bristle in x direction

ry Damping of the tread bristle in y direction

sx Time constant for the longitudinal interaction

sy Time constant for the lateral iteraction

w Spin parameter

x Spin speed

x1 Normal component of the rolling speed

x2 Steering speed

1 Introduction

In the recent years, a significant amount of research

has focused on traffic safety and in particular on

investigating physical model-based control systems to

be employed in emergency braking and handling

dynamic scenarios [1]. From the perspective of

emergency braking, there are two main factors influ-

encing the braking capacity of a vehicle: tyre-road

friction and available braking torque. Both are difficult

to determine precisely due to modelling complexities

and variations in the operating conditions. Indeed, the

first step to achieve and the fundamental obstacle to

overcome consists in tyre-road friction modelling and

correct estimation for individual vehicles.

Some very sophisticated FEM orMultibody models

[2–4] are able to capture with great accuracy many

phenomena related to the tyre dynamics, but they are

characterised by extremely long calculation times

because of their intrinsic complexity. The need for

real-time tyre models, on the other hand, makes them

unsuitable for braking and handling applications, and,

as a consequence, they are mainly adopted to evaluate

static characteristics, as stiffness, resonant frequencies

and vibration modes.

In order to meet the real-time requirement, several

simpler approaches for tyre modelling have been

proposed in the literature. Nowadays, the most wide-

spread technique is Pacejka’s ‘‘Magic Formula’’,

adopting a large set of parameters to be identified for

each tyre with a potential risk to completely misun-

derstand the physical interpretation of the tyre

behaviour even in case of a good fitting towards

experimental results. In contrast, the so-called ‘‘brush

models’’ [5, 6] are based on purely physical consid-

erations, require a small number of parameters and can

be used to investigate qualitatively different phenom-

ena connected with the tyre-road interaction problem.

The first versions were based on rather limiting

simplifying assumptions, but still allowed to obtain a

fully analytical formulation of the generalised forces

arising in the contact patch versus the slip parameters.

The main drawback was a possible mismatch to the

experimental data due to the approximations intro-

duced in the modelling.

Relatively recent efforts have been aimed at a more

detailed modelling of the contact patch in order to

obtain more satisfying results. In particular, in [7], the

123

1664 Meccanica (2019) 54:1663–1679



effect of an asymmetrical contact pressure distribution

on the longitudinal force has been studied extensively.

In [8], a three-dimensional model which aims to

reproduce the longitudinal characteristics of the tyre in

steady-state conditions is presented; the contact patch

outlier is also calculated from footprint measurements

and tyre data. In [9], the author, starting from a semi-

analytical model normally employed in wheel-rail

contact representations, successfully extended Kalk-

er’s theory to rubber tyres. In [10] the effect of the

thermal and frictional effects on ground vehicle

performance has been studied by employing a simpli-

fied model for tire wear estimation. Finally, other

studies [11–13] were substantially aimed at estimating

the road friction coefficient from forces and slip

measurements by assuming the tyre behaviour fol-

lowing some improved brush models.

At the same time, several attempts have been made

in order to include dynamic properties capable of

predicting some phenomena occurring during tran-

sient phases. Among the dynamic models, the best

known are perhaps the ‘‘LuGre’’ [1] and the Single

Point Contact Model developed by Pacejka [14]. In the

first model, the shear stresses exerted at the tyre-road

interface and the friction-induced hysteresis are

described in terms of an internal friction parameter

which can be identified with the deformation of the

bristles schematising the tyre tread. Some specially

developed functions are also included in order to fit

Pacejka’s curves.

The latter is an enhanced brush model which takes

into account the deformation of the tyre carcass and it

is able to provide a transient solution for both the

lateral force and the self-aligning moment resulting

from a first order differential equation. Lastly, other

authors have proposed solutions based on finite

difference approximations [15], or on interconnected

bristle models [16].

However, an extremely simple model capable of

exhaustively describing the main transient phenomena

occurring in the contact patch has not yet been

developed. Hence, in this paper, a novel double brush

model with flexible carcass is presented. In this model,

the tread and the carcass are schematised by means of

viscoelastic elements whose deformations vary with

both the slip and the travelled distance. The need to

include a flexible carcass is motivated by the possi-

bility of obtaining a variable trend over time, since the

tyre-road contact equations are based on purely

kinematic considerations, and do not allow to intro-

duce a time delay of the bristle deformation with

respect to a constant slip input.

