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Abstract The paper deals with the plane problem of

normal and tangential load for microperiodic com-

posite with slant lamination. The boundary condition

was considered as a normal and tangential load given

on the surface of the composite half-plane. Micrope-

riodic composite consisted of two components, dif-

fering in their Young’s modules. The homogenized

model with microlocal parameters, which is presented

by Woźniak (Int J Eng Sci 25:483–498, 1987. https://

doi.org/10.1016/0020-7225(87)90102-9), Jędrysiak

(Compos Struct 202:1253–1262, 2018. https://doi.org/

10.1016/J.COMPSTRUCT.2018.05.155) was used to

solve the considered problem. The problem was for-

mulated and solved using the averaged boundary

condition given by Perkowski et al. (Compos Sci

Technol 67:2683–2690, 2007. https://doi.org/10.1016/

J.COMPSCITECH.2007.02.013). The considered

boundary value problem will be solved using the

Fourier transform method. An analytical solution was

obtained in a general form for any form of the function

describing normal and tangential loads on the surface

of a half-plane. An analytical solution was determined

for the special cases of an elliptical, normal and

tangential loads and for the special case of the con-

centrated force. The results are shown in the form of

figures.
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Displacements � Stress � Slant lamination � Normal
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1 Introduction

Layered composites with a periodic structure can be

found in nature as sedimentary rocks and modern

engineering constructions. Their role in geophysics

and engineering is significant and leads to necessity

of forecasting, among others, stress distributions in

these types of materials. The level of complexity of

problems for such materials leads, for practical

reasons, to the use of approximate models in which

the approximation error is small compared to the ease

of obtaining a solution. The approximate models used

in problems related to layered materials are most often

based on the averaging of certain material parameters.

In this way, a continuum theory for laminate mediums

[4] was used to analyze dynamic problems; the

asymptotic homogenization approach [5] applied to

mixtures for the wave propagation; an approach using

thick plate theory [6], used for problems related to

vibrations; matrix methods [7], theory of tolerance [2],
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applied to composites with parallel layer boundary.

One of the approaches to dealing with this type of

problems may be the model of a transversely isotropic

medium. A lot of information on the analysis of

models of this type can be found, among others in the

works [8–10]. For such models, the constituents of the

stress vector in the direction of layering are continu-

ous, which in the case of multi-component materials

does not occur.

A different approach to the problem is presented by

the theory of non-asymptotic homogenization derived

by Woźniak [1] and applied to the multi-layered

micropertiodic composites by Matysiak [11], which

allows prediction of local stresses and heat fluxes in

microperiodic composites. The valuable of this

approach is that it permits to calculate local values

of displacement and stress tensor components in every

component of the laminated body, as well as the

mechanical continuity conditions on interfaces are

satisfied. The homogenized model with microlocal

parameters is widely developed in the analysis of such

problems as contact mechanics [3], fracture problems

[12], heat conduction [13], wave propagation [14] etc.

Comparisons of the results obtained within the clas-

sical theory of elasticity with the solutions based on

the homogenized model with microlocal parameters

were presented in [15–17]. Results obtained in this

work shows good consistencies of results for both

approaches in considered cases.

Pressure load problems at the boundary surface of

materials are frequently encountered mechanics prob-

lems that can often be extended to other types of

problems. However, the cases usually considered

layering parallel and perpendicular to the edge. Prob-

lems of this type were considered, among others, in

works [3, 18, 19] and [20]. To a lesser extent, the

problems discussed concern materials with a boundary

normal to the layering. Known solved problems

focuses mainly on problems for layered composites

with perpendicular or parallel boundary surface to

stratification.

This work is an attempt to fill the gap in the

problems under consideration for microperiodic elas-

tic composites and will describe problems for a com-

posite medium loaded locally with normal

and tangential loads on the boundary surface of the

medium for any form load functions. In considered

problems displacement vector and stress tensor com-

ponents will be designated for materials with

an inclined stratification at any considered angle of

layering. Comparison with existing solutions has been

made on the basis of comparison with existing results

for layering perpendicular to the edge, see [16, 21].

2 Formulation of the problem

Considered material consists of thin layers of thick-

ness l (periodic cells), which are made of two isotropic

components (Fig. 1). Thickness of each alternating

layer is respectively l1 and l2. Periodic cell saturation

with material 1 could be written as:

v ¼ l1

l1 þ l2
¼ l1

l
: ð2:1Þ

Let k1; k2; l1; l2 be Lame constants and m1; m2 be

Poisson ratios of layers 1 and 2, respectively. Let

u~ x; yð Þ ¼ ux x; yð Þ; uy x; yð Þ; 0
� �

denote the displace-

ment vector and rxx; rxy; ryy be the non–zero com-

ponents of stress tensor in coordinate system related

to the layering orientation x; y; zð Þ: Let n; g; zð Þ be

the coordinate system rotated relative to the x; y; zð Þ
system around the z axis by the angle /. Vector n~ is a

normal vector of the boundary plane. Boundary

conditions for the considered problem could be

expressed as:

rðmÞgg n; 0ð Þ ¼ � p nð ÞH a� nj jð Þ; n 2 R;

rðmÞng n; 0ð Þ ¼ � s nð ÞH a� nj jð Þ; n 2 R;
ð2:2Þ

It is assumed that stress tensor components tend to

zero at infinity:

rðmÞnn ; rðmÞng ; rðmÞgg ! 0; n2 þ g2 ! 1; m ¼ 1; 2;

ð2:3Þ

where p nð Þ normal load function, s nð Þ tangential load

function, H �ð Þ Heaviside’s step function, a given

constant of half-width of the pressure area, a[ 0, m

number of composite’s component material, m = 1, 2.

