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Abstract We discuss spontaneously bent configura-

tions of pre-stretched bilayer sheets that can be

obtained by tuning the pre-stretches in the two layers.

The two-dimensional nonlinear plate model we use for

this purpose is an adaptation of the one recently

obtained for thin sheets of nematic elastomers, by

means of a rigorous dimensional reduction argument

based on the theory of Gamma-convergence (Agos-

tiniani and DeSimone in Meccanica. doi:10.1007/

s11012-017-0630-4, 2017, Math Mech Solids. doi:10.

1177/1081286517699991, arXiv:1509.07003, 2017).

We argue that pre-stretched bilayer sheets provide us

with an interesting model system to study shape pro-

gramming and morphing of surfaces in other, more

complex systems, where spontaneous deformations

are induced by swelling due to the absorption of a

liquid, phase transformations, thermal or electro-

magnetic stimuli. These include bio-mimetic struc-

tures inspired by biological systems from both the

plant and the animal kingdoms.

Keywords Pre-stretched bilayers � Thin plates and

shells � Shape programming � Spontaneous curvature

1 Introduction

We discuss a two-dimensional (nonlinear) plate model

to describe the spontaneously bent configurations of

pre-stretched bilayer sheets that can be obtained by

tuning the pre-stretches in the two layers. Our

motivation is to try to acquire a thorough understand-

ing of a model system (‘‘easily’’ realised in a

laboratory, and ‘‘easily’’ reproducible in numerical

simulations based on the finite element method) to

study shape programming and morphing of surfaces in

a relatively simple and controllable setting. We plan to

use the results obtained with the model system to

address similar questions arising in more complex

physical systems where heterogeneous spontaneous

deformations are induced by swelling due to the

absorption of a liquid (hydrogels [22–24, 29] and

hygromoprphic structures [26]), or by phase transfor-

mations driven by applied thermal or electro-magnetic

fields (shape-memory alloys [6]; liquid crystal elas-

tomers [11, 13, 27, 31, 32]).

The study of shape changes induced by heteroge-

neous response to external stimuli in thin structures

has a long history. Among the classical contributions

regarding the thermal buckling of a bi-metal strip or

disk, we cite [30] and [12]. A variant of this problem is

the study of thermally-induced delamination and

blistering of thin film coatings deposited over solid

substrates, see, e.g., [14, 15] and the many references

cited therein. While often the shape changes are
A. DeSimone (&)

SISSA, via Bonomea 265, 34136 Trieste, Italy

e-mail: desimone@sissa.it

123

Meccanica (2018) 53:511–518

https://doi.org/10.1007/s11012-017-0732-z

http://orcid.org/0000-0002-2632-3057
http://dx.doi.org/10.1007/s11012-017-0630-4
http://dx.doi.org/10.1007/s11012-017-0630-4
http://dx.doi.org/10.1177/1081286517699991
http://dx.doi.org/10.1177/1081286517699991
http://www.arxiv.org/abs/arXiv:1509.07003
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-017-0732-z&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11012-017-0732-z&amp;domain=pdf
https://doi.org/10.1007/s11012-017-0732-z


detrimental to the correct functioning of a structure,

such as in the blistering of coating films, they can be

exploited to perform a function, like in the use of

bimetallic strips as thermostats. And in recent years,

the problem of exploiting material heterogeneities to

induce controlled shape changes in response to an

external, spatially homogeneous stimulus has received

considerable attention.

Often, interesting solutions to this problem of shape

programming are inspired by biological structures. In

the realm of plants or animals, shape control is usually

accomplished by growth (in which case shape evolu-

tion is slow) or by active stresses or distortions (a

mechanism akin to muscle contraction, in which case

shape evolution can be fast and used, for example, for

locomotion or to trap prey insects in carnivorous

plants). Morphogenesis, shape control and program-

ming, and morphing of surfaces are by now classical

research topics in Mechanics. The literature is vast,

and growing at a very fast pace.

Inspired by [8, 28], we propose here the use of

composite, layered thin films, made by pre-stretch-

ing and gluing latex sheets in various ways, to study

the emergent shapes in a thin structure that relaxes

to equilibrium by developing differential strains

along the thickness. Also the case of spontaneous

curvature arising form lateral (i.e, within the mid-

plane) strain variations is interesting and important.

