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Abstract Sagged cable vibrations caused by support

motion and possible external loading are investigated

via the four-degree-of-freedom model proposed in

Benedettini et al. (J Sound Vib 182(5):775–798,

1995). The model has a considerable potential in

terms of forcing cases to be possibly addressed, with

the physical motion of the supports naturally giving

rise to a variety of external and parametric excitation

terms. Dynamics of the system is studied close to the

multiple internal resonance at cable crossover, which

involves two in-plane and two out-of plane vibration

modes. Solutions are found by the multiple time scale

method. In the numerical investigation, attention is

focused on the effects of planar support motion

(symmetric and/or antisymmetric) at primary reso-

nance, with the addition of planar symmetric external

excitation entailing a nice cancellation phenomenon in

the system response. Results are discussed also in the

background of theoretical and experimental outcomes

available in the literature. Comparison with a com-

puter simulation of original equations of motion shows

that analytical results are correct for moderately large

oscillations, whereas a different scenario of multi-

modal responses may occur at higher excitation

amplitudes. The nonlinear modal coupling is investi-

gated through bifurcation scenarios and other dynam-

ics tools, showing also transitions to complex response

regimes.

Keywords Suspended cable � Support motion �
External/parametric excitations � Nonlinear

oscillations � Multimodal response

1 Introduction

In the last three decades, nonlinear dynamics of

sagged cables has been studied in many papers under

various aspects, via analytical, numerical, and geo-

metrical approaches, as well as experimental tech-

niques. The interest to cable nonlinear dynamics is

motivated both by the richness of its theoretical
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behaviour, which has entitled the suspended cable to

be considered as a meaningful archetypical model

for the analysis of response of monodimensional

elastic systems with initial curvature, and by the

wide range of potential applications in civil,

mechanical, aerospace and marine engineering. A

review of nonlinear models and of the main dynam-

ical phenomena which may appear in sagged cables

under different resonance conditions is presented in

[2, 3], while some more recent achievements are

summarized in [4].

Among the features of specific interest there are

the crossover points in the spectrum of cable natural

frequencies, where conditions of multiple internal

resonance involving symmetric and antisymmetric,

in-plane and out-of-plane, modes occur and mean-

ingfully affect the nonlinear dynamic response.

Within the discretized, Galerkin-based, modelling

perspective commonly pursued for the investigation

of nonlinear response of continuous systems (for the

sagged cable, see [2]), a complete four-degree-of-

freedom model at first crossover was formulated in

Benedettini et al. [1] by considering external loading

distributed along the cable and support motion.

Later on, in the framework of the direct perturbation

approach which also allows one to capture the

spatial dependence of cable motion, a four-mode

model was formulated and used in [5, 6] by

considering external loading. Sole external loading

was indeed considered also in the perturbation

analyses of the four-d.o.f. model accomplished in

[1, 7] at primary and �-subharmonic resonance,

respectively, for dealing with the case of symmetric

planar excitation and showing an already meaning-

ful variety of classes of unimodal and multimodal

responses.

Excitation through support motion was instead at

the basis of a considerable amount of experimental

work on horizontally hanging cable dynamics per-

formed around the turn of the millennium. Refined

investigations allowed to identify a multitude of

classes of cable regular and non-regular motions

under different kinds of support motions and associ-

ated resonance conditions [8, 9], to characterize in-

depth the diverse involved mechanisms of transition to

complex dynamics [10–12], and to explore features of

control strategies [13]. Further experimental studies

on resonant vibrations under support motion are

reported in [14].

The effect of support motion on cable regular and

non-regular vibrations was indeed addressed in several

theoretical/numerical (and also experimental) papers

since about mid-nineties [15], however mostly with

reference to the nearly taut inclined cables of cable-

stayed bridges subject to horizontal motion of the

upper anchorage and/or to (prevailingly vertical)

motion of the lower deck support, which originate

simultaneous external and parametric excitations.

Besides earlier minimal-order models [16–19],

higher-order models accounting for three, four, or

more modes have been considered as well [20–25],

mostly if performing numerical simulations and using

continuation techniques. Theoretical treatments under

combined external and parametric excitations have

been sometimes accomplished in the literature by

considering also the self-excitation due, e.g., to air

flow in helicopter dynamics [26, 27] or wind flow in

cable-stayed bridge dynamics [28]. Experimental and

numerical investigation of nonlinear vibrations of

actually sagged inclined cables has been performed in

[29].

For horizontally suspended cables, the effect of

simultaneous external and parametric excitations,

first addressed in [30], was considered later, e.g., in

[31, 32], mostly for highlighting some global

dynamics aspects of system response, even though,

sometimes, with weak reference to an actual phys-

ical excitation in the background. Two-d.o.f. models

accounting for one in-plane and one out-of-plane

modes have been considered. Yet, a richer model is

likely needed to observe the possible richness of

interactions among vibration modes occurring

around crossover due to multiple internal resonances

and general nonlinear coupling, mostly in the

presence of a combination of forcing terms also

possibly corresponding to involved conditions of

multifrequency excitation.

It is thus worth resuming the four-d.o.f general

model in Benedettini et al. [1], with which no specific

theoretical/numerical work has been done yet to

evaluate the effect of support motion on cable

nonlinear dynamics, also in view of a possible

confirmation and cross-validation with the indepen-

dently obtained experimental outcomes. Indeed, in

this model, physical motion of the supports naturally

gives rise to a meaningful variety of additional

excitation terms, of both external and parametric

nature, within the four relevant ordinary differential
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equations (ODEs) of motion. One more aspect of

interest is that the ensuing parametric excitation is

acting on both linear and nonlinear modal variables,

the latter occurrence being a tricky issue which is

receiving attention only in recent literature and for

simpler models of continuous systems [33].

The model has a considerable potential in terms of

excitation cases to be possibly addressed. However, in

this paper, just a few of them will be actually

investigated to get some hints about the effects of

support motion on cable nonlinear response, looking at

the results also in the background of behaviours

previously observed theoretically/numerically in the

absence of support motion or experimentally under

their sole action. The main paper aims are summarized

as follows:

1. revisiting and extending the model and its third-

order multiple scale solution, with inclusion of

planar/nonplanar support motion and with proper

reconstitution of the modulation equations versus

the incomplete one [34] accomplished in [1];

2. exploiting the model and solutions to investigate

the effects of planar support motion (symmetric

and/or antisymmetric) at primary resonance, with

possible addition of planar symmetric external

excitation;

3. highlighting worth specific effects on the

dynamics, ensuing from the combination of

excitations;

4. cross-validating results obtained with multiple

scale analysis and numerical simulation of the

original ODEs for relatively low vibration ampli-

tudes, while detecting actual multimodal classes

of motion for larger excitation and response

amplitudes with the latter, along with some

relevant transitions to complex dynamics.

The paper is organized as follows. Section 2 is

devoted to discussing the reduced order model of a

suspended cable, mostly in view of the worth simpli-

fications which naturally arise for the physical prob-

lem, and to shortly dwelling on its considerable

potential for a thorough investigation of nonlinear

dynamic phenomena. The third-order multiple scale

solution is presented in Sect. 3. Nonlinear response

under planar excitations is illustrated and discussed in

Sect. 4, distinguishing among symmetric excita-

tions—external loading or support motion (Sect. 4.1),

as well as their combination which produces an

interesting cancellation effect (Sect. 4.2) –, antisym-

metric support motion (Sect. 4.3), and combined

symmetric and antisymmetric support motion

(Sect. 4.4), with also possible presence of (symmetric)

external loading (Sect. 4.5). A section of conclusions

and future developments ends the paper.

2 Reduced-order model of a suspended cable

The model of the considered d-sagged cable is

presented in Fig. 1, with the initial static equilibrium

in-plane configuration CI and the varied dynamic 3D

configuration CV attained through the displacement

field components u, v, w. It is assumed that the cable

supports are at the same level and can move only in the

y and z directions.