The homogenized model with microlocal parame-

ters in the plane state of strains is described by the

following equations [12]:

A1

o2U

ox2
þ Bþ Cð Þ o

2V

oxoy
þ C

o2U

oy2
¼ 0;

A2

o2V

oy2
þ Bþ Cð Þ o

2U

oxoy
þ C

o2V

ox2
¼ 0;

ð2:4Þ
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and the stresses in the m-th kind of composite

component [16]:

rðmÞxx ¼ A1

oU

ox
þ B

oV

oy
; rðmÞxy ¼ C

oU

oy
þ oV

ox

� �
;

rðmÞyy ¼ Dm

oU

ox
þ Em

oV

oy
; rðmÞzz ¼ km

km þ 2lm
r mð Þ
xx þ r mð Þ

yy

� �
;

ð2:5Þ

where U ¼ U x; yð Þ and V ¼ V x; yð Þ are unknown

functions interpreted as a components of macro-

displacement vector in the direction of the x and y

axes respectively and A1; A2; B and C are constants

from homogenized model in the form:

A1 ¼ k1 þ 2l1ð Þ k2 þ 2l2ð Þ
1 � vð Þ k1 þ 2l1ð Þ þ v k2 þ 2l2ð Þ [ 0;

A2 ¼ A1 þ
4v 1 � vð Þ l1 � l2ð Þ k1 � k2 þ l1 � l2ð Þ

1 � vð Þ k1 þ 2l1ð Þ þ v k2 þ 2l2ð Þ [ 0;

B ¼ 1 � vð Þk2 k1 þ 2l1ð Þ þ vk1 k2 þ 2l2ð Þ
1 � vð Þ k1 þ 2l1ð Þ þ v k2 þ 2l2ð Þ [ 0;

C ¼ l1l2

1 � vð Þl1 þ vl2

[ 0; Dm ¼ km
km þ 2lm

A1 [ 0;

Em ¼ 4lm km þ lmð Þ
km þ 2lm

þ km
km þ 2lm

B[ 0; m ¼ 1; 2:

ð2:6Þ

It should be mentioned here that the approach,

which is the homogenized model with microlocal

parameters, successfully allows to use well known

methods of solving boundary problems for classical

theory of elasticity- e.g. Fourier, Hankel’s, etc., and

potential methods [22].

3 Solution method

The solution of the system of Eq. (2.4) was sought

using the elastic potentials method, where macro-

displacement components could be represented in the

form [16]:

U x; yð Þ ¼ j1

oW1

ox
þ j2

oW2

ox
; V x; yð Þ

¼ oW1

oy
þ oW2

oy
; jk ¼

A2c2
k � C

Bþ C
; k ¼ 1; 2;

ð3:1Þ

where Wi¼Wi x; yð Þ; i ¼ 1; 2 and are sought functions

of elastic potentials. The values of the ck; k ¼ 1; 2

constants are determined from characteristic equation,

given as [16]:

A2Cc
4
k þ B2 þ 2BC � A1A2

� 	
c2
k þ A1C ¼ 0: ð3:2Þ

c2
k

o2Wk

ox2
þ o2Wk

oy2
¼ 0;

ck ¼
A1A2 � 2BC � B2 þ �1ð Þk

ffiffiffiffi
D

p

2A2C

 !1
2

; k ¼ 1; 2;

ð3:3Þ

22 2 2 2 2 2 2 21 1 1 1 1 1 11 1

φ

ξ

xη

( )p ξ

( )τ ξ

y l

1l2l

nr

aa−

Fig. 1 Scheme of

considered problem of

boundary load
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D ¼ B2 þ 2BC � A1A2

� 	2�4A1A2C
2 [ 0; ð3:4Þ

where D[ 0 for general case of l1 6¼ l2. Other case of

l1 ¼ l2 and full analysis of solution method could be

found in [23, 24]. Stress tensor components in m-th

material, m ¼ 1; 2; in the coordinate system associ-

ated with the lamina orientation x; y; zð Þ could be

expressed by elastic potentials as [16]:

r mð Þ
xx ¼

X2

k¼1

A1jk
o2Wk

ox2
þ B

o2Wk

oy2

� �
; r mð Þ

xy ¼ C
X2

k¼1

1 þ jkð Þ o
2Wk

oxoy
;

r mð Þ
yy ¼

X2

k¼1

Dmjk
o2Wk

ox2
þ Em

o2Wk

oy2

� �
; r mð Þ

zz ¼ km
2 km þ lmð Þ r mð Þ

xx þ r mð Þ
yy

� �
; m ¼ 1; 2:

ð3:5Þ

Layering inclined at an angle relative to the edge of

the half-plane makes it necessary to move from the

coordinate system associated with the boundary

surface n; gð Þ to the coordinate system associated

with direction of layering x; yð Þ. Dependencies

between the coordinates can be written in the form:

n ¼ x cos /ð Þ � y sin /ð Þ
g ¼ x sin /ð Þ þ y cos /ð Þ:

�
ð3:6Þ

Taking into account dependencies (3.1) in

Eq. (2.4), we can write Eq. (3.1) in the following

form:

o2W

on2
c2
kcos2 /ð Þ þ sin2 /ð Þ

� 	
þ 2

o2W
onog

sin /ð Þ cos /ð Þ c2
k � 1

� 	

þ o2W
og2

c2
ksin2 /ð Þ þ cos2 /ð Þ

� 	
¼ 0; k ¼ 1; 2:

ð3:7Þ

To solve partial differential Eq. (3.7), the integral

Fourier transform method was used, where Fourier

transforms of elastic potentials are given by [11]:

~Wk s; gð Þ ¼ 1
ffiffiffiffiffiffi
2p

p r
1

�1
Wk n; gð Þ exp �insð Þdn; k ¼ 1; 2:

ð3:8Þ

Functions being the solution to Eqs. (3.7) which

satisfies (2.3) are sought in the form:

~Wk s; gð Þ ¼ Ak sð Þexp � ak1 sj j þ iak2s
� 	

g
� 	

; k ¼ 1; 2;