The main advantage of this formulation is the

possibility to obtain an analytical solution for the

generalised forces resulting from the tyre-road inter-

action, allowing the model to be easily employed in

real-time simulation for braking and handling

applications.

This paper is organised as follows: in Sect. 2, the

derivation of the tyre-road contact equations is given;

a transient solution for the longitudinal interaction is

then provided in Sect. 3. In Sect. 4, the analysis is

extended to the lateral problem, while the case of

consecutive manoeuvres is discussed in 5. Simula-

tions results are finally presented in Sect. 6, and

conclusions and further developments are drawn

in Sect.7.

2 Tyre-road contact equations

The tyre-road contact equations are derived by using

the Eulerian approach. Let us consider a finite control

area Cðx; y; 0Þ ¼ fðx; y; zÞ 2 R : �l=2� x� l=2;

�b=2� y� b=2; z ¼ 0g in the absolute reference

frame ðêx; êy; êzÞ, where l and b are the length of the

contact patch and the tyre width, respectively (Fig. 1).

The vertical dimension is also assumed to be zero

since the carcass and the tread only undergoes

deformations in the longitudinal and lateral directions.

The relative micro-slippage speed between the point

of a carcass bristle attached to the rigid body and the

one of the tread bristle contacting the road reads

vðr; tÞ ¼ VsðtÞ þ x ^ rþ d

dt
ðub þ ucÞ; ð1Þ

where Vs is the slippage speed defined as the

difference between the speed of the rigid equivalent

tyre and that of the road, x ¼ x1 � x2 is the spin

angular speed, x1 is the normal component of the

rolling speed due to camber, x2 is the steering speed

(which in this model is attributed to the road), and

ubðx; y; z; tÞ and ucðx; y; z; tÞ are the displacement

fields associated with the Kelvin-Voigt element and

the linear spring modelling the bristles of the tyre tread

and the carcass, respectively. Introducing the operator

r, Eq. (1) can be rewritten as
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vðr; tÞ ¼ VsðtÞ þ x ^ rþ o

ot
ðub þ ucÞ þ v � rðub þ ucÞ;

ð2Þ

where the quantity v is

v ¼ dr

dt
¼ X ^ Rþ x1 ^ r ’ X ^ R; ð3Þ

with

X ^ R ¼
êx êy êz

0 �X 0

0 0 R

2
64

3
75 ¼ �

XR

0

0

2
64

3
75 ¼ vr: ð4Þ

Dividing Eq. (2) by jX ^ Rj yields

�vðr; tÞ ¼ vðr; tÞ
jX ^ Rj ¼

VsðtÞ
XR

þ x

X
^ r

R

þ o

XRot
ðub þ ucÞ � vr

XR
� rðub þ ucÞ:

ð5Þ

Now we rename Vs=XR ¼ e, x=XR ¼ w and

XRot ¼ og, so that the above equation can be rewrit-

ten as

�vðr; tÞ ¼ eþ w ^ r

R
þ o

og
ðub þ ucÞ � vr

XR
� rðub þ ucÞ:

ð6Þ

Specifying the above quantities as follows

e ¼
ex
ey
0

2
64

3
75 ð7Þ

w ^ r

R
¼

êx êy êz

0 0 w

x=R y=R 0

2
64

3
75 ¼ w

R

�y

x

0

2
64

3
75 ð8Þ

ub ¼
ubx

uby

0

2
64

3
75 ð9Þ

uc ¼
ucx

ucy

0

2
64

3
75 ð10Þ

the new dimensionless tyre-road contact equations in

scalar form read

�vx ¼ ex � w
y

R
þ o

og
ðubx þ ucxÞ �

o

ox
ðubx þ ucxÞ ð11aÞ

�vy ¼ ey þ w
x

R
þ o

og
ðuby þ ucyÞ �

o

ox
ðuby þ ucyÞ:

ð11bÞ

Fig. 1 Brush model reference system
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Introducing the new variable n ¼ l=2� x, (11)

finally become

�vx ¼ ex � w
y

R
þ o

og
ðubx þ ucxÞ þ

o

on
ðubx þ ucxÞ ð12aÞ

�vy ¼ ey þ w
x

R
þ o

og
ðuby þ ucyÞ þ

o

on
ðuby þ ucyÞ:

ð12bÞ

3 Longitudinal interaction

The pure longitudinal interaction problem is studied

by hypothesising a constant value of the slip parameter

over the time and assigning w ¼ 0. In the adherence

zone, Eq. (12) can be also particularised as

oðubx þ ucxÞ
on

þ oðubx þ ucxÞ
og

¼ �ex: ð13Þ

Equation (13) can be solved with the method of

characteristics, leading to

ubxðn; gÞ þ ucxðn; gÞ ¼ �exgþ gðg� nÞ: ð14Þ

Imposing the spontaneous entrance condition

ubxð0; gÞ ¼ 0 also gives

gðgÞ ¼ ucxð0; gÞ þ exg; ð15Þ

which implies

gðg� nÞ ¼ ucxð0; g� nÞ þ exðg� nÞ: ð16Þ

Substituting the above relation into Eq. (14) yields

ubxðn; gÞ ¼ �exnþ ucxð0; g� nÞ � ucxðn; gÞ: ð17Þ

However, if the deformation of the bristle at the

leading edge results in nothing at each value of the

distance g, the function ucxð0; g� nÞ must also be zero

because no force acts on the carcass at the entrance

point. Hence, it can be finally written

ubxðn; gÞ ¼ �exn� ucxðn; gÞ: ð18Þ

The force per unit of area acting on the bristle at the

the coordinate n is thus

fxðn; gÞ ¼ �kbxðexnþ ucxðn; gÞÞ � XRrx
oucxðn; gÞ

og
:

ð19Þ

This force must equal the force acting on the spring-

damper element representing the tyre carcass

kcxu
c
x ¼ �kbxðexnþ ucxðn; gÞÞ � XRrx

oucxðn; gÞ
og

:

ð20Þ

Solving equation (20) gives

ucxðn; gÞ ¼ � kbx
kcx þ kbx

exnþ gðnÞ exp � g
XR

kcx þ kbx
rx

� �
:

ð21Þ

Renaming

keqx ¼ kcxk
b
x

kcx þ kbx
ð22aÞ

sx ¼
rx

kcx þ kbx
ð22bÞ

Equation (21) can be rewritten as

ucxðn; gÞ ¼ � keqx
kcx

exnþ gðnÞ exp � g
XRsx

� �
: ð23Þ

The unknown function gðnÞ can be found by

conjecturing that, at the time t ¼ 0, the carcass is

undeformed. This also implies that the shear stress

acting on each bristle must result in nothing at the

initial time and the tyre tread undergoes a deformation

due only to the sudden change of the force. Imposing

ucxðn; 0Þ ¼ 0 gives

ucxðn; gÞ ¼ � keqx
kcx

exn 1� exp � g
XRsx

� �� �
: ð24Þ

Substituting (24) into (18) leads to

ubxðn; gÞ ¼ � keqx
kbx

exn 1þ kbx
kcx

exp � g
XRsx

� �� �
ð25Þ

and

fxðn; gÞ ¼ �keqx exn 1� exp � g
XRsx

� �� �
: ð26Þ

Equations (24) and (25) highlight that the defor-

mation of the element representing the tread and the

carcass vary differently with the time, or, equivalently,

with the travelled distance g (Fig. 2). More specifi-

cally, while the deformation of the tread decreases

with the distance, that one of the carcass increases.
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This result can be interpreted in two different ways:

if the series system composed by the linear spring of

the carcass and the Kelvin-Voigt element schematis-

ing the tread is considered, the initial null value of

force acting on the system can be explained with the

fact that the carcass is undeformed at the distance

g ¼ 0; instead, if the tread and the carcass are

considered together as a linear solid element, the total

dynamics of the system can be described by the

following equation

fxðn; gÞ þ XR
rx

kcx þ kbx

ofxðn; gÞ
og

¼ kcxk
b
x

kcx þ kbx
uxðn; gÞ

þ XR
rxkcx

kcx þ kbx

ouxðn; gÞ
og

;