According to [1], the following assumptions are

made: (1) The dynamic extensional strain is expressed

through the Lagrangian strain measure; (2) the static

equilibrium configuration is defined by the parabola

y ¼ 4d x
l
� x

l

� �2
h i

, which entails ds � dx and allows to

approximate the cable initial tension TI with its

horizontal component H; (3) the gradient of the

longitudinal (u) in-plane displacement component is

negligible with respect to unity (moderately large

rotations in the cable motion); (4) H=EA � 1, where

EA is the cable axial stiffness per unit length. In the

absence of excitations in the longitudinal direction,

and neglecting the corresponding inertia and viscous

forces, the following two integro-partial differential

equations of motion are obtained via a kinematic

condensation procedure:

Fig. 1 Physical model of a sagged cable with static equilibrium

and dynamic configurations
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m€v

¼ Hv0 þ EA

l
y0 þ v0ð Þ

Z l

0

y0v0 þ 1

2
v0

2 þ w02
� �� �

dx

8
<

:

9
=

;

0

� lv _vþ pv

m €w

¼ Hw0 þ EA

l
w0

Z l

0

y0v0 þ 1

2
v0

2 þ w02
� �� �

dx

8
<

:

9
=

;

0

� lv _wþ pw

ð1Þ

where the dot and prime mean o=ot and o=ox,

respectively, m and lv, lw are mass and viscous

damping coefficients per unit length, and pv, pw are

vertical and horizontal out-of-plane components of the

external load distributed along the cable. The bound-

ary conditions read

vð0; tÞ ¼ ~v0ðtÞ; wð0; tÞ ¼ ~w0ðtÞ;
vðl; tÞ ¼ ~vlðtÞ; wðl; tÞ ¼ ~wlðtÞ

ð2Þ

where ~v0ðtÞ, ~w0ðtÞ ~vlðtÞ, ~wlðtÞ represent prescribed

motion of the supports at x = 0 and x = l cable ends.

Taking into account two in-plane and two out-of-

plane vibration modes of the cable with fixed supports

(see Appendix 1, where physical cable data and values

of all coefficients and parameters later on considered

in the numerical investigation are also reported), the

Galerkin reduction procedure leads to the following

set of four dimensionless ODEs [1]

€q1 þ l�v _q1 þ k2
1q1 þ

X4

i¼1

ciq
2
i þ

X

i¼2;4

c
p
i qi0qi

þ
X4

i¼1

d1iq1q
2
i þ

X

i¼2;4

e
p
1iq

2
i0q1 þ g

p
1iqi0qiq1

� �

¼ ce1p1ðtÞ þ cs1 €q10 þ l�v _q10

� �
þ

X

i¼2;4

hs1iq
2
i0

€q2 þ l�v _q2 þ k2
2q2 þ c21q2q1 þ c

p
21q20q1

þ
X4

i¼1

d2iq2q
2
i þ

X4

i¼1

d
p
2iq20q

2
i þ

X

i¼2;4

e
p
2iq

2
i0q2

þ g
p
24q40q2q4 þ m

p
24q40q20q4

¼ ce2p2ðtÞ þ cs2 €q20 þ l�v _q20

� �
þ ns2q20

þ
X

i¼2;4

rs2iq
2
i0q20

€q3 þ l�w _q3 þ k2
3q3 þ c31q3q1

þ
X4

i¼1

d3iq3q
2
i þ

X

i¼2;4

e
p
3iq

2
i0q3 þ g

p
3iqi0qiq3

� �

¼ ce3p3ðtÞ þ cs3 €q30 þ l�w _q30

� �

€q4 þ l�w _q4 þ k2
4q4 þ c41q4q1 þ c

p
41q40q1 þ

X4

i¼1

d4iq4q
2
i

þ
X4

i¼1

d
p
4iq40q

2
i þ

X

i¼2;4

e
p
4iq

2
i0q4 þ g

p
42q20q4q2

þ m
p
42q40q20q2 ¼ ce4p4ðtÞ þ cs4 €q40 þ l�v _q40

� �

þ ns4q40 þ
X

i¼2;4

rs4iq
2
i0q40 ð3Þ

where qj is a dimensionless, generalized coordinate for

in-plane symmetric (j = 1) and antisymmetric (j = 2)

mode, out-of-plane symmetric (j = 3) and antisym-

metric (j = 4) mode.

The support motion is defined by functions qj0 tð Þ,
j = 1…4, which are related to the original boundary

conditions (2) in the following way:

• for in-plane motion

~v0 tð Þ ¼ q10 tð Þ þ q20 tð Þ
~vl tð Þ ¼ q10 tð Þ � q20 tð Þ

ð4Þ

• for out-of-plane motion

~w0 tð Þ ¼ q30 tð Þ þ q40 tð Þ
~wl tð Þ ¼ q30 tð Þ � q40 tð Þ

ð5Þ

Selecting functions qj0ðtÞ we can activate symmet-

ric or antisymmetric, in-plane or out-of-plane modes.

Superscripts introduced for the coefficients in Eq. (3)

denote terms related to direct external excitation

(index e), support motion producing external-like

excitation (index s), support motion producing para-

metric-like excitation (index p).

The explicit expressions of all coefficients in

Eq. (3) are given in the Appendix B of [1] and are

not reproduced here for the sake of brevity. Looking at

them, it can be easily verified analytically that a

substantial number of coefficients vanishes, i.e., all of

those depending on the identically vanishing integrals

(I2
dp and I4

dp in the mentioned Appendix B) of the

second in-plane (j = 2) and second out-of-plane

(j = 4) cable modes, which are antisymmetric.
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In particular, vanishing coefficients are related to

the following terms of Eq. (3) linked to antisymmetric

(in-plane or out-of-plane) support motions (see details

in Appendix 1):

• some of those producing linear parametric exci-

tation (ci
p, ci1

p , mji
p are equal to zero);

• all of those producing nonlinear parametric exci-

tation (dji
p, gji

p are equal to zero);

• some of those producing external excitation (ni
s, rji

s

are equal to zero).

Equations of motion (3) thus reduce to

€q1þlv _q1þk2
1q1þ

X4

i¼1

ciq
2
i þ

X4

i¼1

d1iq1q
2
i þ

X

i¼2;4

e
p
1iq

2
i0q1

¼ce1p1ðtÞþcs1ð€q10þlv _q10Þþ
X

i¼2;4

hs1iq
2
i0;

€q2þlv _q2þk2
2q2þc21q2q1þ

X4

i¼1

d2iq2q
2
i

þ
X

i¼2;4

e
p
2iq

2
i0q2 ¼ ce2p2ðtÞþcs2ð€q20þlv _q20Þ;

€q3þlw _q3þk2
3q3þc31q3q1þ

X4

i¼1

d3iq3q
2
i

þ
X

i¼2;4

e
p
3iq

2
i0q3 ¼ ce3p3ðtÞþcs3ð€q30þlw _q30Þ;

€q4þlw _q4þk2
4q4þc41q4q1þ

X4

i¼1

d4iq4q
2
i

þ
X

i¼2;4

e
p
4iq

2
i0q4 ¼ ce4p4ðtÞþcs4ð€q40þlw _q40Þ; ð6Þ

Notwithstanding the ensuing simplification,

besides quadratic and cubic terms due to cable

geometric nonlinearities (governed by coefficients ci,

ci1 and dji, respectively) and external excitation terms

(governed by coefficients ci
e), Eq. (6) still exhibit the

following terms arising from support motion:

• linear parametric excitation (governed by coeffi-

cients ej2
p , ej4

p ), present in all four equations; these

terms exist only in the case of non-vanishing

antisymmetric in-plane (q20 = 0) or out-of-plane

(q40 = 0) support motion;

• additional external excitation (governed by coef-

ficients h12
s , h14

s ), occurring in the sole first

equation in the case of non-vanishing antisym-

metric in-plane (q20 = 0) or out-of-plane

(q40 = 0) support motion;

• additional external excitation (governed by coef-

ficients ci
s), existing in each one of the four

equations if the corresponding component of

support motion is different from zero.

Thus, within a great variety of possible cable physical

excitations, the reduced-order model exhibits excitation

conditions of different dynamical nature also in its

simplified version, with likely meaningful related

effects. By way of example, even if limiting ourselves

to the solely planar support motion (q30 = q40 = 0) and

a direct, symmetrically distributed, vertical external

excitation (p2 = p3 = p4 = 0), the following basic

situations can be distinguished.

1. If considering only symmetric harmonic motion

of the supports (q10 = A10cosXst, q20 = 0), no

parametric excitation occurs, but the resulting

external excitation in the first equation may come

from the summation of up to three terms, one due

to the possibly coexisting external excitation

ce1p1ðtÞ of frequency X, and the other two ensuing

from the symmetric support motion of frequency

Xs:

ce1p1ðtÞ þ cs1ð€q10 þ lv _q10Þ
¼ P1cosXt � cs1A10XsðXscosXst þ lvsinXstÞ

ð7Þ

This is a situation of multifrequency excitation in the

first (symmetric in-plane) equation, which may

meaningfully affect the occurrence of the various

classes of motion (from the unimodal q1 to multi-

modal also involving other components of motion)

already highlighted in the case of sole direct external

excitation ce1p1ðtÞ of frequency X [1].

