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Abstract In the paper idea of reconstructed middle

ear with a prosthesis made of shape memory alloy is

proposed. The new design of shape memory prosthesis

is used to enable adjusting its length to individual

patient’s needs which is a novel contribution of the

paper. In order to make a proper fit of prosthesis, a

surgeon has to adjust its size and position by cutting

step by step classical prosthesis. It takes time of a

operation and enlarges a period of patient’s esthesia.

Therefore, a shape memory prosthesis (SMP) is

proposed to shorten operation time and improve fitting

through precisely selected length. A reconstructed

middle ear is modelled as a two degree of freedom

system with nonlinear shape memory element. Find-

ing advisable periodic and undesirable a periodic and

irregular behaviour in various temperature is the main

aim of the paper. Results of the study should give an

answer whether SMP can be useful in medical practice

and should also explain dynamics of the middle ear

with SMP. The properties of the shape memory

prosthesis, in the form of helical spring, are described

here by a polynomial dependence. Firstly, free vibra-

tions are investigated and equilibrium points, next

forced vibrations are studied under different parame-

ters of external excitations and temperature range.

Bifurcation analysis and stability of periodic solutions

are performed in order to reveal the system behaviour.

Finally, interesting dynamical findings of chaotic

vibrations pure regular and regular oscillations with

fluctuation are presented. However, from practical

point of view only harmonic response of the stapes is

advisable. That can be achieved at the normal

temperature of a human body only for small excitation

amplitude.

Keywords Middle ear dynamics � Shape memory

prosthesis � Reconstructed middle ear

1 Introduction

The human middle ear consists of three ossicles: a

malleus, an incus and a stapes. The ossicles form a

sound conduction system which transmits sound from

the external ear to the fluids of the inner ear. The

ossicles are connected to each other by the incudo-

mallear and the incudo-stapedial joint. The ossicular

chain is supported by two muscles: the tensor tympani

muscle attached with its tendon to the handle of the

malleus, and the stapedius muscle attached to the

stapes neck or posterior crus. The malleus is also firmly

connected to the tympanic membrane while stapes is
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attached to the bony walls of the oval window by the

annular ligament forming stapediovestibular junction.

Such a complex bio-system is modeled in the literature

from the last half century. The first study in this field

was published in 1961 by Möller [22] where the first

scheme of middle ear mechanism was proposed. Next,

a similar model was investigated by Zwislocki [42]. In

both publications, authors used an electrical circuit to

analyse middle ear behaviour. They based on Bárány

theory which claims that the ossicles rotate around an

axis through the head of the malleus and the short

process of the incus. Zwislocki assumed that there is a

rigid coupling between malleus and incus, in fact he

omitted this joint from the analog circuit. Next stage of

middle ear modelling started from 1978 when finite

element method (FEM) was used to study spatial

vibrations of the tympanic membrane and the ossicles

[1, 5, 7, 12, 13, 38, 39, 41]. Although, FEM is very

helpful but its accuracy depends on the effort put in

geometric and mechanical properties. Moreover, FEM

does not allow full description of system dynamics and

parameters influence on the system behaviour. There-

fore, in the last decades mechanical multi-body

systems are developed where ossicles are represented

by lumped masses, connected with springs and dash-

pots. In the literature, one can find three [26], four [23]

and sometimes even six degrees of freedom (dof)

models [10]. Generally these models focus only on

kinematics of an intact middle ear while dynamics is

analysed hardly ever. However, Feng and Gan [10]

present dynamics of the model described by differen-

tial equations of motion in matrix form. They have

found the natural frequencies of such a dynamical

system. As a result, displacement of the stapes is

compared with experimental outcomes giving quite

good agreement but still only for intact ossicular chain.

Probably, a low number of dynamic middle ear models

arises from very complex procedure of obtaining

damping and stiffness coefficients which cannot be

found in simple experimental tests. The coefficients

have to be determined by fitting procedure to get the

model response similar to real ear vibrations. More-

over, in most papers, proposed in the literature, only

linear models are considered which cannot explain

complexity of middle ear behaviour, specially at higher

frequencies which are reported for instance in

[15, 16, 18].

A middle ear disfunction is the separate problem

which is common in the medical practice and

described in literature. The ossicular chain can be

partially destroyed by inflammatory diseases such as

chronic suppurative otitis media or cholesteatoma.