ð27Þ

in which ux ¼ ucx þ ubx ¼ �exn.
More specifically, since the quantity ux is constant

with the time or, equivalently, with the travelled

distance, an initial zero stress fx in the above relation

(27) necessarily implies that the total deformation for

g ¼ 0 must be related to the temporal derivative of the

friction force. From the initial time, the shear stress

tends then to increase and to reach asymptotically its

steady-state value; the two opposite trends of the

friction force and of its derivative ensure the constant

total deformation prescribed by the adherence

condition.

This occurs as long as the shear force acting on the

bristles does not equal the vertical pressure value

multiplied by the static friction coefficient.

Hence, in order to obtain the position of the

breakaway point, a pressure trend must be introduced.

In this paper, the vertical pressure distribution in the

contact patch is modelled with the following formula

[17]:

pzðn;N; mÞ ¼
6N

bl
A1

n
l

1� n
l

� �
1� A2

n
l

1� n
l

� �� �
;

ð28Þ

withN the normal load applied at the rim centre and A1

and A2 defined as

A1 ¼
1þ a

1þ a=5
ð29aÞ

A2 ¼
4a

1þ a
ð29bÞ

with

(a) Double brush scheme. (b) Time trend of the deformations of the bris-
tles.

Fig. 2 The deformation of the bristles schematising the tyre

tread and carcass vary with the travelled distance. a Double

brush scheme. b Trend of the bristles deformation is depicted for

three different values of the travelled distance during a pure

longitudinal interaction. At g ¼ 0, the carcass (black bristle) is

undeformed, and the tread bristle (blue bristle) completely

absorbs the total deformation equalling �exn. Then, the carcass
deformation gradually increases, and the one of the tread

decreases, until they reach their steady-state value for g ¼ 1.

(Color figure online)
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(a) Tread bristle deformation.

(b) Carcass bristle deformation.

Fig. 3 The bristles schematising the tyre carcass and tread

undergo variable deformations with the travelled distance g (m).

The two trends are opposite because the total derivative of the

global deformation must always equal the slip parameter in

absolute value (kby ¼ kcy ¼ 2� 107 (N/m3), ry ¼ 5� 104

(N/m3 s))
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(a) Fyα − η.

(b) Mz − η.
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aðN; �p0Þ ¼ a0ð�p0Þð1� e�kð�p0ÞNÞ; ð30Þ

in which �p0 is the dimensionless inflation pressure.

This function of the parameter a is a formulation

resulting from a good agreement between accuracy

and formal simplicity.

The analytical expression for the friction coefficient

is given as

ldðeÞ ¼ l1 þ ls � l1
M1e2 þM2jej þ 1

; ð31Þ

where ls is the static friction coefficient, ld is the

dynamic one varying with the slip parameter, and l1
is its asymptotical value.

Introducing the following dimensionless variables

�n ¼ n
l

ð32aÞ

�g ¼ g
l

ð32bÞ

the shear stress acting on the bristles can be rewritten

as

fxð�n; �gÞ ¼ �keqx lex�n 1� exp ��g
l

XRsx

� �� �
: ð33Þ

Now the position of the breakaway point can be

found by imposing the following equivalence

fxð�n; �gÞ ¼ �lspzð�nÞsignðexÞ ð34Þ

which, for a 6¼ 0, leads to

kðjexj; �gÞ ¼ �
ffiffiffi
23

p
ð3A2 � A2

2Þ
3A2ðA3 þ 3

ffiffiffi
3

p ffiffiffiffiffi
A4

p
Þ1=3

þ ðA3 þ 3
ffiffiffi
3

p ffiffiffiffiffi
A4

p
Þ1=3

3
ffiffiffi
23

p
A2

þ 2

3
;