2. If considering only antisymmetric harmonic

motion of the supports (q10 = 0, q20 = A20cosXst),

indirect (i.e., support motion-originated) external

excitations exist both in the first equation

hs12q
2
20 ¼ hs12A

2
20cos2Xst

¼ hs12A
2
20½ð1 þ cos2XstÞ=2� ð8Þ

and in the second equation

cs2ð€q20 þ lv _q20Þ ¼ �cs2A20XsðXscosXst

þ lvsinXstÞ; ð9Þ

even in the absence of any direct external

excitation ce1p1ðtÞ, giving rise to a situation of

multifrequency external excitation spread over the
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first two equations; moreover, there is parametric

excitation due to q20, which includes products of

the coordinate and harmonic functions with

frequency 2Xs,

e
p
j2q

2
20qj ¼ e

p
j2qjA

2
20 cos2 Xst

¼ e
p
j2qjA

2
20 1 þ cos 2Xstð Þ=2½ �;

j ¼ 1. . .4

ð10Þ

in all four equations.

If, in addition, there is the direct external excita-

tion ce1p1ðtÞ of frequency X, multifrequency

external excitation (different from the one in

Eq. (7)) occurs already in the first equation

ce1p1ðtÞ þ hs12q
2
20 ¼ P1cosXt þ hs12A

2
20½ð1

þ cos2XstÞ=2� ð11Þ

whereas nothing changes in the second and

remaining equations.

3. Of course, if considering a generic harmonic

support motion—to be expressed as a combina-

tion of proper symmetric and antisymmetric

components—further distinct sub-cases of possi-

ble dynamic interest can arise.

4. All of this without considering neither direct,

antisymmetrically distributed, external excitation

ce2p2ðtÞ—which could indeed be somehow unre-

alistic from the physical viewpoint—, nor out-of-

plane direct excitation and/or support motion,

which would instead be physically meaningful

and would add further worth perspectives.

Overall, it is clear how a great richness of nonlinear

dynamic responses is indeed possible, even in the sole

regular regime, with the relevant comparison in the

diverse cases having a remarkable interest.

3 Multiple scale solution

To determine approximate analytical solutions of Eq. (6)

we use the multiple time scale method [35] with support of

‘Wolfram Mathematica�10’ package for symbolic com-

putations. We consider the 1:1:1/2:1 multiple internal

resonance condition occurring at first crossover, with the

symmetric planar and anti-symmetric planar and non-

planar modes having the same frequency and the

symmetric non-planar mode having half frequency (Ap-

pendix 1). This means that, for some set of excitation and

damping values all modes can be involved in the response.

The solutions of Eq. (6) are sought in the form of power

series expansion of the small parameter e

qjðt; eÞ ¼ eqj1ðT0; T1; T2Þ þ e2qj2ðT0; T1; T2Þ
þ e3qj3ðT0; T1; T2Þ þ � � � ð12Þ

where qj1 T0; T1; T2ð Þ, qj2 T0; T1; T2ð Þ, qj3 T0; T1;T2ð Þ
are the first, second and third order approximation of

the j-th mode, respectively. Independent time scales

are introduced according to:

T0 ¼ t; T1 ¼ et; T2 ¼ e2t ð13Þ

where T0 is the fast and T1, T2 are slow time scales.

Such time definitions result in m order partial deriva-

tives with respect to different (n) time-scales,

Dm
n ð : Þ ¼ om

oTm
n
ð : Þ.

We also assume that direct external loading and

motion of supports are harmonic functions taken at the

first order of perturbation, respectively

pjðtÞ ¼ e~pj1 cosXT0; qj0ðtÞ ¼ e~Aj0 cosXsT0;

j ¼ 1. . .4;
ð14Þ

along with parameters related to damping, direct

external excitation, and support motion

l�v ¼ e~l11 ¼ e~l21; l�w ¼ e~l31 ¼ e~l41; cej ¼ e~cej ;
csj ¼ e~csj :

Substituting solution (12) into Eq. (6), taking into

account the derivative definitions, and grouping terms

with respect to order e, we get a set of linear differential

equations at the successive perturbation orders

e1-order

D2
0q11 þ k2

1q11 ¼ 0

D2
0q21 þ k2

2q21 ¼ 0

D2
0q31 þ k2

3q31 ¼ 0

D2
0q41 þ k2

4q41 ¼ 0

ð15Þ

e2-order

D2
0q12 þk2

1q12 þl11D0q11 þ2D0D1q11

þ
X4

j¼1

cjq
2
j1 ¼ ce1p11 cosXT0 � cs1A10X

2
s cosXsT0

�
X

j¼2;4

hs1jA
2
20X

2
s cos2XsT0
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D2
0q22 þk2

2q22 þl21D0q21 þ2D0D1q21

þ c21q21q11 ¼ ce2p21 cosXT0 � cs2A20X
2
s cosXsT0

D2
0q32 þk2

3q32 þl31D0q31 þ2D0D1q31

þ c31q31q11 ¼ ce3p31 cosXT0 � cs3A30X
2
s cosXsT0

D2
0q42 þk2

4q42 þl41D0q41 þ2D0D1q41

þ c41q41q11 ¼ ce4p41 cosXT0 � cs4A40X
2
s cosXsT0

ð16Þ

e3-order

D2
0q13 þ k2

1q13 þ l11 D0q12 þ D1q11ð Þ þ 2D0D1q12

þ 2D0D2q11 þ D2
1q11 þ

X4

j¼1

2cjqj1qj2

þ
X4

j¼1

d1jq11q
2
j1 þ

X

j¼2;4

e
p
1jq11A

2
j0 cos2 XsT0

¼ �cs1A10l11Xs sinXsT0

D2
0q23 þ k2

2q23 þ l21 D0q22 þ D1q21ð Þ þ 2D0D1q22

þ2D0D2q21 þ D2
1q21 þ c21 q11q22 þ q12q21ð Þ

þ
X4

j¼1

d2jq21q
2
j1 þ

X

j¼2;4

e
p
2jq21A

2
j0 cos2 XsT0

¼ �cs2l21A20Xs sinXsT0

D2
0q33 þ k2

2q23 þ l31 D0q32 þ D1q31ð Þ þ 2D0D1q32

þ2D0D2q31 þ D2
1q31 þ c21 q11q32 þ q12q31ð Þ

þ
X4

j¼1

d3jq31q
2
j1 þ

X

j¼2;4

e
p
3jq31A

2
j0 cos2 XsT0

¼ �cs3l31A30Xs sinXsT0

D2
0q43 þ k2

4q43 þ l41 D0q42 þ D1q41ð Þ þ 2D0D1q42

þ2D0D2q41 þ D2
1q41 þ c41 q11q42 þ q12q41ð Þ

þ
X4

j¼1

d4jq41q
2
j1 þ

X

j¼2;4

e
p
4jq41A

2
j0 cos2 XsT0

¼ �cs4l41A40Xs sinXsT0

ð17Þ

To study the interaction of direct external excita-

tion, external and parametric excitations due to

support motion, and geometrically nonlinear terms,

we have to solve the perturbation problem at least up

to the third order.

Besides the multi-internal resonance condition

(k1 = k2 = k4 = 1, k3 = 1/2), we consider primary

external resonance (X � 1), and assume frequency of

support motion to be equal to the external loading one,

i.e., Xs = X, for the sake of simplicity. To account for

internal resonances we introduce the detuning param-

eters r1, q2, q3, q4, and express the dimensionless

natural frequencies of each mode with respect to that

of the first mode (k1). Therefore we write the following

conditions for the external and internal resonances

k2
1 ¼ X2 � er1; k

2
2 ¼ k2

1 � eq2; k
2
3 ¼ k2

1

4
� eq3; k

2
4 ¼ k2

1 � eq4

ð18Þ

Conditions (18) are inserted into perturbation

Eqs. (15)–(17) and the solutions of the ensuing e-
order system of equations are expressed in the form