Then, an ossiculoplasty, or reconstruction of the

middle-ear ossicles is necessary to improve hearing

process of a patient. For more than 50 years middle ear

surgery techniques have enabled to improve hearing

destroyed by various diseases. Numerous procedures

are currently used in clinical practice and a variety of

middle ear prostheses are available. The choice of

prosthesis type, its material and size is a main practical

problem. Adjustment of a prosthesis to a specific

anatomical condition in the middle ear is one of the

main difficulties. Taking into account a wide range of

variables influencing a perfect ossicular reconstruction

there is no single ideal ossicular prosthesis. A classical

prostheses Total Ossicular Replacement Prosthesis

(TORP) and Partial Ossicular Replacement Prosthesis

(PORP) are made of titanium. Their length can be

adjusted but only once during operation. If the

prosthesis is too short, reuse of it is not possible. Our

idea, presented in this paper, consists in developing the

’smart’ prosthesis made of modern shape memory

alloy (SMA), which would be able to adjust its size

and angulation to requirements in a specific medical

case. Now, the piston—stapes prostheses (NiTi-

BOND) made of Nitinol are known in the literature

and sold by medical concerns. Clinical tests prove that

the acousto-mechanical properties of self-crimping

prostheses are better because of better sound trans-

mission properties [3, 14]. However, to the best of

authors knowledge there is no study which rises

problems of PORP or TORPP prostheses made of

SMA. Modelling of a shape memory effect (SME) is

very difficult for the sake of shape memory and

pseudoelastic effect. Generally, SMAs are a family of

metals with the ability of changing their shape

depending on temperature [34]. SMAs undergo ther-

moelastic phase transformations, which can be

induced either by temperature or stress. Thermome-

chanical properties of SMA can be modeled either by

microscopic or macroscopic point of view. The

microscopic approach treats phenomena in molecular

level while from our point of view macroscopic

approach is more interesting because takes into

account phenomenological features [24]. There is a

class of models known as models with assumed phase

transformation kinetics which consider preestablished

simple mathematical function to describe phase
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transformation. This approach was first proposed by

Tanaka and Nagaki [40]. This work motivated other

researchers to present modified transformation kinet-

ics laws, e.g. Liang and Rogers [19], Brinson [2].

These models are probably the most popular in the

literature and play important role in modelling [24].

Fremond [11] developed a three dimensional model

which is able to reproduce the pseudoelastic and shape

memory effects by using three internal variables. Very

often a one-dimensional model, built up on the

original Fremond’s model is developed in many

papers [25, 30, 31, 33, 36]. Relatively simply one-

dimensional model based on Devonshire’s theory was

proposed by Falk [8] and Falk and Konopka [9]. This

model assumes a polynomial—free energy potential,

which allows describe both SME and pseudoelastic

behavior. Shape memory effect can be one or two-

way. In case of one-way SME there is no reverse

change of SMA’s shape after subsequent cooling.

Two-way SME is characterized by a change of SMA’s

shape during cooling. For the need of middle ear

prosthesis we use Nitinol with one-way SME because

the prosthesis should change shape after heating and

must not recover back when cooling.

In this paper, a nonlinear unidimensional three

degrees of freedom (3dof) model of middle ear is

proposed because three lumped masses represent the

malleus, the incus and the stapes of the intact middle

ear. The model is next rebuild to a 2dof system with

ossicular prosthesis made of shape memory alloy. This

is because, usually the incus is removed during surgery

operation, therefore the model of the reconstructed

middle ear has only two bones: the malleus and the

stapes. This is the cause to use 2dof model here. In the

paper polynomial function to describe SMA charac-

teristic is engaged. Theoretical consideration of sim-

ilar 2dof SMA oscillator with the polynomial

dependence are quite popular in literature. Savi and

Pacheco [34] analysis numerically free and forced

vibration of 1 and 2dof SMA oscillator. They focus

mainly on chaotic response. The more detailed

analysis of 2dof system is presented in [20] and 1dof

system in [21]. The authors investigate some aspects

of bifurcation phenomenon. The similar numerical

analysis of 1dof system is shown by Shang and Wang

[37]. They investigate the periodic or chaotic motion

of the system occurring by changing temperature,

damping coefficient and amplitude of exciting force.

Recently, some papers are published connected to

SMA systems. For instance, 0–1 test is used to

diagnose chaos in 1 and 2dof SMA oscillators. [35],

time delay procedure is applied to control chaos [17],

dynamics of SMA pendulum is presented in [4].

Despite the fact that 2dof SMA system has been

analysed in the literature the configuration and

parameters proposed here are different because the

model relates directly to the small biomechanical

system of the human middle ear. The paper is focused

on periodic oscillations forced by the harmonic

excitation at different temperatures. We are looking

for dynamic effects in the model to be sure that we can

avoid nonlinear, irregular effects in the reconstructed

human middle ear. Moreover, the analysis of free

vibrations and equilibrium states is performed to get

possible solutions of the middle ear which is activated

not through a harmonic signal but through an impuls

(e.g. roar, crash, bang).

The paper is organized as follows: Sect. 2 presents

3dof model of the intact middle ear and explain why

the model is reduced to 2dof system with SMA

prosthesis. Moreover the model of shape memory

prosthesis is discussed. Next in Sect. 3, free vibrations

of the reconstructed middle ear are shown and an

influence of the prosthesis size on the natural

frequencies. Sect. 4 presents the system answer on

harmonic excitation. Special attention is devoted to

periodic response. Finally, discussion of the results

and conclusions are presented in Sect. 5.

2 Middle ear model

2.1 Shape memory oscillator

The human middle ear mechanism consists of three

bones (ossicles) the malleus, the incus and the stapes

(the pink parts in Fig. 1) which are connected to one

another by joints while ossicles system is connected to

the temporal bone by ligaments. That complex

biomechanical system can be presented in simplified

form as a 3dof model (Fig. 2) where three ossicles: the

malleus, the incus, and the stapes are represented by

the lumped masses mM;mI ;mS, respectively. The

malleus (mM) is jointed with a tympanic membrane

(TM) by means of the spring kTM and the dashpot cTM .