ð35Þ

with

A3 ¼ �2A3
2 � 27A2

2A5 þ 9A2
2 ð36aÞ

A4 ¼ 4A5
2A5 þ 27A4

2A
2
5 � 18A4

2A5 � A4
2 þ 4A3

2

ð36bÞ

A5 ¼ keqx ljexj 1� exp ��g
l

XRsx

� �� �
= lsx

6N

bl
A1

� �
:

ð36cÞ

For a ¼ 0 the adherence length is given by

k ¼ 1� bl

lsx6N
keqx ljexj 1� exp ��g

l

XRsx

� �� �
: ð37Þ

Equations (35) and (36) highlight that the adher-

ence length varies with both the slip parameter and the

distance. The critical value of ex for which the whole

contact length is in slippage condition can be sought

by imposing k ¼ 0

jecritx j ¼ 3lsxN
Cxð�gÞ

A1; ð38Þ

where Cxð�gÞ is defined as follows

Cxð�gÞ ¼
1

2
bl2keqx 1� exp ��g

l

XRsx

� �� �
: ð39Þ

The above equation states that the critical value of

the slip parameter changes with the distance; more

specifically, since the denominator grows with the

time, the critical value of jexj becomes smaller. This

occurs because the damping of both the carcass and the

bristle tend to reduce the portion of the contact patch

that is in slippage condition. In other words, at a fixed

time, even if the slip parameter equals its asymptotical

value ecritx , the tyre is not in slippage condition at any

finite distances. This also implies that the tyres slips

only for higher value of ex than the critical asymptot-

ical value, depending on the travelled distance.

The total longitudinal force developed at the tyre-

road interface can now be written as

Fxðkðjexj; �gÞ; �gÞ ¼ Fa
x ðkðjexj; �gÞ; �gÞ þ Fs

xðkðjexj; �gÞ; �gÞ;
ð40Þ

where Fa
x is the force contribution in the adherence

zone and Fs
x is the force related to the slippage one.

The first rate is defined as

Fa
x ¼ bl

Z k

0

f ax ð�n; �gÞ d�n ð41Þ

bFig. 4 The lateral force increases monotonically in absolute

values for the lateral slip parameter ey � ecrity , where ecrity is

referred to its steady-state value. In contrast, at the highest slip

ratios, the trend of the self-aligning moment shows a maximum

and then tends to its asymptotical value

123

Meccanica (2019) 54:1663–1679 1671



(a) λ − εy.

(b) |εcrit| − η.

123

1672 Meccanica (2019) 54:1663–1679



and reads

Fa
x ¼ � 1

2
bl2k2keqx jexj 1� exp � g

XRsx

� �� �
signðexÞ:

ð42Þ

Substituting Eq. (39) into (42) yields

Fa
x ¼ �Cxjexjk2signðexÞ: ð43Þ

Specifying the product Cxjexj also gives

Fa
x ¼ �3lsxNA1k

2ð1� kÞ 1� A2kð1� kÞ½ �signðexÞ:
ð44Þ

The second term of Eq. (40) is

Fs
x ¼ bl

Z 1

k
f sx ð�nÞ d�n ¼ �bl

Z 1

k
ldxpzð�nÞsignðexÞ d�n

ð45Þ

which is still function of the variable �g because the

position of the breakaway point changes with the

travelled distance. Developing the integral in the

above leads to

Fs
x ¼ �ldxNA1 1� A2

5

� �
� k2 3� 2kð1þ A2Þð

�

þA2 3k2 � 6

5
k3

� ���
signðexÞ:

ð46Þ

Finally, the total force reads

Fx ¼ �NA1 3lsxk
2ð1� kÞ 1� A2kð1� kÞð Þ

�

þlxd 1� A2

5

� �
� ldxk

2 3� 2kð1þ A2Þð

þA2 3k2 � 6

5
k3

� ���
signðexÞ;

ð47Þ

where the adherence length k is function of both the

slip parameter and the distance �g.
Combining Eq. (35) with (47) gives the total

longitudinal force as explicit function of the slip

parameter jexj and the travelled distance �g.