q11ðT0; T1; T2Þ ¼ A1ðT1; T2Þ expðiXT0Þ
þ A1ðT1; T2Þ expð�iXT0Þ

q21ðT0; T1; T2Þ ¼ A2ðT1; T2Þ expðiXT0Þ
þ A2ðT1; T2Þ expð�iXT0Þ

q31ðT0; T1; T2Þ ¼ A3ðT1; T2Þ exp i
X
2
T0

� 	

þ A3ðT1; T2Þ exp �i
X
2
T0

� 	

q41ðT0; T1; T2Þ ¼ A4ðT1; T2Þ expðiXT0Þ
þ A4ðT1; T2Þ expð�iXT0Þ ð19Þ

where i is the imaginary unit, Aj is the complex

amplitude, and �Aj its complex conjugate. Solutions

(19) are substituted into Eq. (16) and, upon eliminating

secular generating terms, we get the complex form of

modulation equations on the T1 slow time scale

2iXD1A1 �r1A1 þ il11A1Xþ c3A
2
3 þ

1

2
cs1X

2A10 �
1

2
ce1p11 ¼ 0

2iXD1A2 �q2A2 þ il21A2Xþ1

2
cs2X

2A20 �
1

2
ce2p21 ¼ 0

iXD1A3 �q3A3 þ
1

2
il31A3Xþc31A1A3 ¼ 0

2iXD1A4 �q4A4 þ il41A4Xþ1

2
cs4X

2A40 �
1

2
ce4p41 ¼ 0

ð20Þ

Then, determining particular solutions of second

order Eq. (16) without secular generating terms,

substituting them into the third order Eq. (17), and

imposing vanishing of the new set of secular gener-

ating terms, provide the complex form of modulation

equations on the T2 scale
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D2
1A1 þ 2iXD2A1 þ l11D1A1 þ Fs

10 þ �Fs
1 þ �Fp

1

� �
�A1

þ F111A
2
1
�A1 þ F221A

2
2
�A1 þ F441A

2
4
�A1 þ Fs

1 þ F
p
1

� �
A1

þ F122A1A2
�A2 þ F133A1A3

�A3 þ F144A1A4
�A4 ¼ 0

D2
1A2 þ 2iXD2A2 þ l21D1A2 þ Fs

20 þ F112A1
�A1A2

þ �Fs
2 þ �Fp

2

� �
�A2 þ F222A

2
2
�A2 þ �F112A

2
1
�A2 þ F442A

2
4
�A2

þ Fs
2 þ F

p
2

� �
A2 þ F233A2A3

�A3 þ F244A2A4
�A4 ¼ 0

D2
1A3 þ iXD2A3 þ l31D1A3 þ F113A1

�A1A3 þ F223A2
�A2A3

þ F333A
2
3
�A3 þ Fs

3 þ F
p
3

� �
A3 þ F344A3A4

�A4 ¼ 0

D2
1A4 þ 2iXD2A4 þ l41D1A4 þ Fs

40 þ F114A1
�A1A4

þ F334A3
�A3A4 þ �Fs

4 þ �Fp
4

� �
�A4 þ F224A

2
2
�A4

þ F242A2
�A2A4 þ F444A

2
4
�A4 þ �F114A

2
1
�A4

þ Fs
4 þ F

p
4

� �
A4 ¼ 0;

ð21Þ

with the definitions of F coefficients being given in

Appendix 2.

It is worth noting that in the multiple scale analysis

of the sole external load case pursued in [1], the

D2
1Aj; j ¼ 1; 4, contributions occurring in the secular

generating terms at T2 time scale were neglected,

based on the assumption of vanishing of underlying

D1Aj; j ¼ 1; 4 terms to be independently imposed at

the T1 time scale when looking for only steady state

solutions. This was one of the alternative ways to

deal with the matter previously discussed in the

literature [36]. Following studies have clarified that

this is indeed an inconsistent procedure since

singular points of the modulation equations, corre-

sponding to steady state solutions, have to be

unitarily looked for on their complete and consistent

reconstituted version [34, 37]. Indeed, applying the

reconstitution method, we may formulate the mod-

ulation equations in terms of complex amplitudes Aj,

with the amplitude derivative with respect to

dimensionless time taking the form

dAj

dt
¼ eD1Aj þ e2D2Aj j ¼ 1 � 4 ð22Þ

To determine modulation equations in the form (22)

we have to do some additional computations. At first

we find D1Aj and D2Aj from Eqs. (20) and (21), then

substituting them into (22) we get four complex

amplitude modulation equations (AMEs) up to the

second order

dA1

dt
¼ e

1

4
iA10c

s
1X�1

2
l11 þ

ir1

X

� 	
A1 þ

ic3

2X
A2

3 �
iP11

4X

� �

þ e2 P11

16X3
l11X� ir1ð ÞþGs

01þ
�

G33A
2
3

þ �Gs
1 þ �Gp

1

� �
�A1 þ �G111A

2
1
�A1 þG221A

2
2
�A1

þG441A
2
4
�A1 þ G

p
1 þGs

1 þG1

� �
A1

þG122A1A2
�A2 þG133A1A3

�A3þG144A1A4
�A4

�

dA2

dt
¼ e �1

2
l21 þ

iq2

X

� 	
A2 þ

1

4
ics2XA20 �

iP21

4X

� �

þ e2 1

16X3

�
P21 l21X� iq2ð ÞþGs

02

þ �G121A1A2
�A1 þ �Gp

2 þ �Gs
2

� �
�A2 þ �G112A

2
1
�A2

þ �G222A
2
2
�A2 þ �G442A

2
4
�A2 þ G

p
2 þGs

2 þG2

� �
A2

þ �G233A2A3
�A3þ �G244A2A4

�A4

�

dA3

dt
¼ e �1

2
l31 þ

iq3

X

� 	
A3 þ

ic31

X
A1

�A3

� �

þ e2 G232A2A3
�A2½ þ ic31

4X3
P11

�A3 þ �Gs
3
�A3

þ �G333A
2
3
�A3 þ �G131A1A3

�A1 þ �G13A1
�A3

þ G
p
3 þGs

3 þG3

� �
A3 þ �G344A3A4

�A4

�

dA4

dt
¼ e �1

2
l41 þ

iq4

X

� 	
A4 þ

1

4
ics4XA40 �

iP41

4X

� �

þ e2 P41

16X3
l41X� iq4ð ÞþGs

04þ
�

�G141A1A4
�A1

þ �G343A3A4
�A3 þ �Gs

4 þ �Gp
4

� �
�A4 þ �G114A

2
1
�A4

þ �G224A
2
2
�A4 þ �G444A

2
4
�A4

þ Gs
4 þG

p
4 þG4

� �
A4þG242A2A4

�A2

�

ð23Þ

with the G coefficients being defined in Appendix 3.

Expressing the complex amplitude Aj in the polar

form

Aj ¼
1

2
aje

i/j ; ð24Þ

with amplitude and phase aj, /j, substituting (24) into

(23) and separating real and imaginary parts, we get

eight modulation equations for the amplitude and

phase. For the perfect tuning of frequencies,

q2 ¼ q3 ¼ q4 ¼ r1, they read
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X3 _a1 ¼ e � 1

2
a1l11X

3 þ 1

8
k2

1 � 5X2
� �

P11 � A10c
s
1X

2

 �

sin/1 þ
a2

3c3

16
6X2 � k2

1 � 4k2
3

� �
sinð/1 � 2/3Þ

�


þ e2 1

8
l11X P11 þ 3A10c

s
1l11X

2
� �

cos/1 þ
1

4
a1

X

j¼2;4

A2
j0 � 1

3
c1h

s
1j þ

1

2
e
p
1jX

2

� 	
sin 2/1

"