An anterior malleal ligament (AML) suspending the

malleus is simulated as the spring kAML and the dashpot

cAML. The malleus is connected with the incus by the
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incudomalleal joint (IMJ) represented by the spring

kIMJ and the dashpot cIMJ . Next, the incus and the

stapes are supported by the posterior incudal ligament

(PIL) and the annular ligament (AL) that are modelled

as the springs with stiffness kPIL and kAL, and the

dashpots cPIL and cAL. The incudostapedial joint (ISJ)

is shown as the spring kISJ and the dashpot cISJ . The

stapes motion is transferred to the cochlea (C) which

stiffness and damping is expressed by kC and cC.

Motion of the ossicles is stimulated by sound which

approaches to a tympanic membrane (TM) in the form

of harmonic excitation P0 sinxt where P0 and x mean

the excitation amplitude and frequency.Sometimes, in

medical practice, middle ear disfunction happens such

as otosclerosis or damage of an ossicular chain, then a

hearing process can be improved with the help of

ossicular prostheses. In this case, usually an incus is

removed and a prosthesis is used to connect the stapes

with the tympanic membrane and the malleus (grey

part in Fig. 1). Therefore, 2dof system of the intact

middle ear is reduced do 2dof system of the recon-

structed ear. Classical prosthesis, commercially avail-

able, are made of titanium. They can change its length

before a implementation but after that an elongation is

not possible. Therefore, a new type of the shape

memory prosthesis (SMP) made of Nitinol, which can

match its length and shape, depending on activation

temperature, to individual patient’s needs is proposed.

The new SMP (grey part in Fig. 1) consists of the

helical spring of N coils and D diameter which is made

of the Nitinol wire of the circular cross section

(diameter d). The prosthesis can change its length

under the influence of temperature. Since, the incus is

usually destroyed in diseased ear, it should be

removed. Then, a two degree of freedom (2dof) model

of a reconstructed middle ear is proposed where SMP

is modelled as the shape memory spring (Fig. 3). The

similar model is analysed in [27] and [28]. The first

paper ([27]) takes into account the nonlinearity of the

annular ligament (AL), which is omitted here to focus

only on the temperature effect of SMP. The second

([28]) investigates the problem of soft impact in the

middle ear with the shape memory prosthesis.Differ-

ential equations of motion of 2dof model presented in

Fig. 3 are written in the form

mM€xMðtÞ þ ðkTM þ kAMLÞxM þ ðcTM þ cAMLÞ _xMðtÞ
þ cSMAð _xMðtÞ � _xSðtÞÞ þ FSMA ¼ P0 sinxt

mS€xSðtÞ þ ðcC þ cALÞ _xSðtÞ � cSMAð _xMðtÞ � _xSðtÞÞ
þ ðkAL þ kCÞxSðtÞ � FSMA ¼ 0

ð1Þ

FSMA means a longitudinal force of the helical spring

of diameter D made of SMA wire (diameter d, radius

r). The force is expressed by

SMP

stapes

incusmalleus

tympanic
membrane

Fig. 1 Intact middle ear (pink parts) and shape memory

prosthesis (grey). (Colour figure online)

Fig. 2 Three degrees of freedom model of intact middle ear
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FSMA ¼ 4p
D

Zd=2

0

rr2dr ð2Þ

where, the shear stress r of shape memory element is

described by the polynomial function proposed by

Falk [8, 32]

r ¼ oW

oe
¼ aðT � TMÞe� be3 þ b2

4aðTA � TMÞ
e5

ð3Þ

The stress dependence (3) is based on Devonshire’s

theory of a polynomial-free energy (W) which was

initially proposed for a one-dimensional media and

later extended for three-dimensional context [9].

Wðe; TÞ ¼ a

2
ðT � TMÞe2 � b

4
e4 þ b2

24aðTA � TMÞ
e6

ð4Þ

where a and b are positive material constants, TM and

TA means the temperature when martensite (subscript

M) and austenite (subscript A) is stable, e denotes a

strain.

According to this model, neither internal variables

nor dissipation potential is necessary to describe

pseudoelasticity and SME [24]. Therefore, the only

state variables for this model are strain e and

temperature T. Then, the free energy is chosen in such

a way that the minima and maxima points represent

stability and instability of each phase of the SMA. As

it is reported in [24], usually, in one-dimensional

models three phases are considered: austenite and two

variants of martensite (M?, M-). Hence, the free

energy is chosen such that for high temperatures

(T [ TA), it has only one minimum at vanishing strain

representing the equilibrium of the austenitic phase

(A). At low temperatures (T\TM), martensite is

stable, and the free energy must have two minima at

nonvanishing strains. At intermediate temperatures

(TM\T\TA), the free energy should have equilib-

rium points corresponding to both phases. Therefore,

the free energy is defined as a sixth-order polynomial

equation (Eq. 4).