4 Lateral interaction

The determination of the lateral force due to a steering

manoeuvre can be performed as in the previous

section. It results

Fya ¼ �NA1 3lsyk
2ð1� kÞ 1� A2kð1� kÞð Þ

�

þldy 1� A2

5

� �
� ldyk

2 3� 2k 1þ A2ð Þð

þA2 3k2 � 6

5
k3

� ���
signðeyÞ;

ð48Þ

with k as in Eq. (35) or (37) and A5 now defined as

A5 ¼ keqy ljeyj 1� exp ��g
l

XRsy

� �� �
= lsy

6N

bl
A1

� �
;

ð49Þ

with

keqy ¼
kcyk

b
y

kcy þ kby
ð50aÞ

sy ¼
ry

kcy þ kby
ð50bÞ

The self-aligning moment is given by

Mz ¼
1

2
bl

Z l

0

fya dn� b

Z l

0

fyan dn; ð51Þ

where first integral is

1

2
bl

Z l

0

fya dn ¼ l

2
Fya ð52Þ

and the total moment can be written as

Mz ¼
l

2
Fya � bJ; ð53Þ

with

J ¼
Z l

0

fyan dn ¼ l2
Z k

0

f aya
�n d�nþ l2

Z 1

k
f sya

�n d�n:

ð54Þ

bFig. 5 The adherence length k increases for growing vertical

loads and decreases with the time; in contrast, the critical value

of the lateral slip parameter jecrity j ideally tends to infinite the

initial times and than quickly reaches its asymptotical value
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(a) Fyα − εy.

(b) Mz − εy.
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Developing the above integrals yields

J ¼ � l

b
NA1 2lsyk

3ð1� kÞ 1� A2kð1� kÞð Þ
�

þ 1

10
ldy 5� A2ð Þ � 1

10
ldyk

3 20� 15k 1þ A2ð Þð

þ24A2k
2 � 10A2k

3
�	
signðeyÞ:

ð55Þ

Finally, combining Eqs. (48), (53) and (55) leads to

Mz ¼ � l

2
NA1 lsyk

2ð3� 4kÞð1� kÞ 1� A2kð1� kÞð Þ
�

�ldyk
2 3� 2k 3þ A2ð Þ þ 3k2 1þ 2A2ð Þ



�k32A2ð3� kÞ
�	
signðeyÞ:

ð56Þ

5 Analysis for consecutive manoeuvres

In the previous sections we assumed that the bristles

did not oppose any resistance to the deformation at

t ¼ 0, since the initial value of the interaction forces

and moments resulted in nothing at the initial time.

Now we want to investigate the response of the

carcass-tread system for repeated manoeuvres. Firstly,

we suppose that the time between two consecutive

manoeuvres is always the same t�; furthermore, the

increase in the slip parameter is assumed to be constant

for each manoeuvre.

Hence, for the nth manoeuvre, the total slip will be

ex ¼ nDex: ð57Þ

The problem can be solved by searching for function

gðnÞ in Eq. (21). From n ¼ 1 it is also known that it

results

g1ðnÞ ¼
keqx
kcx

exn: ð58Þ

The value of the coefficient c for the nth manoeuvre

can be easily deduced by imposing n times the

continuity of the shear force:

gnðnÞ ¼
keqx
kcx

Dexn
Xn�1

i¼0

exp � it�

sx

� �
; ð59Þ

which can be rearranged as

gnðnÞ ¼
keqx
kcx

Dexn
1� expð�nt�=sxÞ
1� expð�t�=sxÞ

: ð60Þ

Renaming

Gn ¼
1� expð�nt�=sxÞ
1� expð�t�=sxÞ

; ð61Þ

it can be finally written

ubx;nðn; gÞ ¼ � keqx
kbx

Dexn nþ Gn

kbx
kcx

exp � t

sx

� �� �
;

ð62aÞ

ucx;nðn; gÞ ¼ � keqx
kcx

Dexn n� Gn exp � t

sx

� �� �
;

ð62bÞ

fx;nðn; tÞ ¼ �keqx Dexn n� Gn exp � t

sx

� �� �
: ð62cÞ

Equation (62) states that the deformation of both

the carcass and the bristle vary in a such different way

in the case of consecutive manoeuvres. More specif-

ically, because Gn is a decreasing function in t�, the
carcass tends to deform more at the initial time, while

the bristle tends to deform less; of course, the steady-

state rates of deformation are the same of those

obtained starting from the pure-rolling condition. The

longitudinal force per unit of area also increases more

rapidly in absolute value.