þ a2
3c3X
16

2l31 � l11ð Þ cosð/1 � 2/3Þþ
1

4
a1

X

j¼2;4

a2
j

1

3
c1cj � cjcj1 þ

1

2
d1jX

2

� 	
sin 2ð/1 � /jÞ

#

a1X
3 _/1 ¼ 1

8
a1 k2

1 6X2 � k2
1

� �
� 5X4


 �
þ e

1

8
k2

1 � 5X2
� �

P11 � A10c
s
1X

2
� �

cos/1 þ
a2

3c3

16
6X2 � k2

1 � 4k2
3

� �
cosð/1 � 2/3Þ

� �

þ e2 1

4
a1 � 5

3
a2

1c
2
1 �

1

2
l2

11X
2 þ 3

4
a2

1d11X
2

� 	
þ 1

2
a1a

2
3

1

2
d13X

2 � c1c3

� 	�

� 1

2
a1

X

j¼2;4

a2
j c1cj þ

1

3
cjcj1 �

1

2
d1jX

2

� 	
þ 1

2
a1

X

j¼2;4

A2
j0 c1h

s
1j þ

1

2
e
p
1jX

2

� 	

þ 1

4
a1

X

j¼2;4

A2
j0 � 1

3
c1h

s
1j þ

1

2
e
p
1jX

2

� 	
cos 2/1 þ

1

4
a1

X

j¼2;4

a2
j

1

3
c1cj � cjcj1 þ

1

2
d1jX

2

� 	
cos 2ð/1 � /jÞ

� 1

8
l11X P11 þ 3A10c

s
1X

2
� �

sin/1þ
1

8
Xc3a

2
3

1

2
l11 � l31

� 	
sinð/1 � 2/3Þ

�

X3 _a2 ¼ e � 1

2
a2l21X

3 þ 1

8
k2

2 � 5X2
� �

P21 � A20c
s
2X

2
� �

sin/2

� �

þ e2 1

8
l21X P21 þ 3A20c

s
2X

2
� �

cos/2

�
þ a2a

2
1

24
3c2

21 � c21c1 � 3d21X
2

� �
sin 2ð/1 � /2Þ

þ 1

8
a2

X

j¼2;4

A2
j0 � 1

3
c21h

s
1j þ e

p
2jX

2

� 	
sin 2/2þ

a2a
2
4

24
c21c4 þ 3d24X

2
� �

sin 2ð/2 � /4Þ
�

a2X
3 _/2 ¼ a2

8
6k2

2X
2 � k4

2 � 5X4
� �

þ e
1

8
k2

2 � 5X2
� �

P21 � A20c
s
2X

2
� �

cos/2

� �

þ e2 1

8
a3

2 3d22X
2 � 5c21c2

3

� 	
þ 1

4
a2

X

j¼1;3;4

a2
j d2jX

2 � c21cj
� �

� c2
21

12
a2

1a2 �
1

8
a2l

2
21X

2

"

þ 1

4
a2

X

j¼2;4

A2
j0 c21h

s
1j þ e

p
2jX

2
� �

� 1

8
l21X P21 þ 3A20X

2cs2
� �

sin/2 þ
1

8
a2

X

j¼2;4

A2
j0 � 1

3
c21h

s
1j þ e

p
2jX

2

� 	
cos 2/2

� 1

8
c2

21a2a
2
1 cos 2 /1 � /2ð Þ þ 1

8
a2

X

j¼1;4

a2
j

cjc21

3
þ d2jX

2
� �

cos 2ð/j � /2Þ
#

X3 _a3 ¼ e � 1

2
a3l31X

3 þ 1

4
a3a1c31 k2

1 � 3X2
� �

sinð/1 � 2/3Þ
� �

þ e2 1

4
a3c31 P11 � A10c

s
1X

2
� �

sin 2/3 þ
1

4
a3a1c31l11X cosð/1 � 2/3Þ

� �

a3X
3 _/3 ¼ a3 k2

3

3

2
X2 � k2

3

� 	
� 5

16
X4

� �
þ e

1

4
a1a3c31 �k2

1 þ 3X2
� �

cosð/1 � 2/3Þ
� �

þ e2 3

8
c2

31a
2
1a3 þ

1

4
a3

3 � 5

2
c31c3 þ 3d33X

2

� 	
þ 1

2
a3c31

X

j¼1;2;4

�a2
j cj þ d3jX

2
� �

� 1

4
l2

31X
2a3

"

þ 1

2
a3

X

j¼2;4

A2
j0 c31h

s
1j þ e

p
3jX

2
� �

þ 1

4
a3c31 P11 � A10c

s
1X

2
� �

cos 2/3 þ
1

4
a1a3c31l11X sinð/1 � 2/3Þ

�

X3 _a4 ¼ e � 1

2
a4l41X

3 þ 1

8
k2

4 � 5X2
� �

�
P41 � A40c

s
4X

2
� �

sin/4

�
þ e2 1

8
l41X P41 þ 3A40c

s
4X

2
� �

cos/4

�
þ 1

8
a4a

2
1c

2
41 sin 2ð/1 � /4Þ

þ 1

8
a4

X

j¼2;4

A2
j0 � 1

3
c41h

s
1j þ e

p
4jX

2

� 	
sin 2/4�

1

8
a4

X

j¼1;2

a2
j

1

3
cjc41 þ d4jX

2

� 	
sin 2ð/j � /4Þ

#

a4X
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8
6k2

4X
2 � k4

4 � 5X4
� �
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1

8
k2
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� �
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s
4X

2
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þ e2 1

4
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a2
j d4jX

2 � c41cj
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"

þ 1

8
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4
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3
c41c4 þ 3d44X

2
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8
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2
41X

2 � 1
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þ 1

4
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j0 c41h

s
1j þ e
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4jX
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� �

� 1

8
l41X P41 þ 3A40X
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� �

sin/4 þ
1

8
a4

X

j¼2;4

A2
j0 � 1

3
c41h

s
1j þ e

p
4jX

2

� 	
cos 2/4

� 1

8
c2

41a4a
2
1 cos 2ð/1 � /4Þ þ

1

8
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j

1
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2

� 	
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ð25Þ
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where Pj1 ¼ cej pj1 is the amplitude of the direct

external loading.

Taking into account generating solutions (19) and

second order particular solutions, and expressing the

complex amplitudes in the polar form (24), according

to Eq. (12) we obtain the complete solutions up to the

second order approximation

q1 ¼ ea1 cos XT0 þ/1ð Þþ e2 1

2X2

�c3a
2
3 þ

X

j¼1;2;4

cja
2
j �1þ1

3
cos 2XT0 þ2/1ð Þ

� 	"

þ
X

j¼2;4

hs1jA
2
j0 1� 1

3
cos2XT0

� 	#

q2 ¼ ea2 cos XT0 þ/2ð Þþ e2 1

2X2

c21a1a2 �cos /1 �/2ð Þþ 1

3
cos 2XT0 þ/1 þ/2ð Þ

� 	� �

q3 ¼ ea3 cos
X
2
T0 þ/3

� 	
þ e2 4

3X2

�
cs3X

2A30 �P31

� �
cosXT0

þ1

3
c31a1a3 cos

3

2
XT0 þ/1 þ/3

� 	�

q4 ¼ ea4 cos XT0 þ/4ð Þþ e2 1

2X2

c41a1a4 �cos /1 �/4ð Þþ 1

3
cos 2XT0 þ/1 þ/4ð Þ

� 	� �

ð26Þ

Amplitudes aj and phases /j are found from

modulation equations (25), or in the steady state from

the algebraic equations obtained by equating Eq. (25)

to zero.

4 Nonlinear response to planar symmetric/

antisymmetric excitations

To limit the amount of numerical investigations, the

strong variety of possible harmonic excitation conditions

due to external loads distributed along the cable and due

to support motions is restricted to cases of sole in-plane

excitations (P3 = P4 = A30 = A40 = 0). In particular,

sole symmetrically distributed load (P11 = 0, P21 = 0)

and symmetric (A10 = 0) and/or antisymmetric

(A20 = 0) support motions are considered, along with

some relevant combinations. Moreover, whether coex-

isting, distributed loads and support motions are

assumed to have the same frequency (X = Xs), thus

considering only cases of monofrequency excitations;

this strongly reduces the number of dynamical condi-

tions of possible interest to be addressed, mostly as

regards combination resonances. System response will

be analyzed in five distinct excitation cases:

• Symmetric excitation

(i) External loading or symmetric support

motion (P11 = 0 or A10 = 0, A20 = 0)

(ii) Combined external loading and symmetric

support motion (P11 = 0 and A10 = 0,

A20 = 0)

• Antisymmetric excitation

(i) Antisymmetric support motion (P11 = 0,

A10 = 0, A20 = 0)

• Mixed excitation

(i) Symmetric plus antisymmetric support

motion (P11 = 0, A10 = 0, A20 = 0)

(ii) Combined external loading and symmetric

plus antisymmetric support motion

(P11 = 0, A10 = 0, A20 = 0)

Numerical solution of the AMEs is obtained via

continuation in terms of (frequency or amplitude)

excitation parameters by means of AUTO� [38].

Direct numerical simulation of the four simplified

ODEs of motion (Eq. (6)) is also performed with

AUTO�, and the ensuing system response with

Dynamics� [39], illustrating the results through fre-

quency- and force-response curves, phase portraits,

Poincaré maps, and bifurcation diagrams [40]. In the

ODE simulation, excitation amplitude values such to

allow for a comparison with the results provided by the

multiple scale analysis, which are solely valid in the

weakly nonlinear regime, are first considered. How-

ever, higher excitation amplitudes possibly entailing

quasiperiodic and chaotic responses typical of strongly

nonlinear regimes are also investigated.