For helical spring the shear strain e is defined as

follows

e ¼ 2rX

D2Np
ð5Þ

where X means a helical spring deflection, which for

the model presented in Fig. 3 is expressed as

X ¼ xMðtÞ � xSðtÞ ð6Þ

The restoring force of helical spring is defined by

Eq. 2. After integration, the SM spring force (FSMA) is

given as

FSMA ¼ 4pd3

D

adðT � TMÞX
32D2Np

� bd3X3

48D6N3p3

�

þ b2d5X5

256aD10N5p5ðTA � TMÞ

� ð7Þ

Assuming that Eq. 3 is valid for the pure shear stress-

strain behaviour and introducing dimensionless time s,

coordinates x1, x2 and temperature h expressed as

follows

Fig. 3 Two degrees of

freedom model of

reconstructed middle ear

with SM helical spring
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s ¼ xot; x1 ¼ xMðtÞ
xst

; x2 ¼ xSðtÞ
xst

; h ¼ T

TM
; xst ¼

D2Np
d

ð8Þ

the differential equations of motion (Eq. 1) take

nondimensional form

€x1 þ x1a1 þ d1 _x1 þ fð _x1 � _x2Þ þ fSMA ¼ Q sin½sX�
€x2 þ x2a2 þ d2 _x2 � lfð _x1 � _x2Þ � lfSMA ¼ 0

ð9Þ

where the dimensionless force of SM spring is given as

fSMA ¼ b1ð�1 þ hÞðx1 � x2Þ � b2ðx1 � x2Þ3

þ b3ðx1 � x2Þ5
ð10Þ

The rest of the coefficient are expressed as

a1 ¼ ðkAML þ kTMÞ
mMx2

0

; a2¼
ðkAL þ kCÞ

mSx2
0

; b1 ¼ pd3TMa

8DmMxstx2
0

;

b2 ¼ pd3b

12DmMxstx2
0

; b3 ¼ pd3b2

64aTMDmMxstx2
0ðhC � 1Þ ; f¼

cSMA

mMx0

;

d1 ¼ ðcAML þ cTMÞ
mMx0

; d2 ¼ ðcAL þ cCÞ
mSx0

; x0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kAL þ kC

mS

r
;

l ¼ mM

mS

; Q ¼ P

mMxstx2
0

; hC ¼ TA

TM
; h ¼ T

TM

ð11Þ

The real parameters of middle ear and SMA are taken

form [29] and [24], respectively. Next, the dimensional

parameters are recalculated in dimensionless ones,

finally receiving a1 ¼0:0952;a2 ¼1;b1 ¼5:0279; b2 ¼
467:1689;b3 ¼134760;d1 ¼0:3441;d2 ¼ 0:0455;f¼
0:1023; l¼14:0449;hc¼ 1:0906.

Fig. 4 An influence of temperature on shape memory helical spring. Longitudinal force of SMP (a) and its potential (b)
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The restoring force of SM spring fSMA (Eq. 10)

depends on spring elongation (x1 � x2) and tempera-

ture (h) that is illustrated in Fig. 4a. Temperature

changes a curve slope that should influences the

system behaviour. Additionally, Fig. 4b presents

potential of SM spring with characteristic minima

and maxima which form a potential wells.When h� 1

the potential has two minima and one maximum. For

1\h\hc ¼ 1:0906 the potential has three minima,

while h[ hc only one minima exists. Potential of fSMA

play important role in system’s dynamics because the

force influences vibrations and equilibriums.

2.2 Shape memory prosthesis

The proposed here SMP is made of Nitinol wire

(diameter d ¼ 0:2�0:3 mm) which has one-way

shape memory effect the temperature of austenitic

transformation TA � 45 �C. This temperature condi-

tion is necessary to activate the prosthesis at temper-

ature which is above the normal human body

temperature. TA depends on the nickel to the titanium

ratio in SMA. The prosthesis can be formed for

example as a helical spring but its diameter cannot

exceed 1.2 mm and length 4 mm because of space

limitation in the human middle ear. The prosthesis has

to be taught to increase its length from 4 to 6 mm after

heating above TA: Therefore SMP should have 2–4

coils in order to get the proper length. Prosthesis

Fig. 5 An influence of the wire diameter d on eigenvalues for various temperature. The first eigenvalue (a), the second one (b)

Fig. 6 An influence of the spring diameter D on eigenvalues for various temperature. The first eigenvalue (a), the second one (b)
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implementation during surgery operation is very

difficult. At the beginning, SMP in martensite phase

is placed between the tympanic membrane and the

stapes. Next, the prosthesis is heated very carefully to

obtain the austenitic phase and the proper length for

individual patient. After cooling to the normal body

temperature, the prosthesis length remains the same.

Using SMP decreases implementation time and

improves the prosthesis fit. For the sake of nonlinear

properties of SMA this paper focuses on regular and

irregular motions at different temperatures which can

be important during implementation. Moreover, it is

expected that SMP ensures regular motion of the

stapes which next transfer vibration to the inner ear.