ð3:9Þ

where

ak1 ¼ ck
c2
ksin2 /ð Þ þ cos2 /ð Þ

; ak2

¼
c2
k � 1

� 	
sin /ð Þcos /ð Þ

c2
ksin2 /ð Þ þ cos2 /ð Þ

; k ¼ 1; 2: ð3:10Þ

Functions Ak sð Þ will be determined in the way of

solving the adequate boundary problem. In this paper

for considered problem boundary conditions on the

surface of the half-plane could be written as follows:

r mð Þ
ng

r mð Þ
gg

r mð Þ
gz

2

64

3

75 ¼
r mð Þ
xx r mð Þ

xy 0

r mð Þ
xy r �ð Þ

yy 0

0 0 r mð Þ
zz

2

64

3

75
�sin /ð Þ
�cos /ð Þ
0

2

4

3

5

¼
�r mð Þ

xx sin /ð Þ � r mð Þ
xy cos /ð Þ

�r mð Þ
xy sin /ð Þ � r �ð Þ

yy cos /ð Þ
0

2

4

3

5;

m ¼ 1; 2;

ð3:11Þ

where rð�Þyy is the averaged stress tensor component in

the direction of layering [3]:

r �ð Þ
yy n; gð Þ ¼ vr 1ð Þ

yy n; gð Þ þ 1 � vð Þr 2ð Þ
yy n; gð Þ

¼ B
oU n; gð Þ

ox
þ A2

oV n; gð Þ
oy

: ð3:12Þ

Equation (3.11) describes boundary condition with

respect to the averaged part. The averaged boundary

condition proposed by Perkowski [3] has been verified

in the context of solutions from the classical approach

for both the theory of elasticity and heat conduction

[10].

Using Fourier transform (3.8) to equations describ-

ing the boundary condition (3.11) and taking into

account the form of constitutive Eq. (3.5), the matrix

equation can be written as a system of equations:

P2

k¼1

D
kð Þ

11

o2 ~Wk s; gð Þ
og2

þ isD
kð Þ

12

o ~Wk s; gð Þ
og

� s2D
kð Þ

13
~Wk s; gð Þ

� �

¼ �~p sð Þ sin /ð Þ � ~s sð Þ cos /ð Þ
P2

k¼1

D
kð Þ

21

o2 ~Wk s; gð Þ
og2

þ isD
kð Þ

22

o ~Wk s; gð Þ
og

� s2D
kð Þ

23
~Wk s; gð Þ

� �

¼ �~p sð Þ cos /ð Þ þ ~s sð Þ sin /ð Þ; k ¼ 1; 2;

8
>>>>>>>><

>>>>>>>>:

ð3:13Þ

where
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D
kð Þ

11 ¼ A1jk sin2 /ð Þ þ Bcos2 /ð Þ þ C 1 þ jkð Þcos2 /ð Þ
� 	

sin /ð Þ;
D

kð Þ
12 ¼ 2 A1jk � Bð Þ sin2 /ð Þ þ C 1 þ jkð Þ cos2 /ð Þ � sin2 /ð Þ

� 	� 	
cos /ð Þ;

D
kð Þ

13 ¼ A1jk cos2 /ð Þ þ Bsin2 /ð Þ � C 1 þ jkð Þcos2 /ð Þ
� 	

sin /ð Þ;

D
kð Þ

21 ¼ Bjk sin2 /ð Þ þ A2cos2 /ð Þ þ C 1 þ jkð Þsin2 /ð Þ
� 	

cos /ð Þ;

D
kð Þ

22 ¼ 2 Bjk � A2ð Þ cos2 /ð Þ þ C 1 þ jkð Þ cos2 /ð Þ � sin2 /ð Þ
� 	� 	

sin /ð Þ;
D

kð Þ
23 ¼ Bjk cos2 /ð Þ þ A2sin2 /ð Þ � C 1 þ jkð Þsin2 /ð Þ

� 	
cos /ð Þ; k ¼ 1; 2:

ð3:14Þ

Considering (3.9) in (3.13) the system of equations,

in which functions Ak sð Þ are searched for, can be

written as follows:

where

A
1ð Þ

1k ¼ ak1
� 	2� ak2

� 	2
� �

D
kð Þ

11 þ ak2D
kð Þ

12 � D
kð Þ

13 ;

A
2ð Þ

1k ¼ 2ak1a
k
2D

kð Þ
11 � ak1D

kð Þ
12 ;

A
1ð Þ

2k ¼ ak1
� 	2� ak2

� 	2
� �

D
kð Þ

21 þ ak2D
kð Þ

22 � D
kð Þ

23 ;

A
2ð Þ

2k ¼ 2ak1a
k
2D

kð Þ
21 � ak1D

kð Þ
22 ; k ¼ 1; 2:

ð3:16Þ

The Ak sð Þ; k ¼ 1; 2 functions describing elastic

potentials in the form of a general dependence

on the function of normal pressure ~p sð Þ and tangential

load ~s sð Þ could be written in the following form:

A1 sð Þ ¼
~p sð ÞD 1ð Þ

1 � ~s sð ÞD 1ð Þ
2

� �
s�2

D1 þ isgn sð ÞD2

;

A2 sð Þ ¼
~p sð ÞD 2ð Þ

1 þ ~s sð ÞD 2ð Þ
2

� �
s�2

D1 þ isgn sð ÞD2

;

ð3:17Þ

where

D 1ð Þ
1 ¼ A

1ð Þ
12 cos /ð Þ � A

1ð Þ
22 sin /ð Þ þ isgn sð Þ

A
2ð Þ

12 cos /ð Þ � A
2ð Þ

22 sin /ð Þ
� �

;

D 2ð Þ
1 ¼ A

1ð Þ
21 sin /ð Þ � A

1ð Þ
11 cos /ð Þ þ isgn sð Þ

A
2ð Þ

21 sin /ð Þ � A
2ð Þ

11 cos /ð Þ
� �

;