Before addressing the results, it is worth noting that

no parametric terms actually exist in the ODEs in the

case of solely symmetric excitation, since they are

only activated by the presence of antisymmetric

support motion (see points 1. and 2. in Sect. 2). In

the following, the nature of excitation terms occurring

in the various ODEs will be pointed out in the selected

cases, to help analyzing and/or interpreting numerical

results.
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4.1 Direct external loading or symmetric support

motion (P11 = 0 or A10 = 0, A20 = 0)

For the sake of comparison with results available in the

literature [1], we start by considering direct external

excitation of amplitude P11 and frequency X. The

softening a1 frequency–response curve obtained at

primary resonance via the modulation equations (25)

is shown in Fig. 2a.

In the strict neighbourhood of X � 1, the directly

excited planar unimodal response a1 (continuous black

line) becomes unstable (dashed line) and the third mode

a3 is activated (green line in Fig. 2c) via period doubling

(PD) bifurcations, owed to the 2:1 internal resonance.

The in-plane antisymmetric mode a2 is also activated

via pitchfork bifurcations (PB) but it is unstable (-

dashed red lines in Fig. 2a, b), so that the response is

symmetric bimodal (a1, a3), with nearly comparable

amplitude values of the two participating compo-

nents. Within the considered range of values of the

excitation amplitude, this confirms the results in

Fig. 3a, b of [1], thus showing the relatively minor

effect, at least for low excitation amplitudes, of the

partially inconsistent calculation of the modulation

equations on the T2 time scale therein pursued and

later on embedded in the reconstitution process.

Frequency–response results obtained through

numerical simulation of the original ODEs (Fig. 3a–

c) fully validate analytical results in terms of values of

both response amplitudes and bifurcations points. The

eight shaped response typically occurring for a great

variety of 2:1 internally resonant oscillators, and

herein depicting the transverse physical motion of the

cable mid-span point, is shown in the phase portrait of

Fig. 3d. In the following, both AMEs and ODEs are

used for detailed bifurcation analyses to highlight the

agreement occurring at medium–low response ampli-

tudes as well as some different response scenarios

characterizing stronger nonlinear regimes.

Force-response curves are presented in Fig. 4 for

two different values of excitation frequency. Instabil-

ity of the unimodal a1 solution and onset of the

stable nonplanar bimodal solution (a1, a3), with the

classical saturation of planar response, occurs at both

the perfect primary resonance (X = 1, Fig. 4a, b) and

for a slightly detuned frequency value (X = 1.04545,

Fig. 4c, d). However, the a3 component is activated

via supercritical PB (Fig. 4b) in the former case versus

subcritical PB (Fig. 4d) in the latter case, where it is

initially unstable and then turns out to be stable via a

(strictly neighbouring) saddle-node (SN) bifurcation

(see also [1]).

Let us now move to consideration of the sole in-

plane A10 support motion, which results in indirect

external terms of kinematic and inertial nature exciting

the first planar mode, as shown in Eq. (7) (where P11 is

assumed to be equal to zero). Analytical frequency- and

force-response curves companion of those previously

obtained with direct external load (Figs. 2, 4a, b) are

reported in Figs. 5, 6a, c, respectively. In obtaining the

former, the amplitude value A10 is selected in such a

way to get responses of the same level as those provided

by the direct external force. Due to the effect of indirect

kinematic and inertial excitations, frequency–response

curves in Fig. 5 are very similar to those in Fig. 2: there

are again two alternative stable solutions, a1 unimodal

in-plane (continuous black line in Fig. 5a) or a1, a3

bimodal involving in-plane and out-of-plane modes

(continuous green line in Fig. 5a, c), with a small

frequency range of coexistence and competition (which

depends on the initial conditions in the relevant basins

of attraction) in the neighbourhood of the left PD

bifurcation. The curves in Fig. 5a look slightly more

involved than those under direct excitation due to the

presence of also the a4 component (therein absent), but

both the bimodal solutions involving the antisymmetric

a2 or a4 modes are again unstable (dashed red (a, b) and

blue (a, d) lines in Fig. 5).

Overall, the dynamic effect of a symmetric support

motion is substantially equivalent to that of a

symmetrically distributed external loading, as

expected. Yet, considering the support amplitude

(A10 = 0.001) lower than the loading amplitude

(P11 = 0.0015) in the corresponding Fig. 2, higher

values of all modal amplitudes are herein obtained,

which is due to the value of the cable coefficient

c1
s = 2.66667 (see Appendix 1) multiplying the cosine

term in Eq. (7).

In turn, the force-response curves obtained analyt-

ically at perfect primary resonance (Fig. 6) for ampli-

tudes of support motion lower than those of the

external load in Fig. 4a, b (as per their higher

mentioned effect) are qualitatively similar to the latter

in the initial and intermediate range, with transition

from unimodal a1 (Fig. 6a) to bimodal a1,a3 (Fig. 6a,

c) solutions through PD bifurcation, and partial

saturation of a1. However, with further increasing

A10 value, the antisymmetric a2 component (absent in
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Fig. 4) enters the response, too, via a subcritical PB,

ending up to the stable trimodal a1, a2, a3 (green lines

in Fig. 6a–c) with the full saturation of a3. In contrast,

the fourth mode a4 later on originated via another

subcritical PB remains unstable (Fig. 6d).

Force-response curves obtained through numerical

simulation of the ODEs are reported in Fig. 7 over a

range of nearly doubled values ofA10 and ensuing higher

amplitudes of response components. Agreement with

the analytical results in Fig. 6 occurs only in the initial

part of the range, where the bimodal solution q1, q3

arises from the unimodal one, however with a consid-

erably lower saturation of the q1 component. For

increasing excitation amplitudes, no stable bifurcated

trimodal q1, q2, q3 has been found, contrary to analytical

results. Yet, a new stable, large amplitude, unimodal q1

solution is seen to exist over nearly the whole considered

range of A10. To grasp the actual robustness of possibly

competing solutions, both in this case and in forward

investigations, basins of attraction should be con-

structed; however, this is not only computationally

demanding but also quite complicated in terms of

geometrical representation and interpretation, even if

limiting ourselves to consider suitable cross-sections

(with, e.g., null values of q4 and _q4) of the actual eight-

dimensional attractor-basin portrait.

4.2 Direct external loading P11 and symmetric

support motion A10: cancellation effect

When combining external loading P11 and symmet-

ric support motion A10, we have three kinds of

a1

Ω

PD PD

PB

a2

Ω

PB PB
a3

Ω

PD PD

(a) (b)

(c)

Fig. 2 Frequency–response curves under direct external excitation: a mode 1, b mode 2, c mode 3, mode 4 equal to zero. Analytical

results: P11 = 0.0015, A10 = 0, A20 = 0. (Color figure online)
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external excitation terms in Eq. (7), i.e., direct

forcing plus kinematic and inertial excitations. Being

c1
s [ 0, direct and indirect excitations are seen to

compete with each other, thus possibly giving rise to

some interaction in the system response for selected

values of amplitudes and frequencies. The matter is

investigated at the perfect resonance (X = 1) by

fixing the amplitude (P11 = 0.0015) of external

loading while varying the amplitude of support

motion.

In Fig. 8 we observe three possible solutions:

unimodal a1, bimodal a1,a3 and trimodal a1,a2,a3.

Again, two saturation phenomena are observed for

different A10 levels, one (at about A10 = 0.001,

Fig. 8a) when the mode a3 is activated and the other

(at about A10 = 0.005, Fig. 8c) when the mode a2 is

activated, too. This corresponds to results in Fig. 6

relevant to the sole support motion. However, a

cancellation effect consisting of a vanished contribu-

tion of the internally resonant excited out-of-plane

mode a3 and an essential reduction of the amplitude a1

of the directly excited in-plane mode is herein

observed for small amplitudes of A10.

In Fig. 9, the cancellation effect is presented in the

3D diagram of amplitude a1 versus support motion

A10, for different values of external loading P11. The

phenomenon takes place for all P11 amplitudes, but it

is greater for smaller amplitudes of external loading.

If we slightly change the excitation frequency

to X = 1.04545, the cancellation effect exists as

m
ax

(q
1)

Ω

PD PD

PB

m
ax

(q
2)

Ω

PBPB

m
ax

(q
3)

Ω

PDPD

- 0.010 - 0.005 0.000 0.005 0.010

- 0.010

- 0.005

0.000

0.005

0.010

0.015

q1

q3

(a) (b)

(c) (d)

Fig. 3 Frequency–response curves under direct external excitation: a mode 1, b mode 2, c mode 3; d q1–q3 phase portrait. Numerical

simulation of the original ODEs: P11 = 0.0015, A10 = 0, A20 = 0
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well but with only the bifurcation involving mode

a3 taking place in the considered A10 window

(Fig. 10). The phenomenon is further highlighted

in Fig. 11 by the frequency–response plots of the

variable a1, for fixed P11 = 0.0015 and A10 values

respectively below (a), inside (b) and above

(c) the cancellation region: considerably lower

values of a1 are observed in Fig. 11b, down to

nearly vanishing in the left neighbourhood of the

perfect resonance.