3 Free vibration

The free response of reconstructed middle ear with

SMP is discussed here in two variants. At the

beginning, the analysis of simplified linear system is

performed in order to calculate natural frequencies of

the system and estimate an influence of SMP dimen-

sions. The set of several temperatures in the range

from 10 to 60 Celsius degrees is analysed: T ¼ 60 �C

(h ¼ 1:1603)—the temperature when only austenit

phase is stable, T ¼ 36:6 �C (h ¼ 1:0787)—the nor-

mal temperature of human body, T ¼ 20 �C

(h ¼ 1:0209)—the usual room temperature and

T ¼ 10 �C (h ¼ 0:9861)—the temperature when only

martensite phase is stable. While, next subsection

presents fixed points analysis of the nonlinear system

as a function of temperature.

3.1 Linear vibrations

From practical point of view a size of SMP is

important therefore an analysis of the spring and the

wire cross section diameter is perform on simplified

linear and undamped system, then b2 ¼ 0, b3 ¼ 0,

d1 ¼ 0, d2 ¼ 0, f ¼ 0. This simplified system is

analysed in order to estimate analytically an influence

of the wire and the spring diameter on the system

natural frequencies. Then, the proper prosthesis size

could be selected to receive the same natural frequen-

cies like in the intact human middle ear. The

mentioned natural frequencies (eigenvalues) of the

system depend also on temperature (h) as presented in

Figs. 5 and 6. First, the wire diameter (d) is analysed.

For h[ 1 the first eigenvalue (Fig. 5a) grows reaching

the value of 0.4 for d[ 0:6 mm while for h\1 it

asymptotically falls down for d[ 0:3 mm next jumps

Fig. 7 Temperature influence on system fixed points
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to higher value at d ¼ 0:3 mm and decreases to 0.4,

the same as for h[ 1. Similar behaviour demonstrates

the second eigenvalue (Fig. 5b) which increases in

case of h[ 1, while for For h\1 the eigenvalue

decreases. For d� 0:3 mm the second eigenvalue does

not exist that means a lack of solution.

The same phenomena occur when the spring

diameter D increases at fixed d ¼ 0:3 mm (Fig. 6).

For D ¼ 1 mm and h\1 the first eigenvalue (Fig. 6a)

jumps from big value to smaller while the second

exists only for D[ 1 mm (Fig. 6b). In case of h[ 1

the first eigenvalue decreases to 0.32 and the second

one to 1.One should be aware that this analysis is

proper only for linear system that is for the linear

spring without pseudoelasticity, however it tells us

about the range of SM spring diameter which can be

used to SMP design. Thus, for further analysis the

special case is taken into consideration when

D ¼ 1 mm and d ¼ 0:3 mm. For nonlinear system

these value does not have to be specific as it was in the

full linear system for h\1.

3.2 Fixed points of nonlinear system

In this section, the free response of nonlinear system

(reconstructed middle ear with SMP) is discussed. The

free response is important from practical point of view

because that can tell us about response for an impact

caused by roar or bang. The differential equations of

motion (Eq. 10) can be rewrite into four differential

equations of first order

(a)

0.
98

61

1.
02

09

1.
05 1.

16
03

(b)

Fig. 8 An influence of temperature on the malleus-x1 (a) and

the stapes-x2 (b) motion

Fig. 9 Time series of the malleus-x1 (a) and the stapes-x2 (b) obtained for positive initial conditions—black and negative initial

conditions—blue. (Colour figure online)
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_x1 ¼ y1

_y1 ¼ �ðx1a1 þ d1y1 þ f1ðy1 � y2Þ þ fSMAÞ
_x2 ¼ y2

_y2 ¼ �ðx2a2 � f2ðy1 � y2Þ þ d2y2 � fSMAÞ

ð12Þ

The system has different equilibrium points depending

on temperature. Denoting by x�1, y�1, x�2, y�2, a point that

makes the right-hand side of Eq. 13 vanish, the

following five possibilities (fixed points) are found

x�1 ¼ 0; y�1 ¼ 0; x�2 ¼ 0; y�2 ¼ 0

x�1 ¼ 	 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g1 	

ffiffiffiffiffi
g2

p

b3ða2 þ a1lÞ5

s
; ; y�1 ¼ 0;

x�2 ¼ � a1l
a2

x�1; y
�
2 ¼ 0

ð13Þ

where

g1 ¼ a5
2b2 þ 3a1a

4
2b2lþ 3a2

1a
3
2b2l

2 þ a3
1a

2
2b2l

3

g2 ¼ a4
2ða2 þ a1lÞ5ða2ðb2

2 � 4b3ða1 þ b1ðh� 1ÞÞÞ
þ a1lðb2

2 � 4b1b3ðh� 1ÞÞÞ
ð14Þ

Among these five possibilities, only those which

correspond to real numbers have physical meaning

and are presented in Fig. 7. The solid line means

stable solution while the dashed line represents

unstable one. Stability of these equilibrium is deter-

mined by analysis of the Jacobian matrix of Eq. 13.