This mechanism is based on the Theorema Egre-

gium of Gauss, see, e.g. [5, 20], and this will be

considered elsewhere since we focus here on

homogenous pre-strecthing of each of the two

halves of a symmetric bilayer. We show that by

‘‘engineering’’ the pre-stretch in each of the two

layers, one can reproduce different structural mod-

els, such as the bistable shell and the shell with zero

stiffness with respect to twisting discussed in [18]

and [17], respectively. Moreover, by uniaxially pre-

stretching one of the layers, and shaping the mid-

plane of the bilayer in the form of a long and

narrow rectangle, one can reproduce the system

considerered in [8] by varying the angle between the

long axis of the rectangle and the pre-stretch

direction. We analyse the resulting tuneable helical

ribbons, and the emergence of spontaneously curved

shapes, with the help of a different model than the

one considered in [8].

2 Three-dimensional model for pre-stretched

bilayers

Before proceeding, let us establish some general

notation which will be used throughout. For the

standard basis of R3 we use the notation fe1; e2; e3g.
We denote by Mþð3Þ the set of 3�3 matrices with

positive determinant, SOð3Þ and Symð3Þ are the sets of
3�3 rotations and symmetric matrices, respectively.

Similarly, for 2�2 matrices, we use the symbols

SOð2Þ and Symð2Þ for rotations and symmetric ones.

Moreover, I 2 SOð3Þ and I2 2 SOð2Þ are the identity

matrices in three and two dimensions, respectively.

We write I2 for the identity map from Symð2Þ to

Symð2Þ (a tensor of rank four), and use the symbol tr2A

for the square of the trace of a matrix A.

The reference configuration of our (symmetric)

bilayer film is denoted by Xh :¼ x� ð�h=2; h=2Þ
� R3, where x � R2 is the mid-surface and h is the

(total) thickness. Each of the two halves of the bilayer

has thickness h / 2. For a point x 2 Xh we write x ¼
ðx1; x2; x3Þ and x ¼ ðx0; x3Þ, with x0 ¼ ðx1; x2Þ 2 x and

x3 2 ð�h=2; h=2Þ. We are interested in deformations

y : Xh ! R3 minimising the 3d elastic energy of the

system

yh ¼ argmin
y2A

Z
Xh

Whðx3;rxyðxÞÞdx ð2:1Þ

where A is a suitable function space, rxyðxÞ is the

deformation gradient at x, and

Whðx3;FÞ ¼ W0ðFU�
hðx3ÞÞ : ð2:2Þ

Here W0 � 0 is a frame-indifferent isotropic energy

density such that W0ðGÞ ¼ 0 implies that G 2 SOð3Þ.
Moreover,

U�
hðx3Þ ¼ Iþ hH�ðx3Þ þ oðhÞ ð2:3Þ

with o(h) an ‘‘error’’ term going to zero faster than h as

h ! 0, and

H�ðx3Þ ¼
H�

1 if x3 2 ½0; h=2Þ
H�

2 if x3 2 ð�h=2; 0Þ

�
ð2:4Þ

where H�
1 , H

�
2 are constant 3�3 symmetric matrices.

The matrix U�
h has the physical meaning of an x3-

dependent pre-stretch. Indeed,
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F ¼ argmin
F2Mþð3Þ

W0ðFU�
hÞ ) F ¼ RU ; R 2 SOð3Þ

ð2:5Þ

where

U ¼ Uhðx3Þ ¼ ðU�
hðx3ÞÞ

�1 ¼ I� hH�ðx3Þ þ oðhÞ
ð2:6Þ

meaning that the state of deformation that min-

imises the energy density is the inverse of (the pre-

stretch) U�
h , together with all the states obtained from

this one by superposing a rigid body rotation. This

deformation brings back the material to the

unstretched, natural (stress-free) configuration of

minimal (zero) energy density. In assuming that the

thickness of the two layers composing Xh is h / 2,

independent of the pre-stretch, we are ignoring the

transversal contraction of the film occurring when the

pre-stretch is applied, a small error at least for

moderate pre-stretches1. By analogy with the literature

on phase transforming solids, we will call U the

preferred, or stress-free stretch (also called Bain

stretch/strain in the case of martensitic transforma-

tions in crystalline solids, or spontaneous/

preferred stretch/distortion; thermal dilatation/distor-

tions would also be an example). Notice that, from

(2.3) and (2.4), the pre-strain is E�
h ¼ U�

h � Iþ
oðhÞ ¼ hH�, so that

E�
hðx3Þ ¼

E�
1 ¼ hH�

1 if x3 2 ½0; h=2Þ
E�
2 ¼ hH�

2 if x3 2 ð�h=2; 0Þ

�
ð2:7Þ

A prototypical example for W0 is a compressible

version of the neo-Hookean energy density, namely,

W0ðFÞ :¼ l
2

h
jFj2 � 3� 2 logðdetF Þ

i
þWvolðdetF Þ

ð2:8Þ

where l[ 0 is a material constant (elastic shear

modulus) and the function Wvol : ð0;1Þ ! ½0;1Þ is
C2 around 1 and fulfills the conditions:

WvolðtÞ ¼ 0 () t ¼ 1; WvolðtÞ �! 1 as t ! 0þ; W 00
volð1Þ[ 0:

For example, Wvol could be taken as t 7!c ðt2 � 1�
2 log tÞ. Expression (2.8) is adequate for the (small

strain) behaviour of latex sheets, and it is the one we

will use for our developments. Setting

c :¼ W 00
volð1Þ

2lþW 00
volð1Þ

ð2:9Þ

we can represent the tensor of elastic constants (the

second differential of W0 evaluated at F ¼ I) in terms

of the more familiar Young modulus Y and Poisson

ratio m using the relations

2l ¼ Y

1þ m
; 2cl ¼ mY

1� m2
: ð2:10Þ

3 Small thickness limit and two-dimensional

bending model

The model presented in the previous section falls

within the framework analysed in [2, 3], where thin

sheets of nematic elastomers are considered. These are

soft phase transforming materials which, as a conse-

quence of the isotropic-to-nematic phase transforma-

tion, develop preferred stretches of the form (2.6).

They are described by elastic energy densities of the

form (2.8). It is proved in [2, 3] that, in the thin limit

h � 1, minimisers yh of the 3d energy (2.1) approach a

function y with the following properties:

i. y is independent of x3, so wewrite y : x ! R3;

ii. y is an isometric embedding of x into R3 (an

isometry of x), i.e., r0yðx0ÞTr0yðx0Þ ¼ I2
where r0 is the gradient with respect to x0, so
we write y 2 Aiso, andAiso is a suitable func-

tion space of isometries of x;
iii. yminimises among isometries the 2d (bending

energy) functional

D

Z
x

1

2

h
ð1� mÞjAyðx0Þ � Aj2 þ mtr2ðAyðx0Þ � AÞ

i
dx0

ð3:1Þ

where

D ¼ Yh3

12ð1� m2Þ

is the bending modulus,

Ayðx0Þ ¼ ðr0yðx0ÞÞTr0nðx0Þ
1 We will return to this in [7]
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is the curvature tensor, or second fundamental form of

the surface yðxÞ, a 2�2 symmetric matrix (here

nðx0Þ ¼ ox1yðx0Þ ^ ox2yðx0Þ is the normal to yðxÞ at the
point yðx0Þ), and the target curvature A is given by

A ¼ 3

2
ð �H�

2 � �H�
1Þ ¼

3

2h
ð�E�

2 � �E�
1Þ ; ð3:2Þ

where �E 2 Symð2Þ is the 2�2 symmetric matrix

obtained from E 2 Symð3Þ by deleting its third row

and third column.

Looking for configurations of minimal bending

energy, in the absence of external loads and restricting

attention to the case in which the target curvature A is

constant, we look for deformations y 2 Aiso whose

second fundamental forms are constant pointwise

minimisers of the integrand of (3.1). This leads us to

seeking surfaces with constant curvature Ay 	 A,

where A 2 Symð2Þ is a minimiser of the integrand of

D

Z
x

1

2

h
ð1� mÞjAðx0Þ � Aj2 þ mtr2ðAðx0Þ � AÞ

i
dx0

ð3:3Þ

(3.1) satisfying the constraint detðAÞ ¼ 0. In fact, it is

well known that the isometry constraint implies that

the Gaussian curvature K of yðxÞ must vanish, i.e.,

K ¼ detðAyÞ ¼ 0.

More in detail, our strategy to find configuration of

minimal bending energy is to regard (3.1), which is a

functional defined over isometric embeddings y of the

flat domain x, as a functional (3.3) defined over

symmetric-valued matrix fields Aðx0Þ defined on x,
satisfying the compatibility equations detðAÞ ¼ 0 and

obAar � orAab ¼ 0 (Gauss–Codazzi–Mainardi equa-

tions, trivially satisfied by a constant matrix field with

zero determinant). These compatibility equations

guarantee that the symmetric matrix field A is, in fact,

the second fundamental form of an isometry y, i.e.,

Aðx0Þ ¼ Ayðx0Þ for some isometry y: this is the content

of the fundamental theorem of (the differential

geometry of) surfaces, see [9]. The equivalence of

the two minimisation problems, namely, the one of

finding y minimising (3.1) or finding A minimising

(3.3) is thus established.