D 1ð Þ
2 ¼ A

1ð Þ
22 cos /ð Þ þ A

1ð Þ
12 sin /ð Þ þ isgn sð Þ

A
2ð Þ

22 cos /ð Þ þ A
2ð Þ

12 sin /ð Þ
� �

;

D 2ð Þ
2 ¼ A

1ð Þ
11 sin /ð Þ þ A

1ð Þ
21 cos /ð Þ þ isgn sð Þ

A
2ð Þ

11 sin /ð Þ þ A
2ð Þ

21 cos /ð Þ
� �

:

ð3:18Þ

Received dependencies describing functions Ak sð Þ
can be used to describe both the friction and friction-

less problems. General form of elastic potential could

be written as:

Wk n; gð Þ ¼ 1
ffiffiffiffiffiffi
2p

p r
1

�1
A

1ð Þp
k þ isgn sð ÞA 2ð Þp

k

� ��

p
^
sð Þþ �1ð Þk A

1ð Þs
k þ isgn sð ÞA 2ð Þs

k

� �
s^ sð Þ

�

� exp �ak1 sj jgþ is n� ak2g
� 	� 	

s�2ds;

k ¼ 1; 2;

ð3:19Þ

where

A
1ð Þp
k ¼ D1D

kð Þ
11 þ D2D

kð Þ
12

D2
1 þ D2

2

; A
2ð Þp
k ¼ D1D

kð Þ
12 � D2D

kð Þ
11

D2
1 þ D2

2

;

A
1ð Þs
k ¼ D1D

kð Þ
21 þ D2D

kð Þ
22

D2
1 þ D2

2

; A
2ð Þs
k ¼ D1D

kð Þ
22 � D2D

kð Þ
21

D2
1 þ D2

2

; k ¼ 1; 2:

ð3:20Þ

Having the form of an elastic potential function

Wi¼Wi x; yð Þ; i ¼ 1; 2, (3.19) components of the

displacement vector could be written as following:

A
1ð Þ

11 þ isgn sð ÞA 2ð Þ
11

� �
A1 sð Þ þ A

1ð Þ
12 þ isgn sð ÞA 2ð Þ

12

� �
A2 sð Þ ¼ �~p sin /ð Þ � ~scos /ð Þð Þs�2;

A
1ð Þ

21 þ isgn sð ÞA 2ð Þ
21

� �
A1 sð Þ þ A

1ð Þ
22 þ isgn sð ÞA 2ð Þ

22

� �
A2 sð Þ ¼ �~p cos /ð Þ þ ~ssin /ð Þð Þs�2;

8
<

:
ð3:15Þ
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U n; gð Þ ¼
X2

k¼1

jkffiffiffiffiffiffi
2p

p r
1

�1
A

1ð Þp
k þ isgn sð ÞA 2ð Þp

k

� �
p
^
sð Þ

�

þ �1ð Þk A
1ð Þs
k þ isgn sð ÞA 2ð Þs

k

� �
s
^
sð Þ
�

� ak1 sj j þ iak2s
� 	

sin /ð Þ þ is cos /ð Þ
� 	

� exp �ak1 sj jgþ is n� ak2g
� 	� 	

s�2ds;

ð3:21Þ

V n; gð Þ ¼
X2

k¼1

1
ffiffiffiffiffiffi
2p

p r
1

�1
A

1ð Þp
k þ isgn sð ÞA 2ð Þp

k

� �
p
^
sð Þ

�

þ �1ð Þk A
1ð Þs
k þ isgn sð ÞA 2ð Þs

k

� �
s
^
sð Þ
�

� ak1 sj j þ iak2s
� 	

cos /ð Þ � is sin /ð Þ
� 	

� exp �ak1 sj jgþ is n� ak2g
� 	� 	

s�2ds:

ð3:22Þ

For any form of the function describing load at the

boundary (both normal and tangential load), compo-

nents of the stress tensor for m-th kind of material in

the coordinate system related to the layering direction

x; y; zð Þ take the form:

r mð Þ
ij n; gð Þ ¼ 1

ffiffiffiffiffiffi
2p

p r
1

�1

X2

k¼1

P
1ð Þk
ijm þ isgn sð ÞP 2ð Þk

ijm

� �
~p sð Þ

n

þ �1ð Þk Q
1ð Þk
ijm þ isgn sð ÞQ 2ð Þk

ijm

� �
s^ sð Þ

o

� exp �ak1 sj jgþ is n� ak2g
� 	� 	

ds;

i; j ¼ x; y; m ¼ 1; 2;

ð3:23Þ

where

P lð Þk
xxm ¼ A1jkC

lð Þp
1k þBC

lð Þp
3k ; Q lð Þk

xxm ¼ A1jkC
lð Þs

1k þBC
lð Þs

3k ;

P lð Þk
xym ¼C 1þjkð ÞC lð Þp

2k ; Q lð Þk
xym ¼C 1þjkð ÞC lð Þs

2k ;

P lð Þk
yym ¼DmjkC

lð Þp
1k þEmC

lð Þp
3k ; Q lð Þk

yym ¼DmjkC
lð Þs

1k þEmC
lð Þs

3k ;

m; l;k¼ 1;2:

ð3:24Þ

and:

C
1ð ÞX

1k ¼ A
1ð ÞX
k bk1 � A

2ð ÞX
k bk2; C

2ð ÞX
1k ¼ A

2ð ÞX
k bk1 þ A

1ð ÞX
k bk2;

C
1ð ÞX

2k ¼ A
1ð ÞX
k bk3 � A

2ð ÞX
k bk4; C

2ð ÞX
2k ¼ A

2ð ÞX
k bk3 þ A

1ð ÞX
k bk4;

C
1ð ÞX

3k ¼ A
1ð ÞX
k bk5 � A

2ð ÞX
k bk6; C

2ð ÞX
3k ¼ A

2ð ÞX
k bk5 þ A

1ð ÞX
k bk6;

X ¼ p; s; k ¼ 1; 2;

ð3:25Þ

In the next step three special cases of distributed

load at the boundary will be investigated:

Special case 1 normal load (Fig. 2a).