The trace (Tr) and the determinant (Det) of the

Jacobian are defined as follows

Fig. 10 Basins of attraction for h ¼ 0:9861 (a), h ¼ 1:0209 (b), h ¼ 1:05 (c) and h ¼ 1:1603 (d)
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TrðJÞ ¼ �d1 � d2 � 2f

DetðJÞ ¼ a1a2 � a2b1 � a1b1lþ a2b1hþ a1b1hl

ð15Þ

From the Routh–Hurwitz criterion, the solution can be a

saddle (unstable) or focus (stable) as presented in Fig. 7.

Therefore, three cases are pointed out depending on h

– when h\h1 the system has three fixed points, the

saddle (unstable trivial solution - gray dashed line)

and the other two fixed points which are stable fo-

cus (red and green color).

– when h1\h\h2 the system has five fixed points,

the stable focus (trivial solution - gray color), the

other two fixed points are stable focus (red and

green color) and the two unstable saddles (blue and

black dashed lines).

– when h[ h2 the system has only one fixed point,

that is the stable focus (trivial solution - gray

color).

Thus, the fixed points and their stability depend on

regions defined by h1 and h2 which result from the

analysis of Eq. 13 and are given as follows

h1 ¼ �a1a2 þ b1ða1lþ a2Þ
b1ða1lþ a2Þ

ð16Þ

h2 ¼ b2
2ða2 þ a1lÞ � 4b3ða1a2 � a2b1 � a1b1lÞ

4b1b3ða2 þ a1l

ð17Þ

From practical point of view the stable trivial

solution is desirable as a free response on the impact

produced by a bang or a roar. Therefore, SMP should

work at temperature h[ h2 because then the system

has the only one point of stable equilibrium.

4 Excited vibrations

Human speech is composed of a lot of harmonic

signals—polyharmonics. Therefore, in a real life a

human ear is usually forced harmonically or polyhar-

monically when speaking and listening to. Insomuch

as, in the analysis of excited vibrations, we focus on

the frequency which is near to the first natural

frequency of the human ear. This frequency is

responsible for speech recognition. Therefore, in this

section a dynamic response of the ossicles to harmonic

excitation is presented under various force amplitudes

and temperature conditions near the first resonance

which is the most important from practical point of

view. In the subsequent sections a possibility of

periodic and different kind of aperiodic including

irregular vibrations is analysed.

4.1 Periodic vibrations

According to the current knowledge, vibrations of the

intact middle ear are periodic, therefore the response

of reconstructed ossicular chain must be regular as

well. Any aperiodicity can disturb sound transmission

=1.0209
=1.1603
=0.9861

=1.0209
=1.1603
=0.9861

(a) (b)

Fig. 11 Resonance curves for the malleus-x1 (a) and the stapes-x2 (b) at excitation amplitude Q ¼ 0:002
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from an outer to an inner ear. In this section analysis of

periodic solutions is performed with the help of

continuation method (AUTO-07P, [6] ) and next

verified in Matlab and Dynamics using Runge–Kutta

algorithm of integration with a relative tolerance of

10�6. Motion of the malleus (x1) and the stapes (x2) in

the reconstructed middle ear with SMP is analysed

versus relative temperature (h) in Fig. 8. Three

characteristic regions can exist here, where a stable

(solid line) and an unstable (dashed line) periodic

solutions are possible. When

– h\1:02 the system has the two stable symmetric

solutions and one unstable,

– when 1:02\h\1:07 the system has two

stable (symmetric) and two unstable periodic

solutions,

– when h[ 1:07 the system has only one

stable solution.

If the system has two stable periodic solutions they are

always symmetric. This means they have the same

amplitude but the one is shifted positive and the

second negative (black and blue colour in Fig. 9).

Positive and negative solution depends on initial

conditions, that is clearly visible on the basins of

attraction depicted in Fig. 10. For h ¼ 0:9861 only

two solutions exist in the blue and red region of initial

conditions (Fig. 10a). Next for h ¼ 1:0209 (Fig. 10b)

the third solution in the yellow region appears. This

yellow region enlarges with temperature h (Fig. 10c).

The blue and red regions completely disappear at

h[ 1:07 (Fig. 10d). Temperature influences reso-

nance curves as well. The curves obtained for

excitation Q ¼ 0:002 and various temperature (h),

are shown in Fig. 11. The first resonance is about 0.34.

Both coordinates (x1 and x2) demonstrate stable (solid

lines) and unstable (dashed lines) solutions. The

vibrations amplitude of stable solutions increases with

temperature. At normal temperature of a human body

Fig. 12 Time series a, c of displacements (x1 and x2), velocities (y1 and y2) and trajectories on phase space b, d obtained for

h ¼ 0:9861;Q ¼ 0:1;X ¼ 0:4:
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(h ¼ 1:0787) and also at temperature of SMP activa-

tion (h ¼ 1:1603), the middle ear system demonstrates

only one periodic solution (for presented parameters).

That is positive aspect from practical point of view.

However, besides periodic response the reconstructed

middle ear system demonstrates aperiodic and irreg-

ular motion which is discussed in the next subsection.