All these phenomena are due to the predeformation

of the carcass that exists before the introduction of the

slip variation. More specifically, the less is the time

between two consecutive manoeuvres, the less is the

change in the behaviour of the carcass-tread system.

bFig. 6 Both the trends of the force (longitudinal or lateral) and

of the moment are coherent with the ones obtained by employing

simpler models. For values of the (lateral) slip parameter

ey � jecrity j, the values of the generalised forces are always

smaller than those obtained for the steady-state cases (solid

lines), which correspond to the solution obtained by employing a

brush model without carcass compliance. The dash-dotted and

dashed lines refer to a nondimensional value of the travelled

distance �g ¼ 0:1 and 0.2, respectively
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In particular, it results

lim
t�!0

Gn ¼ lim
t�!0

1� exp �nt�=sxð Þ
1� exp �t�=sxð Þ ¼ n: ð63Þ

Combining Eq. (62) with (63) yields

ubx;nðn; gÞ ¼ � keqx
kbx

nDexn 1þ kbx
kcx

exp � t

sx

� �� �
;

ð64aÞ

ucx;nðn; gÞ ¼ � keqx
kcx

nDexn 1� exp � t

sx

� �� �
; ð64bÞ

fx;nðn; tÞ ¼ �keqx nDexn 1� exp � t

sx

� �� �
; ð64cÞ

which, recalling (57), are almost identical to the

Eqs. (24)–(26).

6 Simulation results

Some simulations have carried out in the MATLAB

environment in order to investigate the tyre behaviour

according to the model developed in this paper and the

results have been compared with those ones provided

by preexisting models. However, preexisting transient

models are not generally able to deal with the local

deformation of the tyre carcass because they are

mainly based on the simplifying assumption of the

single-point contact.

Figure 3 shows the qualitative deformations of the

bristles schematising the tyre tread and carcass due to a

pure longitudinal interaction versus the travelled

distance for different values of the slip parameter.

The distance from the entrance has also been fixed at
�n ¼ 1. This condition virtually corresponds to a

complete adherence scenario. It can be noticed that

the two quantities are characterised by opposite trends

over the time, since the total deformation must always

equal the slip parameter value multiplied by distance

from the entrance.

The trend of the lateral force and the self-aligning

moment versus the travelled distance is shown in

Fig. 4. Generally speaking, it can be highlighted that

both the force and the moment go trough a transient

period and then they tend asymptotically to their

steady-state values. However, while the trend of the

lateral force is quasi-monotonous, that one of the self-

aligning moment is characterised by a peak for bigger

values of the lateral slip (in the example, for values

ey � 1:0).

The adherence length and the critical slip values for

different steering manoeuvres are also depicted in

Fig. 5. More specifically, the adherence length k is

plotted in Fig. 5a for different vertical forces and

different values of the nondimensioanl travelled

distance �g ¼ 0:1 and 0.2 (dash-dotted and dashed

line, respectively).

In Fig. 5b, the time trend of the absolute value of

the critical slip against the travelled distance is shown

for three different normal loads. The dashed lines refer

to the corresponding steady-state values.

In particular, it can be noticed that both the

adherence length and the critical slip tend to decrease

with the time (or, equivalently, with the travelled

distance) for a fixed value of the slip parameter; this

occurs because, in contrast, the stresses arising in the

contact patch increase monotonically. Roughly speak-

ing, this means that the static friction curve is

intercepted at a point closer to the entrance, and

consequently both the adherence length and the

maximum value of the slip decrease over the time.

Finally, the Fya � ey and the Mz � ey curves are

given in Fig. 6. Again, the dashed and the dash-dotted

lines are referred to �g ¼ 0:1 and �g ¼ 0:2, respectively,

while the solid ones represent the forces reported at

their steady-state values. The asymptotical trend of

both the generalised forces is exactly that one obtained

by employing the common steady-state brush models.

The transient behaviour of both the lateral (or

longitudinal) force and the self-aligning moment is

due to the deformation of the tyre carcass, which

results in nothing starting from a free-rolling scenario.