Special case 2 tangential load (Fig. 2b).

Special case 3 combination of normal and tangen-

tial load (Fig. 1).

4 Special case 1 of normal pressure load

For the purpose of analysis only normal pressure will

be considered, hence s nð Þ ¼ 0. For any form of the

function describing the normal load, components of

the stress tensor in the coordinate system related to the

layering direction x; y; zð Þ take the form:

bk1 ¼ ak1
� 	2

sin2 /ð Þ � cos /ð Þ � ak2sin /ð Þ
� 	2

; bk2 ¼ �2ak1sin /ð Þ cos /ð Þ � ak2sin /ð Þ
� 	

;

bk3 ¼ ak1
� 	2

sin /ð Þ cos /ð Þ þ cos /ð Þ � ak2sin /ð Þ
� 	

sin /ð Þ þ ak2cos /ð Þ
� 	

;

bk4 ¼ ak1 sin /ð Þ sin /ð Þ þ ak2cos /ð Þ
� 	

� ak1 cos /ð Þ cos /ð Þ þ ak2sin /ð Þ
� 	

;

bk5 ¼ ak1
� 	2

cos2 /ð Þ � sin /ð Þ þ ak2cos /ð Þ
� 	2

; bk6 ¼ 2ak1cos /ð Þ sin /ð Þ þ ak2cos /ð Þ
� 	

; k ¼ 1; 2:

ð3:26Þ
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r mð Þ
ij n; gð Þ ¼ 1

ffiffiffiffiffiffi
2p

p r
1

�1

X2

k¼1

P
1ð Þk
ijm þ isgn sð ÞP 2ð Þk

ijm

� �

� exp �ak1 sj jgþ is n� ak2g
� 	� 	

~p sð Þds; i; j ¼ x; y; m ¼ 1; 2:

ð4:1Þ

In the further part of this paper a special case of an

elliptical pressure will be presented, where the pres-

sure function is in the form:

p nð Þ ¼ pmax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � n
a

� �2
 !vuut H 1 � n

a

����

����

� �
; n 2 R;

pmax ¼ const:

ð4:2Þ

Determination of stress distributions for this form

of load function plays a significant role in contact

mechanics (Hertz’s problem).

Fourier transform of expression (4.2) is equal [25]:

~p sð Þ ¼
ffiffiffi
p
2

r
pmaxJ1 a sj jð Þ

sj j ; ð4:3Þ

where J1 sð Þ is the Bessel function of the first kind.

We could determine expressions for components of

stress tensor in the form:

r mð Þ
ij n;gð Þ¼ r

1

0

X2

k¼1

pmaxJ1 asð Þ
s

exp �ak1sg
� 	

� P
1ð Þk
ijm cos n�ak2g

� 	
s

� 	
�P

2ð Þk
ijm sin n�ak2g

� 	
s

� 	� �
ds; i;j¼x;y; m¼1;2;

ð4:4Þ

Considering dimensionless coordinates n
^

¼ n
a
; g

^ ¼
g
a
; s ¼ s

^

a
and stress tensor components in m-th kind of

material related to the average pressure p0 at the load

area:

r
^ mð Þ
yy ¼

r mð Þ
yy

p0

; r^
mð Þ
xx ¼ r mð Þ

xx

p0

; r^
mð Þ
xy ¼

r
^ mð Þ
xy

p0

;

m ¼ 1; 2;

ð4:5Þ

where average pressure is related to the maximum

pressure in the form p0 ¼ p
4
pmax, expression (4.4)

could be rewritten in the form:

r^
mð Þ
ij n

^

; g
^

� �
¼ 4

p

X2

k¼1

Z1

0

J1 s
^� �

s
^

exp �ak1s
^g

^
� �

� P
1ð Þk
ijm cos n

^

� ak2g
^

� �
s
^

� �
� P

2ð Þk
ijm sin n

^

� ak2g
^

� �
s
^

� �� �
ds

^
;

i; j ¼ x; y; m ¼ 1; 2:

ð4:6Þ

On the basis of obtained analytical dependences,

distributions of stress tensor components in coordi-

nate system related to the layering orientation x; y; zð Þ
were made to show smooth transitions between

layering perpendicular and parallel to the boundary

(Figs. 3, 4, 5). This approach will show stresses in

directions perpendicular and parallel to the layering

r^
ðmÞ
xx ; r^

ðmÞ
yy and will also determine shear stresses

between alternate layers r^
ðmÞ
xy .

As can be seen in formula (4.6), stress distributions

depend on the periodic cell component. In the

presented examples, in the case of normal stresses

rðmÞyy acting along the laminas for better illustration,

they were drawn separately for cells of the first and

second kind as continuous lines.

Figure 3 presents isolines of dimensionless stress

tensor component rð1Þyy

.
p0 and r 2ð Þ

yy

.
p0 at different

angles of lamina orientation. It is possible to observe

smooth transitions of stress zones in the direction

φ

ξ

xη

( )p ξ

( )τ ξ

y

aa−

(a)

φ

ξ

xη
y

aa−

(b)

Fig. 2 Schemes of considered special cases of distributed load: a normal load, b tangential load
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consistent with the rotation of the layering system. In

addition, the distributions also show that isolines of

highest values ‘‘approach’’ the pressure zone along

with the rotation of the material system. This is related

to taking over loads at higher extent by a component

with higher Young’s module. Stress distributions r 2ð Þ
yy

for the second cell periodicity component have a

similar character to stress distributions r 1ð Þ
yy , but due to

the lower value of Young’s modulus, stress values are

correspondingly lower.