4.2 Aperiodic vibrations

Since, the analysed system is nonlinear a probability

of aperiodic and even irregular (chaotic) motion is

quite big, especially for strong excitation amplitude

(Q) at specific temperature (h). Therefore, at the

beginning an influence of these parameters on period-

icity of the ossicles motion is tested and presented in

the form of colour maps (Figs. 13, 14). Aperiodicity in

this system is fine and difficult to discover because the

system can have periodic displacement and aperiodic

velocity. An observation of velocity is better because

any disturbances of periodicity are visible in velocities

first. (see for example the time series and the phase

trajectories in Fig. 12). Generally, the response of the

reconstructed middle ear system to a periodic excita-

tion is usually harmonic but sometimes with distur-

bances as presented in Fig. 12 where the family of

system aperiodic response obtained for h ¼

Fig. 13 An influence of excitation amplitude (Q) and temper-

ature (h) on the malleus vibrations-x1 (a) and velocity-y1 (b).

The colour represents a various kind of periodic and aperiodic

solution. (Colour figure online)

0.9 0.95 1 1.05 1.1 1.15 1.2

0.01
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0.03

0.04

0.05

0.06
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0.08

0.09

0.1

Q

periodic 1T aperiodic and others(b)

(a)

Fig. 14 An influence of excitation amplitude (Q) ana temper-

ature (h) on the stapes vibrations-x2 (a) and velocity-y2 (b). The

colour represents a various kind of periodic and aperiodic

solution. (Colour figure online)
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0:9861;Q ¼ 0:1 and X ¼ 0:4. is shown. A seeming

periodic motion (see x1 in Fig. 12a) reveals as

aperiodic in the phase space because of small distur-

bance in velocity. Moreover, different system

response is observed for the malleus x1 and the stapes

x2. Since, both the state variables (x and y) must be

analysed to discover any disturbances of periodic

motion, therefore 2-dimensional maps of regularity

are presented in Figs. 13 and 14 where displacements

(x1 and x2, Figs. 13a, 14a) and velocities (y1 and y2,

Figs. 13b, 14b) are analysed as a function of excitation

amplitude Q and temperature (h).The blue region

(Figs. 13, 14) means (regular) harmonic solution with

period 1T, then the period of the system response is the

same as the period of excitation. Such a typical regular

response is thoroughly studied in the previous sec-

tion. Here, aperiodic and also periodic vibrations but

with disturbances (visible especially on velocities) are

observed in Figs. 13 and 14 in case of stronger

excitation. The yellow, red and black colour mean the

region of aperiodic response of different kind and also

sub or super-harmonic. Moreover, motion can be

harmonic with perturbations in velocities or displace-

ments. On the other hand, there are regions where the
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Fig. 15 Classical bifurcation diagrams of the malleus y1 (a) and the stapes y2 (b) versus temperature h at excitation amplitude

Q ¼ 0:0079. Maximums of the malleus (c) and the stapes (d) velocity in one period of excitation
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malleus motion (displacement x1 or velocity y1) is

periodic while the stapes motion (x2 or y2) is aperiodic

at the same time. What is more, the malleus and the

stapes velocity (y1, y2) can be aperiodic while the

displacement (x1 and x2) is still free of aperiodic

oscillations. Generally, the region of aperiodicity

increases with external excitation amplitude Q.

More information about dynamics can be delivered

by the bifurcation analysis which is performed here at

different value of excitation amplitude Q to reveal

irregular motion, sub-harmonic or harmonic vibra-

tions with any fluctuations. The response of the

reconstructed middle ear system is presented in form

of the classical bifurcation diagrams of the malleus

and the stapes velocity (y1 and y2) collected as a

Poincaré points (Figs. 15a, b, 17a, b, 19a, b). Addi-

tionally, the diagrams where all the velocity maxi-

mums in the time of one period are drawn in Figs. 15c,

d, 17c–f, 19c, d. Moreover, for chosen temperatures

(h) the phase trajectory with red Poincaré points are

Fig. 16 Change of the malleus (a) and the stapes (b) phase trajectory versus temperature (h) at excitation amplitude Q ¼ 0:0079
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plotted (Figs. 16, 18, 20). Usually, in real (life)

conditions an excitation of a human ear Q do not

exceed 0.02. Therefore, at the beginning the system

response for small excitation (Q ¼ 0:0079) is pre-

sented as bifurcation diagram in Fig. 15 and the phase

trajectory with Poincaré points in Fig. 16. The middle

ear system with SMP is very sensitive for temperature

h. At h\1:0547 (Fig. 15) the ossicles vibrate har-

monically with period 1T (see also the phase diagram

for h ¼ 1:050 in Fig. 16). When h ¼ 1:05485

(Fig. 15) the system vibrates chaotically and next

periodically with the period 2T (Fig. 16, phase

trajectory for h ¼ 1:0550) and 5T (Fig. 16, phase

trajectory for h ¼ 1:0555). Finally, motion of period

5T goes on to the harmonic period 1T (Fig. 16, phase

trajectory for h ¼ 1:06) through period 3T vibrations.

According to the phase trajectories (Fig. 16), the

malleus and specially the stapes have additional

fluctuations.. In case of stronger excitation Q ¼ 0:02

the malleus vibrates harmonically (period 1T) in the

analysed range of h ¼ 0:9�1:2 with the exception of

narrow region of yellow and black colour (Fig. 13).