Since, for A 2 Symð2Þ,

detA ¼ 1

2

h
tr2A� jAj2

i

we can write the constraint detðAÞ ¼ 0 with the help of

a quadratic form

detA ¼ 1

2
DA � A ¼ 0 ; D ¼ I2 
 I2 � I2 ð3:4Þ

where ðI2 
 I2ÞA ¼ ðA � I2ÞI2 ¼ ðtrAÞI2. With a simi-

lar notation, we can write the integrand of (3.3) as

1

2
CðA� AÞ � ðA� AÞ ; C ¼ ð1� mÞI2 þ mðI2 
 I2Þ :

ð3:5Þ

We are thus led to the (finite-dimensional) con-

strained minimisation problem

min
A2Symð2Þ

1

2
CðA� AÞ � ðA� AÞ ; subject to:

1

2
DA � A ¼ 0 :

ð3:6Þ

Introducing a (scalar) Lagrange multiplier k associ-

ated with the isometry constraint (3.4), we have that

critical points for problem (3.6) satisfy the equilibrium

equations

MðAÞ :¼ CðA� AÞ ¼ kDA

1

2
DA � A ¼ 0

8<
: ð3:7Þ

where MðAÞ 2 Symð2Þ is the tensor of bending and

twisting moments corresponding to the curvature

tensor A.

4 Spontaneously bent bilayers

Depending on the pre-stretch U�
hðx3Þ in (2.3), or the

pre-strain E�
hðx3Þ in (2.7), different target curvatures A

will result from formula (3.2). When detA ¼ 0, the

obvious solution of the problem of minimal bending

energy (3.6) is A ¼ A, and the target curvature A will

be realised in practice. Thus, Awill be the spontaneous

curvature exhibited by the bilayer in the absence of

external loads.

When detA 6¼ 0, the spontaneous curvature, i.e., the

curvature tensor minimising the bending energy (3.1)

(hence solving the minimisation problem (3.6)), will

be different from A. We discuss in what follows the

prototypical cases obtained by solving the equilibrium

equations (3.7), and retaining only the solutions of

minimal bending energy density (stable equilibria).

We omit the details since the calculations are

straightforward. The same problem is solved in [19]

with the help of a graphical construction.
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4.1 Uniaxial pre-stretch in the bottom layer

This is the case �E�
1 ¼ 0, �E�

2 ¼ eðe1 
 e1Þ, e[ 0. We

get from (3.2)

A ¼ 3

2h
ð�E�

2 � �E�
1Þ ¼ cðe1 
 e1Þ ; c ¼ 3e

2h
ð4:1Þ

and the curvature tensor minimising the bending

energy (3.1) is Ay 	 A.

Taking x ¼ R2, the deformations y such that Ay 	
A transform the coordinate lines x1 ¼ const (parallel to

e2) into straight lines, coordinate lines x2 ¼ const

(parallel to e1) into circles of radius

1

c
¼ 2h

3e

(covered infinitely many times), and yðxÞ is a cylinder
whose cross-section is a circle of radius 1=c and whose

axis is parallel to the image of the coordinate lines

x1 ¼ const. The orientation in space of the cylinder is

arbitrary, since superposing an arbitrary rigid rotation

to y leaves Ay unchanged.

We now ‘‘paint’’ a subset xh of x having the shape

of a rectangle

xh :¼ Rhx0 � x ; x0 ¼ ð0; LÞ � ð�w=2;w=2Þ ; 0\w� L ;

where Rh is a rotation of angle h and axis e3, and we

look for the way a map y of minimal bending energy

deforms xh. We obtain in this way different sponta-

neously curved and twisted ribbon-like shapes yðxhÞ,
as h, the angle between the long axis of the rectangle

xh and the pre-stretch direction e1, is varied. In Fig. 1,

we show the cases h ¼ 0, h ¼ p=4, and h ¼ p=2,
leading to a coil, a helical ribbon, and a cigar-shaped

one reproducing some of the tunable helical ribbons of

[8].

We use the terminology ‘‘region painted on xh’’,

rather than ‘‘ region cut from xh’’ to emphasise that,

when a physical cut is performed, the stresses along

the exposed cut surfaces drop to zero, the pre-stretches

in boundary layers near the cut lines are released, and

the behaviour of the cut strips resembles that of the

painted strips only as long as edge effects are

negligible. This will be our working hypothesis here

and in what follows. We will study in [7] the regimes

of material and geometric parameters in which this

assumption leads to acceptable conclusions.