Analyzing distributions of dimensionless shear

stresses r^
ðmÞ
xy ; m ¼ 1; 2 in the plane of stratification

from Fig. 4 it can be noticed that for angles / ¼ 0�

and / ¼ 90� there are two zones of local maximum

stress (Fig. 4a, e). When changing the angle / there

are three local zones of maximum shear stresses, with

bFig. 3 Isolines of dimensionless stress tensor component

rðmÞyy

.
p0;m ¼ 1; 2 for E1=E2 ¼ 4 ; m1 ¼ m2 ¼ 0:3; v ¼ 0:5 for

layering angles: a / ¼ 0�, b / ¼ 30�, c / ¼ 45�, d / ¼ 60�, e
/ ¼ 90�

η( η(

η(η(

η(

(a) (b)

(c)

(e)

(d)

o

o

o

o

o

ξ
(

ξ
(

ξ
(

ξ
(

ξ
(

Fig. 4 Isolines of dimensionless stress tensor component rðmÞxy

.
p0 for E1=E2 ¼ 4 ; m1 ¼ m2 ¼ 0:3 ; v = 0.5 for layering angles: a /

= 0�, b / = 30�, c / = 45�, d / = 60� e / = 90�, m = 1,2
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the stress value being the largest of those considered

for the angle approximately 45� at depth g
^ � 0:7.

It should be noticed that location and values of local

maximum shear stresses r^
mð Þ
xy could provide informa-

tion about potential delamination effects.

In Fig. 5 it can be seen that for cases where / ¼ 0�

and / ¼ 90� the distributions of normal stresses r^
mð Þ
xx

correspond to the shape of appropriate distributions of

stresses r^
mð Þ
yy for perpendicular and longitudinal lam-

ination (Fig. 3a, e) in the proportion related

to the stiffness ratio of both materials of the periodic

cell.

In the next step, the distributions of stress tensor

components will be presented in relation to the coor-

dinate system associated with the edge of material

r^
mð Þ
nn ; r^

mð Þ
ng ; r^

mð Þ
gg

� �
at two different depths

g
^ ¼ 0:5; g

^ ¼ 1
� �

and for two different Young’s

modulus ratios E1=E2 ¼ 4; E1=E2 ¼ 8ð Þ.
In Fig. 6 we can see that for the angles 0� and 90�,

the tensor components r^
mð Þ
nn and r^

mð Þ
nn for m-th kind of

material are equal for both components as well as the

(a) (b)

(c)

(e)

(d)

η(

η(

η(

η(

η(

ξ
(

ξ
(

ξ
(

ξ
(

ξ
(

o

o

o

o

o

Fig. 5 Isolines of dimensionless stress tensor component rðmÞxx


p0 for E1/E2 = 4; m1 ¼ m2 ¼ 0:3; v ¼ 0:5 for layering angles: a / = 0�,

b / = 30�, c / = 45�, d / = 60�, e / = 90�, m = 1,2
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average stresses. Graphs of changes in stress values for

different angles / are presented for two different

depths g
^ ¼ 0:5, g

^ ¼ 1 and for two different Young’s

modules ratios: E1=E2 ¼ 4 and E1=E2 ¼ 8.

From Fig. 6 it can be read that for the angle / ¼ 0�

(layering perpendicular to the edge), the components

r 1ð Þ
nn and r 2ð Þ

nn are equal, while the stresses r mð Þ
gg coincide

with the assumptions with the average boundary

condition [3]. A similar situation takes place for

layering parallel to the edge ð/ ¼ 90�Þ, where the

components r 1ð Þ
gg and r 2ð Þ

gg are equal. It can be seen that

regardless of the angle of the lamination with respect

to the edge the maximum stress values in the

component with a higher stiffness increase with

increasing the stiffness ratio of the components

(Fig. 6).

5 Special case 2 of tangential load

For the purpose of this case only tangential load will

be considered, hence p nð Þ ¼ 0: For any form of the

function describing tangential load, components of the

stress tensor in the coordinate system related to the

layering direction x; y; zð Þ take the form:

r mð Þ
ij n; gð Þ ¼ 1

ffiffiffiffiffiffi
2p

p r
1

�1

X2

k¼1

Q
1ð Þk
ijm þ isgn sð ÞQ 2ð Þk

ijm

� �

� exp �ak1 sj jgþ is n� ak2g
� 	� 	

~s sð Þds; i; j ¼ x; y; m ¼ 1; 2:

ð5:1Þ

By analogy to the case of normal pressure a special

case of an elliptical tangential load will be presented,

where the tangential load function is in the form:
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Fig. 6 Dimensionless stress tensor components r mð Þ
gg and r mð Þ

nn for m1 ¼ m2 ¼ 0:3; v ¼ 0:5 for: a E1=E2 ¼ 4; g
^ ¼ 0:5;

b E1=E2 ¼ 4; g
^ ¼ 1; c E1=E2 ¼ 8; g

^ ¼ 0:5; d E1=E2 ¼ 8; g
^ ¼ 1
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s nð Þ ¼ smax

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � n
a

� �2
 !vuut H 1 � n

a

����

����

� �
;

n 2 R; smax ¼ const,

ð5:2Þ

so expressions for stress tensor components could be

easily written as:

r mð Þ
ij n; gð Þ ¼ r

1

0

X2

k¼1

�1ð ÞksmaxJ1 asð Þ
s

exp �ak1sg
� 	

� Q
1ð Þk
ijm cos n� ak2g

� 	
s

� 	
� Q

2ð Þk
ijm sin n� ak2g

� 	
s

� 	� �
ds;

i; j ¼ x; y; m ¼ 1; 2:

ð5:3Þ

Considering dimensionless coordinates n
^

¼ n
a
; g

^ ¼
g
a
; s ¼ s

^

a
and stress tensor components in m-th kind of

material related to the average tangential load s0 ¼
p
4
smax at the load area:

bFig. 7 Isolines of dimensionless stress tensor component

rð1Þyy

.
s0 and r 2ð Þ

yy

.
s0 for E1=E2 ¼ 4 m1 ¼ m2 ¼ 0:3; v ¼ 0:5 for

layering angles: a / ¼ 0�, b / ¼ 30�, c / ¼ 45�, d / ¼ 60�,

e / ¼ 90�

o

o

o

o

o

η(

η(

η(

η(

η(

(a) (b)
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(e)