The range of aperiodic motion is wider looking at

velocity (Fig. 13b). As usually, the stapes demon-

strates much bigger range of aperiodicity than the

malleus (Fig. 14). Similarly as previously, there is a

small region where motion with period 3T and 5T is

possible (the classical bifurcation diagrams, Fig. 17

and the phase trajectory in Fig. 18 for h ¼ 1:028 and

h ¼ 1:0295, respectively). Moreover, chaotic vibra-

tions are also present near h ¼ 1:0297 (Fig. 18). In

order to observe ossicles dynamics better, a zoom of

Fig. 17c, d is presented in Fig. 17d, e. Fortunately, the

region of chaotic motion is narrow, near h ¼ 1:027

and h ¼ 1:0297 however, the aperiodicity range of the

malleus spreads to h ¼ 1:06 while the stapes motion is

aperiodic till h ¼ 1:12 (Fig. 17c, d). Then, motion of

the system response demonstrates fluctuations

although, the vibration period is 1T starting form h ¼
1:0299 (Fig. 17, and phase portrait in Fig. 18 for

h ¼ 1:03)..Strong excitation, expressed by Q ¼ 0:1

changes system dynamics thoroughly. First of all, the

system response is only periodic, both the malleus and

the stapes demonstrate vibrations with the period 1T

(Fig. 19a, b, Fig. 20). However, for the presented

model perturbations are present from h ¼ 0:9 (the

initial temperature in analysis) to h ¼ 1:05 in case od

the malleus and to h ¼ 1:27 for the stapes. As usually,

perturbations of the stapes motion are bigger. To sum

up, stronger excitation synchronizes the middle ear

response with excitation but does not eliminate

perturbations and moreover generates bigger vibra-

tions, what is a typical phenomenon.

5 Discussion and conclusions

The concept of shape memory prosthesis is developed

here to improve surgery conditions and ensure better

prosthesis fitting. That all shorten esthesia time, which

is harmful for human being.

Dynamics of the middle ear system with shape

memory prosthesis is analysed here in different

variants starting from linear vibrations. Natural fre-

quencies of the linear system depend on prosthesis size

(diameter) and its temperature. When the relative

temperature h\1 (it means T\TM) the natural

frequencies are not defined unequivocally at the

specific wire and spring diameter (d 
 0:3 mm and

D 
 1 mm, respectively). They have discontinuity

observed in Figs. 5 and 6. At these specific points, the

middle ear model is not a vibrating system. From

practical point of view the temperature of prosthesis at

normal work in middle ear is exactly 36:6 �C then

1\h\hc in this case the effect of vibrations lack does

not occur. The analysis of fixed points shows mean-

ingful influence of temperature on fixed points. The

system can have 1, 3 or 5 fixed points which can be

stable or not, but at the normal temperature of human

body only one ‘zero’ equilibrium is stable. This is of

special practical importance. More often middle ear is

exposed to external excitation then it is expected the

ossicles motion should be periodic. Periodic vibrations

occur in the all temperature range but in the case of

lower temperatures two symmetric solutions appear.

Fortunately, near the temperature of human body only

one solution is possible but the solution demonstrates

smaller vibrations than in the case of lower temper-

atures. From practical application point of view a

change of the prosthesis temperature is possible only

during prosthesis implementation and activation.

After that the temperature is constant that should

cFig. 17 Classical bifurcation diagrams of the malleus y1 (a) and

the stapes y2 (b) versus temperature h at excitation amplitude

Q ¼ 0:02. Maximums of the malleus (c, e) and the stapes (d,

f) velocity in one period of excitation
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ensure stable working. However, one should remem-

ber the ear with SMP is also sensitive to initial

conditions.

Unfortunately, the ear with shape memory pros-

thesis demonstrates aperiodic vibrations as well. The

most often, it manifest itself by perturbations which

are added to periodic motion. The perturbations are

caused by strong nonlinear characteristic of shape

memory element (prosthesis). The region of

aperiodicity is wider for big excitation amplitude,

moreover the stapes shows much bigger aperiodicity

range than the malleus. Besides motion with pertur-

bations, the ossicles can vibrate chaotically in narrow

range of temperature. The temperature where chaotic

motion exists is lower than the normal temperature of

human body. Thus, perturbations of periodic motion

are only danger when putting shape memory prosthe-

sis to the middle ear during surgery operation. This

Fig. 18 Change of the

malleus (a) and the stapes

(b) phase trajectory with

temperature (h) for

Q ¼ 0:02
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temporarily inconvenience can be avoided by a proper

selection of SMA which should have lower temper-

ature of austenitic transformation.

Takeing all results into account, it can be concluded

the idea of using shape memory alloy to build middle

ear prosthesis is promising from practical point of
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Fig. 19 Classical bifurcation diagrams of the malleus y1 (a) and the stapes y2 (b) versus temperature h at excitation amplitude Q ¼ 0:1.

Maximums of the malleus (c) and the stapes (d) velocity in one period of excitation
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view and interesting from scientific point because the

analysed system has rich dynamics. In future the

authors are planning to made the prosthesis prototype

and experimental verification of the results.
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