The analyses show that in a certain range of

amplitude A10 the cable response is meaningfully

reduced, due to the interaction of excitations. The

cancellation effect has been detected numerically by

using the second order modulation equations (25).

Yet, it is worth checking whether it can be also

highlighted to the first order approximation of the

multiple scale solution via simpler equations. Based

on the results in Figs. 8, 11, cancellation of a1 is

complemented by vanishing of a3, with the thresholds

of the relevant zone corresponding to points of a3

activation (see Fig. 8a, c). Thus, we limit ourselves to

considering the a1,/1, a3,/3 subset of Eq. (25), taking

into account the sole e0 and e1 order terms. Assuming

a2 = 0, a4 = 0, considering steady state response

( _a1 ¼ 0, _a3 ¼ 0), and eliminating sin/1, cos/1,

sinð/1 � 2/3Þ, cosð/1 � 2/3Þ provides an algebraic

equation involving amplitude a3 only

P11

a 1 PD

P11

a 3

PD

P11

a 1

PD

P11

a 3

PD

(a) (b)

(c) (d)

Fig. 4 Force-response curves of first in-plane mode a1 and first out-of-plane mode a3 with varying P11, for X = 1 (a, b) and for

X = 1.04545 (c, d). Analytical results: A10 = 0, A20 = 0
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a4
3

c2
3 1 þ 4l2

31 � 2
� �

X2 þ X4

 �

4 P11 � A10c1sX
2

� �2
1 � 2Xð Þ2þ4l2

31X
2

h i

� a2
3

c3 1 � 2 1 þ l11l31ð ÞX2 þ X4

 �

2c31 P11 � A10c1sX
2

� �2

þ
1 þ l2

11 � 2
� �

X2 þ X4

 �

1 � 2Xð Þ2þ4l2
31X

2
h i

4c2
31 P11 � A10c

s
1X

2
� �2

� 1 ¼ 0

ð27Þ

Solving Eq. (27) we determine the resonance curve

for a3 plotted in Fig. 12a against the A10 amplitude of

support motion, for X ¼ 1. Substituting a3 = 0 into

Eq. (27) we get the bifurcation points from trivial

(a3 = 0) to nontrivial (a3[ 0) solutions to the first

order approximation:

A10 ¼

	2c31P11þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ l2

11�2
� �

X2þX4

 �

1þ2 l2
31�2

� �
X2þX4


 �q

2cs1c31X
2

ð28Þ

With the assumed data, Eq. (28) provides values

A10 ¼ 0:00032 and A10 ¼ 0:00081 of bifurcation

points to nontrivial a1, a3 solutions which are in a

very good agreement with those obtained with the

second order approximation and direct numerical

simulations. Having solutions for a3 and limits of the

Ω

a1

PD

PD

PB

a2

Ω

PB PB

a3

Ω

PD PD

a4

Ω

PB PB

(a) (b)

(c) (d)

Fig. 5 Frequency–response curves under in-plane support motion: a mode 1, b mode 2, c mode 3, d mode 4. Analytical results:

P11 = 0, A10 = 0.001, A20 = 0. (Color figure online)
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cancellation zone we can then use the a1,/1 subset of

Eq. (25) (with a2 = 0, a3 = 0, a4 = 0) to find the first

order approximation of a1 in the cancellation zone

a1 ¼
P11 � A10c1sX

2
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ l2

11 � 2
� �

X2 þ X4
q ; ð29Þ

which is presented in Fig. 12b for three different

frequency values. Cancellation of the bimodal a1, a3

around X ¼ 1 is accompanied by an increasingly

steeper decrease of the unimodal a1 down to zero.

The phenomenon is summarized in the overall

behaviour chart of Fig. 13, which shows the bifurca-

tion loci delimiting from above and below the

cancellation region of the coupled a1, a3 solution

where, in addition, the unimodal response a1 is

reduced down to zero, with the steepest descent

occurring for X = 1 in-between the two folds at about

A10 = 0.0003 and A10 = 0.0008, as shown by the

relevant contour lines calculated with Eq. (29). Thus,

apart from a slight overestimation of the a1 reduction,

the cancellation zone, which can have important

practical meaning, may be determined with good

accuracy in closed-form by Eqs. (28) and (29).

Numerical confirmation of the cancellation effect is

given in Fig. 14, where time series of q1 and q3

directly obtained from integration of the original

ODEs (6) are shown for P11 = 0.0015, X = 1, and

A10 = 0.00025 (green line), A10 = 0.0007 (orange

line), A10 = 0.0015 (blue line).

A10

a 1

PD
PB

PB

A10

a 2

PB

A10

a 3

PB
PB

PD

PB

A10

a 4

(a) (b)

(c) (d)

Fig. 6 Force-response curves with varying A10, for X = 1: a mode 1, b mode 2, c mode 3, d mode 4. Analytical results: P11 = 0,

A20 = 0. (Color figure online)
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4.3 Antisymmetric support motion (P11 = 0,

A10 = 0, A20 = 0)

In contrast to symmetric support motion A10, the

antisymmetric one leads to external excitation terms with

frequency Xs and 2Xs and also to parametric terms with

frequency 2Xs (see Eqs. (8)–(10)). Different resonant

excitation conditions occur for the various modes at

X = Xs = 1, namely: (a) principal parametric and �-

subharmonic external for planar symmetric mode, (b) prin-

cipal parametric and primary external for planar antisym-

metric mode, and (c) principal parametric for nonplanar

antisymmetric mode, while the nonplanar symmetric

mode with half-frequency is non-resonantly parametri-

cally excited. In modulation equations (25), this entails

occurrence of non-vanishing external A20 terms and

parametric terms with products of A20 and

aj, j ¼ 1. . .4, amplitudes. Overall, the nonlinear

response is more involved than under symmetric

excitations, with combined parametric and external

excitation arising due to support motion only. Actually,

it is not easy to distinguish between the roles played by

two kinds of excitation, whose effects mixed up with

also those ensuing from system geometric nonlineari-

ties. Nonetheless, in the following, activation of the

various response components is also tentatively referred

to the excitation conditions in their background.

Different from symmetric excitation, the a2 fre-

quency–response curve (black line in Fig. 15a) of the

externally and parametrically excited planar

A10

m
ax

(q
 ) 1

PD

TB

PD

A10

m
ax

(q
 ) 2

A10

m
ax

(q
 ) 3

PD

TB

PD

(a) (b)

(c)

Fig. 7 Force-response curves with varying A10, for X = 1: a mode 1, b mode 2, c mode 3, (mode 4 is always zero). Numerical

simulation of the original ODEs: P11 = 0, A20 = 0
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antisymmetric mode, obtained with the modulation

equations, is hardening. A new branch originates from

the a2 resonant branch via PB due to the activation of

a4 component (Fig. 15b), which is excited right of

perfect resonance also due to parametric excitation

(see the a4A20
2 term in Eq. (25). A stable in-plane/out-

of-plane antisymmetric solution a2, a4, with nearly

comparable values of the two participating amplitudes

(see also Fig. 16b forward), is established; it has been

previously detected experimentally and named

antisymmetric ballooning [8]. Following the bifur-

cated branch, a Hopf bifurcation occurs.

The resonance curves are computed directly from

the modulation equations. However, the associated

qj, j ¼ 1. . .4, solution (26) highlights coupling of also

other components to the e2-order of perturbation. With

the sole A20 support motion, solution (26) reads

q1 ¼ ea1 cos Xt þ /1ð Þ þ e2 1

2X2


 �
X4

j¼1

cja
2
j þ A2

20h
s
12 1 � 1

3
cos 2Xt

� 	"

þ 1

3

X

j¼1;2;4

a2
j cj cos 2 Xt þ /j

� �
#

q2 ¼ ea2 cos Xt þ /2ð Þ þ e2 1

2X2
a1a2c21


 1

3
cos 2Xt þ /1 þ /2ð Þ � cos /1 � /2ð Þ

� �

A10

a 1

PD

PB

PB

A10

a 2

PB

A10

a 3

PB
PB

PD

PB

A10

a 4

(a) (b)

(c) (d)

Fig. 8 Force-response curves with varying A10 in the presence of external loading, forX = 1: a mode 1, b mode 2, c mode 3, d mode 4.