(d)
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ξ
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ξ
(

ξ
(

ξ
(

Fig. 8 Isolines of dimensionless stress tensor component rðmÞxy

.
s0 for E1/E2 = 4; m1 ¼ m2 ¼ 0:3 ; v = 0.5 for layering angles: a / = 0�,

b / = 30�, c / = 45�, d / = 60� e / = 90�, m = 1,2
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r^
mð Þ
yy ¼

r mð Þ
yy

s0

; r^
mð Þ
xx ¼ r mð Þ

xx

s0

; r^
mð Þ
xy ¼

r mð Þ
xy

s0

;

m ¼ 1; 2:

ð5:4Þ

Expression (5.3) could be rewritten in the form:

r^
mð Þ
ij n

^

; g
^

� �
¼ 4

p

X2

k¼1

Z1

0

�1ð Þk
J1 s

^� �

s
^

exp �ak1s
^g

^
� �

� Q
1ð Þk
ijm cos n

^

� ak2g
^

� �
s
^

� ��

�Q
2ð Þk
ijm sin n

^

� ak2g
^

� �
s
^

� ��
ds

^
;

i; j ¼ x; y; m ¼ 1; 2:

ð5:5Þ

On the basis of obtained analytical dependences,

distributions of stress tensor components were made to

η( η(
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Fig. 9 Isolines of dimensionless stress tensor component rðmÞxx


s0 for E1/E2 = 4; m1 ¼ m2 ¼ 0:3 ; v ¼ 0:5 for layering angles: a / = 0�,

b / = 30�, c / = 45�, d / = 60�, e / = 90�
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show smooth transitions between layering perpendic-

ular and parallel to the boundary (Figs. 7, 8, 9).

In Fig. 8 it can be seen that for angles / ¼ 0� and

/ ¼ 90� stress distributions r mð Þ
xy are similar to each

other, and for other angles / there are stress accumu-

lation near the ends of the load zone.

6 Special case 3 of combined normal

and tangential load

Considering that values of maximal normal and

tangential loads are equal pmax ¼ smax ¼ �pð Þ and they

are applied in the same area and described by elliptical

functions, as in points 4 and 5, we have:

~p sð Þ ¼
ffiffiffi
p
2

r
�p J1 a sj jð Þ

sj j cos bð Þ;

s^ sð Þ ¼
ffiffiffi
p
2

r
�p J1 a sj jð Þ

sj j sin bð Þ:
ð6:1Þ

Considering stress tensor components in m-th kind

of material related to the average load �p0 ¼ p
4
�p at the

load area dimensionless stress tensor components

r^
mð Þ
ij ¼ r mð Þ

ij

.
�p0 could be written as the following:

r^
mð Þ
ij n; gð Þ ¼ r

1

0

X2

k¼1

J1 s
^� �

s
^

exp �ak1s
^g

^
� �

� P
1ð Þk
ijm cos bð Þ þ �1ð ÞkQ 1ð Þk

ijm sin bð Þ
� ��

� cos n� ak2g
^

� �
s
^

� �

� P
2ð Þk
ijm cos bð Þ þ �1ð ÞkQ 2ð Þk

ijm sin bð Þ
� �

� sin n� ak2g
^

� �
s
^

� ��
ds

^
;

i; j ¼ x; y; m ¼ 1; 2:

ð6:2Þ

For the case of loading the half-plane with normal

and tangential loads, stress distributions were made at
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Fig. 10 Dimensionless stress tensor component rðmÞxx


�p for E1/E2 = 4; m1 ¼ m2 ¼ 0:3 ; v ¼ 0:5; at g

^ ¼ 0:1 for different layering angles

/: a / = 0�, b / = 45�, c / = 90� and loads: 1 � b ¼ 0�; 2 � b ¼ �45�; 3 � b ¼ 45�; 4 � b ¼ �90�; 5 � b ¼ 90�
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depth g
^ ¼ 0:1, assuming that the surface load vector r

would take the form:

r ¼ s nð Þi~þ p nð Þj~¼ r nð Þ sin bð Þi~þ r nð Þ cos bð Þj~:
ð6:3Þ

In the shear stress r^
ðmÞ
xy and normal stress r^

ðmÞ
xx

graphs (Figs. 10, 11), the parity of stress distribution

r^
ðmÞ
xx for parallel and perpendicular layers to the edge

can be observed (Fig. 10a, c), and the oddity of r^
ðmÞ
xy

stresses (Fig. 11a, c).

From the stress distribution r
^ðmÞ
yy it can be seen that

the stress values r^
ð1Þ
yy for the first component are much

higher than for the second component r^
ð2Þ
yy , regardless

of the angle of layering / (Fig. 12).

In the next step, based on the received dependen-

cies, the basic problem will be solved when the half-

plane is loaded with concentrated force (Fig. 13).

7 Special case of concentrated load

We will now consider the case of boundary load with

concentrated force r0 applied at an angle h to the

surface of the material with a certain shift relative to

the origin of the coordinate system given by the

constant a (Fig. 13).

Forces at the surface could be written in the forms:

P ¼ r0 sin hð Þ; Q ¼ r0 cos hð Þ; r0 ¼ const,

ð7:1Þ

hence functions describing load distribution are for-

mulated as follows:

p nð Þ ¼ Pd a� nð Þ; s nð Þ ¼ Qd a� nð Þ;
P;Q ¼ const;

ð7:2Þ

where d �ð Þ is Dirac delta function.