Results for consecutive manoeuvres are shown in

Fig. 7. In both cases, the introduction of a finite slip

difference does not bring about a discontinuity in the

trend of the forces. This is also in accordance with the

results obtained by Pacejka with the Single Point

Contact Model.
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(a) |Fyα| − t.

(b) Mz − t.

Fig. 7 a Compares the

tangential force obtained by

instantly varying the slip

ratio from zero to its final

value (light gray, with t� ¼
0 (s)) with that one obtained

by gradually imposing

smaller increments (dark

gray) after a fixed time

between two consecutive

manoeuvres t� ¼ 2 (s). Of

course, the steady-state

values obtained for the two

cases coincide. The same

occurs for the self aligning

moment in b
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7 Conclusion

In an age when a large part of the vehicle design phase

is carried out via off-line computer modelling and

virtual test driving in simulators, an exhaustive

understanding of the physical behaviour of each

vehicle subsystem and component is crucial. Among

others, the tyre has definitely the biggest impact on the

overall vehicle performance, since on its dynamics

depend stability, comfort, handling and NVH.

At present, while relatively complex multibody and

FEM models allow to comprehensively study several

phenomena concerning the tyre dynamics, they are not

appropriate to be employed in real-time simulation

because of their intrinsic computational burden.

In the present paper an enhanced transient brush

model has been developed. Unlike the pre-existing

models, it can deal with the tyre-road interaction

problem without neglecting some crucial aspects such

as the local deformation of the tyre carcass and the

variation of both the adherence length and the critical

slip value with the travelled distance. A preliminary

study has been carried out with reference to the

transition from the pure-rolling condition to acceler-

ating and braking ones. Simulation outputs show a

good agreement with the results obtained by employ-

ing simpler models.

Finally, in the case of consecutive manoeuvre, it

has been highlighted that both the forces and the

moments arising in the contact patch vary continu-

ously by introducing a finite increase of the slip

parameter. This result is consistent with those ones

obtained by Pacejka by using the Single Point Contact

model.

The next phase consists on the validation of the

model. The possibility of integrating the presented

analysis with more advanced tyre models must still be

assessed. Further developments could also be geared

towards removing the one-dimensionality hypothesis,

by modelling the shape of the contact patch in a more

accurate way.

Acknowledgements Open access funding provided by

Chalmers University of Technology.

Funding No funding was received.

Compliance with ethical standards

Conflict of interest The authors declare that they have no

conflict of interest.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://

creativecommons.org/licenses/by/4.0/), which permits unre-

stricted use, distribution, and reproduction in any medium,

provided you give appropriate credit to the original

author(s) and the source, provide a link to the Creative Com-

mons license, and indicate if changes were made.

References

1. Yamashita H, Matsutani Y, Sugiyama H (2015) Longitu-

dinal tire dynamics model for transient braking analysis:

ANCF-LuGre tire model. J Comput Nonlinear Dyn

10(3):13. https://doi.org/10.1115/1.4028335

2. Yiang X (2011) Finite element analysis and experimental

investigation of tyre characteristics for developing strain-

based intelligent tyre system. Dissertation, University of

Birmingham

3. Calabrese F, Farroni F, Timpone F (2013) A flexible ring

tyre model for normal interaction. IREMOS

6(4):1301–1306

4. Farroni F, Sakhnevych A, Timpone F (2019) A three-di-

mensional multibody tire model for research comfort and

handling analysis as a structural framework for a multi-

physical integrated system. Proc Inst Mech Eng Part D J

Automob Eng 233(1):136–146

5. Guiggiani M (2014) The science of vehicle dynamics.

Springer, Berlin

6. Bengt JHJ (2018) Vehicle dynamics compendium. https://

research.chalmers.se/en/publication/505928. Accessed 11

Oct 2018

7. Svendenius J, Wittenmark B (2015) Brush tire model with

increased flexibility. In: European control conference,

Cambridge, UK. https://doi.org/10.23919/ECC.2003.

7085237

8. Riehm P, Unrau HJ, Gauterin F, Torbrügge S, Wies B
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