4.2 Equal uniaxial pre-stretches at right angles

in the two layers

We have now �E�
1 ¼ eðe2 
 e2Þ, �E�

2 ¼ eðe1 
 e1Þ,
e[ 0. It follows from (3.2) that

A ¼ 3

2h
ð�E�

2 � �E�
1Þ ¼ cðe1 
 e1 � e2 
 e2Þ ; c ¼ 3e

2h
:

ð4:2Þ

The curvature tensor Ay minimising the bending

energy (3.1) is obtained as the minimal energy

solution of the equilibrium equations (3.7). There are

two distinct solutions of equal minimal energy,

namely,

Ay ¼ A1 ¼ ð1� mÞcðe1 
 e1Þ ; Ay ¼ A2 ¼ �ð1� mÞcðe2 
 e2Þ ;

ð4:3Þ

describing a pair of cylinders with perpendicular axes,

opposite curvature, and whose cross-sections are

circles with radius

1

ð1� mÞc ¼
2h

3ð1� mÞe :

This means that rectangular strips cut out of x ¼
R2 may show bistability, as in [18]. This behaviour is

described pictorially in Fig. 2.

4.3 Equibiaxial pre-stretch in the bottom layer

This is the case �E�
1 ¼ 0, �E�

2 ¼ e I2, e[ 0. The target

curvature from (3.2) is then

A ¼ 3

2h
ð�E�

2 � �E�
1Þ ¼ c I2 ; c ¼ 3e

2h
: ð4:4Þ

In view of the rotational symmetry of the problem,

there are infinitely many curvature tensors minimising

the bending energy (3.1), namely,

Ay ¼ AðeÞ ¼ ð1þ mÞ c ðe
 eÞ ; ð4:5Þ

where e is an arbitrary unit vector in the plane of e1
and e2. The mid-plane x is mapped to a cylinder

whose cross-section is a circle of radius

1

ð1þ mÞc ¼
2h

3ð1þ mÞe : ð4:6Þ

and whose generatrix parallel to the cylinder axis may

be the image of any straight line in the plane of x. Put
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differently, a straight line in the plane of x can be

mapped by a deformation of minimal bending energy

into a helix wrapped around a cylinder of radius (4.6),

of arbitrary pitch from zero (in which case it is a circle

covered multiple times) to infinity (in which case it is a

straight generatrix parallel to the cylinder axis). This

means that rectangular strips cut out of x ¼ R2 may

behave as shells with zero stiffness to twisting, as in

[17]. Of course, in reality the stiffness of the system

will not be exactly zero and some preferred configu-

ration will be selected by imperfections and edge

effects, see [4, 10, 21]. Nevertheless, the elastic

Fig. 1 Different shapes obtained with horizontal uniaxal

prestretch in the bottom layer, as the angle h between the long

axis of the ribbon and the pre-stretch axis is varied: h ¼ 0 (red),

h ¼ p=4 (green), h ¼ p=2 (blue). Left panel: reference config-

urations; right panel: deformed configurations. (Color

figure online)

Fig. 2 Bistability in the case of equal uniaxial pre-stretch at right angles in the two layers
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behaviour of these ribbons will be anomalousy soft,

when compared to similar sheets with different pre-

stretches, or no pre-stretches at all.

The soft modes of response of the system discussed

above are described pictorially in Fig. 3. Explicit

equations describing this continuous family of isome-

tries of x of minimal bending energy can be found in

[3].

5 Discussion

We have shown that pre-stretched latex bilayer sheets

can provide us with a very valuable tool to explore

shape-programming and surface morphing problems.

Based on the predictions of a (nonlinear) bending

model, we expect that, by tuning the pre-stretches in

the top and bottom halves of the bilayer, we should be

able to reproduce a large variety of structural

behaviours: from the tunable helical ribbons of [8],

to the bistable shells and the shells of zero stiffness of

[17, 18].

Several questions and research directions open up

as a follow-up of the results of this paper. First, we

plan to investigate, both computationally and with

laboratory experiments, the reliability of the predic-

tions we have made, which are based on a bending

energy functional that arises as a thin film Gamma-

limit of a three-dimensional elastic model with

spontaneous strains. This will also enable us to go

beyond the restrictive scenario of homogeneously

curved plates and shells, which can be approached

with analytical calculations, and consider the effect of

applied loads, imperfections, and edge boundary

layers. For some preliminary results in this direction,

see [7].

In addition, we plan to export the understanding

gained in the study of pre-stretched bilayer sheets, a

model system, to more complex physical systems,

such as patterned thin films made of hydrogels. This is

an interesting system to explore questions regarding

the design of not only the equilibrium shapes of thin

structures, but also of their time-history (4D printing:

where the dimension of time is added to the ‘‘stan-

dard’’ three space dimensions [16]). For some prelim-

inary results in this direction, see [1, 24, 25].
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