Fourier transforms of functions (7.2) could be

written as:
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(

(

(
o
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Fig. 11 Dimensionless stress tensor component rðmÞxy

.
�p for E1/E2 = 4; m1 ¼ m2 ¼ 0:3 ; v ¼ 0:5; at g

^ ¼ 0:1 for different layering angles

/: a / = 0�, b / = 45�, c / = 90� and loads: 1 � b ¼ 0�; 2 � b ¼ �45�; 3 � b ¼ 45�; 4 � b ¼ �90�; 5 � b ¼ 90�
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~p sð Þ ¼ P
ffiffiffiffiffiffi
2p

p exp �iasð Þ; ~s sð Þ ¼ Q
ffiffiffiffiffiffi
2p

p exp �iasð Þ:

ð7:3Þ

In the next step Fourier transforms of boundary

loads were applied in expressions describing elastic

potentials - expression (1.23), hence for the case of

concentrated load elastic potentials are expressed as:

Wk n; gð Þ ¼ 1

2p
r
1

�1
A

1ð Þp
k Pþ �1ð ÞkA 1ð Þs

k Q
�

þisgn sð Þ A
2ð Þp
k Pþ �1ð ÞkA 2ð Þs

k Q
� ��

� exp �ak1 sj jgþ is n� a� ak2g
� 	� 	 ds

s2
;

k ¼ 1; 2: ð7:4Þ
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Stress tensor components for the problem of

concentrated load for composite with slant lamination

could be written in the form of closed solutions:

Stress tensor components (7.5)–(7.7) in dimension-

less coordinates n
^

; g
^

take forms:

0σ

φ

ξ

x
η

y

P
Q

θ

a

Fig. 13 Scheme of considered concentrated load problem

rðmÞxx n; gð Þ ¼
ffiffiffi
2

p

r
X2

k¼1

A1jk ak1gC
1ð Þp

1k þ ak2gþ a� n
� 	

C
2ð Þp

1k

� �
þ B ak1gC

1ð Þp
3k þ ak2gþ a� n

� 	
C

2ð Þp
3k

� �

ak1g
� 	2þ n� a� ak2g

� 	2
P

þ �1ð Þk
A1jk ak1gC

1ð Þs
1k þ ak2gþ a� n

� 	
C

2ð Þs
1k

� �
þ B ak1gC

1ð Þs
3k þ ak2gþ a� n

� 	
C

2ð Þs
3k

� �

ak1g
� 	2þ n� a� ak2g

� 	2
Q;

ð7:5Þ

rðmÞxy n; gð Þ ¼
ffiffiffi
2

p

r
X2

k¼1

1 þ jkð Þ ak1gC
1ð Þp

2k þ ak2gþ a� n
� 	

C
2ð Þp

2k

� �

ak1g
� 	2þ n� a� ak2g

� 	2
P

þ �1ð Þk
1 þ jkð Þ ak1gC

1ð Þs
2k þ ak2gþ a� n

� 	
C

1ð Þs
2k

� �

ak1g
� 	2þ n� a� ak2g

� 	2
Q;

ð7:6Þ

rðmÞyy n; gð Þ ¼
ffiffiffi
2

p

r
X2

k¼1

Dmjk ak1gC
1ð Þp

1k þ ak2gþ a� n
� 	

C
2ð Þp

1k

� �
þ Em ak1gC

1ð Þp
3k þ ak2gþ a� n

� 	
C

2ð Þp
3k

� �

ak1g
� 	2þ n� a� ak2g

� 	2
P

þ �1ð Þk
Dmjk ak1gC

1ð Þs
1k þ ak2gþ a� n

� 	
C

2ð Þs
1k

� �
þ Em ak1gC

1ð Þs
3k þ ak2gþ a� n

� 	
C

2ð Þs
3k

� �

ak1g
� 	2þ n� a� ak2g

� 	2
Q:

ð7:7Þ

123

590 Meccanica (2019) 54:573–593



where dimensionless stresses are related to the value

of force r0 in considered boundary condition:

r^
ðmÞ
xx ; r^

ðmÞ
xy ; r^

ðmÞ
yy ¼ r

^ðmÞ
xx

r0

;
r
^ðmÞ
xy

r0

;
r
^ðmÞ
yy

r0

; r0 ¼ const

ð7:11Þ

and dimensionless coordinates are related to the

thickness of periodic cell as:

n
^

¼ n
l
; g

^ ¼ g
l
; a

^ ¼ a

l
: ð7:12Þ

The solutions obtained in the general form for

concentrated forces could allow solving boundary

problems described by other pressure distributions,

using appropriate functions describing load distribu-

tion. The stress distribution given by Eqs. (7.5)–(7.7)

stands for the fundamental solution for a periodically

laminated half-plane with the slant lamination to the

boundary, and can be used to solve some boundary

value problems of a heterogeneous body (for example:

a crack or inclusion angled to the layering in the

composite space, contact problems).

8 Conclusions

The normal pressure problem for the elastic micrope-

riodic composite half-plane with slant layering was

solved in the general form and for the special case of
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an elliptic normal pressure. Stress tensor components

were determined and their distributions were made

numerically. Also the basic problem was solved

involving the loading of half-plane with focused force

and an analytical form of solutions for this problem

was obtained. Presented analytical solutions

are the generalization of problems of pressure load

on microperiodic half-plane with layers perpendicular

parallel to the edge given in [3] and [5], respectively

and their extension to materials with an angular

arrangement of layers relative to the boundary surface

with stratification angle.

Obtained solutions allow to draw following

conclusions:

1. The averaged boundary condition can be success-

fully used in solving plane problems elasticity for

microperiodic composite materials with layering

inclined at an angle to the boundary.

2. Obtained solutions regarding stress tensor com-

ponents under the surface of the material can pro-

vide basic information during the design process

of connections exposed to damage in the pressure

zone of bodies made of layered materials and their

possible optimization in terms of the layering

angle.

3. Dependencies obtained in this paper can be used to

solve problems such as: fracture problems, contact

problems (with and without frictional forces),

inclusions passing at an angle to stratification etc.
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