Analytical results: P11 = 0.0015, A20 = 0
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q3 ¼ ea3 cos
1

2
Xt þ /3

� 	

þ e2 1

4X2
a1a3c31 cos

3

2
Xt þ /1 þ /2

� 	

q4 ¼ ea4 cos Xt þ /4ð Þ þ e2 1

2X2
a1a4c41


 1

3
cos 2Xt þ /1 þ /4ð Þ � cos /1 � /4ð Þ

� �

ð30a-dÞ

Although thea1 amplitude computed from modulation

equations is equal to zero, the q1 component (Eq. 30a) is

also entrained in the overall response via the non-

vanishing a2 and a4 amplitudes and the A20 term

associated with �-subharmonic external excitation in

Eq. (8), all of them existing at e2-order; in contrast, q3

identically vanishes (Eq. 30c) because a1 = 0.

Thus, due to couplings, the in-plane symmetric

component q1 is also activated, besides q2 and q4.

Taking into account analytical solutions (30) and

results presented in Fig. 15 we plot time histories for

selected X values. In Fig. 15a, for X = 0.9 there is

only the a2 amplitude which however, due to coupling,

also activates the q1 component (Fig. 16a). Trimodal

q1, q2, q4 (Fig. 16b) and in-plane bimodal q1, q2

(Fig. 16c) responses are obtained for X = 1.1 and

X = 1.3, respectively. In all cases, q1 is activated in the

overall response by higher order terms in Eq. (30a),

though with a considerably lower importance. Shift of

its time history from the reference abscissa axis is

basically due to constant quadratic terms in Eq. (30a).

In Fig. 17 we present the q-components obtained by

continuation performed directly on the original ODEs

(6). Figure 17b corresponds to Fig. 15a and Fig. 17c

to Fig. 15b, with very good quantitative agreement,

while in Fig. 17a the q1 component directly obtained

by numerical simulation is presented. It confirms what

already observed through the time histories in Fig. 16.

The Hopf bifurcation point in the modulation

equations corresponds to torus bifurcation (TB) in

the original ODEs. The transition through TB is shown

in the bifurcation diagrams of Fig. 18, computed in

relevant zoomed area. After the torus bifurcation the

system exhibits quasiperiodic oscillations and then

goes to chaotic motion. The Poincaré cross-sections

computed for q1, q2, and q4 (with q3 = 0) at the

selected frequency X = 1.17 are presented in

Fig. 19a–c. For comparison, one more Poincaré map

is plotted at X = 1.19 for the sole q4 (Fig. 19d). For

this attractor, the first three Lyapunov exponents take

the values k1 = 0.050707, k2 = 0.017823,

k3 = -0.016674, meaning that a transition to chaotic

oscillations has occurred. A q4, q2 Poincaré map

corresponding to the actual motion of cable quarter
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Fig. 9 Force-response

curve of amplitude a1

against support motion A10

for different external

loading P11. Analytical

results: X = 1, A20 = 0
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span points in the vertical configuration plane is also

reported in Fig. 19e. It exhibits a chaotic, horizontally-

shrunk, circumferential loop showing the different, yet

somehow comparable, contributions of the two par-

ticipating components, and evidencing the complex,

prevailingly antisymmetric, ballooning response into

which the regular one existing at X = 1.1 (Fig. 19f)

has evolved. Such a kind of complex response has

been highlighted also experimentally [8], with the

relevant transition mechanism from the underlying

regular one being referred to an involved homoclinic

bifurcation scenario [11].

The effect of antisymmetric support motion on

system response is also investigated for varying A20

amplitude at the selected frequency X = 1.1, where

q1, q2, q4 solution is activated. In Fig. 20 we present

force-response curves of a2 and a4 obtained from

modulation Eq. (25). The corresponding diagrams

based on the ODEs are presented in Fig. 21a, b,

respectively. The agreement between analytical and

numerical solutions is very good. Figure 21c shows

the presence of also the q1 component, which could

indeed be obtained analytically, too, because vanish-

ing of a1 in the modulation equations does not entail

vanishing of q1, as previously discussed. The branch-

ing of a4 occurs via PB in Fig. 20a, b. The q4

component grows up rapidly and then remains almost

constant (Figs. 20b and 21b). Contrary to analytical

curves, numerical ones exhibit also two TB points with

the unstable branch in-between. Indeed, as shown by

the time histories in Fig. 21d, system response after

the TB is almost periodic with slowly modulated

amplitudes, yet with the average maximum values

corresponding to those obtained analytically.

4.4 Symmetric plus antisymmetric support motion

(P11 = 0, A10 = 0, A20 = 0)

The concurrent presence of both A10 and A20, namely

symmetric and antisymmetric support motion, is

analyzed for two case-studies. The analyses are carried

out directly on the original equations of motion (6),

being the induced dynamics already close to strongly

nonlinear behaviour. In the first analyzed case, the

symmetric support motion is kept prevalent than the

antisymmetric one (A10 = 0.002, A20 = 0.001), and

frequency–response curves are shown in Fig. 22a–c.

The basic bimodal response (q1, q2) (black line in

Fig. 22a, b), directly induced by the two excitation

components loses stability through a PD bifurcation

giving rise to a trimodal response branch (q1, q2, q3)

(green line in Fig. 22a–c). Doubling of the solution

period is due again to the onset of q3, which has a

fundamental (linear) frequency �. Close to X = 1.09,

the trimodal solution shows a TB, and for slightly

lower excitation frequencies, trimodal quasiperiodic

responses are found (see Fig. 22d, where a phase

portrait is reported in the q1–q2–q3 space, superim-

posed to its Poincaré section).

PD

A10

a 1

A10

a 3

PD

(a) (b)

Fig. 10 Force-response curves with varying A10 in the presence of external loading, for X = 1.04545: a mode 1, b mode 3. Analytical

results: P11 = 0.0015, A20 = 0
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As a general comment, the prevailing role of the A10

excitation is evident, being the ensuing dynamics

similar to what happens for P11 = 0, A20 = 0 (see

Fig. 5), apart from the significant contribution of the

antisymmetric support motion which directly induces,

in all responses, the q2 component too.

A second case study is reported in Fig. 23a–d,

where frequency–response plots for P11 = 0,

A10 = 0.001, A20 = 0.002 are shown. Here, the

prevailing role of A20 makes the dynamics more

cumbersome than in the previous case. In fact,

bimodal (q1, q2, black line), trimodal (q1, q2, q3,

green line, and q1, q2, q4, red line) as well as

quadrimodal responses (blue line) are involved. In

particular, the reference bimodal solution—which

shows a combination of softening q1 and hardening

q2 components, as per the underlying mixed support

motion—loses stability in correspondence of a PB,

where a branch of trimodal q1, q2, q4 (red) arises.

Moreover, two PD on the same bimodal solution

cause the occurrence of the trimodal q1, q2, q3 (green)

solution. The two trimodal branches are connected

with one another by a branch of stable quadrimodal

solution (blue), which exists in-between two PB

points. Trimodal quasiperiodic evolutions are found

after the TB which is found on the trimodal q1, q2, q4

(red) branch, and a phase portrait with Poincaré

section is shown in Fig. 23e for X = 1.1, with the

Ω
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Fig. 11 Frequency–response curves of amplitude a1 for different in-plane support motion. Analytical results: P11 = 0.0015, A20 = 0,

A10 = 0.00025 (a), A10 = 0.0007 (b), A10 = 0.0015 (c)
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relevant Fourier spectrum in Fig. 23f, to confirm the

non-regular properties of the solution. As a remark,

the dominating effect of A20 is evident, being the

dynamical response similar to what happens in

Fig. 17, even if the participation of a non-null

symmetric support motion causes, as a major result,

the involvement of also the q3 component.

4.5 External loading and symmetric plus

antisymmetric support motion (P11 = 0,

A10 = 0, A20 = 0)

Here, the concurrent application of the three sources of

excitation is considered, for the case study in which

their values are assumed as P11 = 0.002, A10 =

0.002, A20 = 0.001. Symmetric and antisymmetric

support motions are the same as in the first case of the

previous section, but with the addition of an
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Fig. 12 Cancellation zone in the force-response curves with varying A10, for X = 1: a amplitude a3, b amplitude a1 for X = 1, black,

for X = 0.95, red, for X = 1.05, blue. Analytical results, first order approximation: P11 = 0.0015, A20 = 0. (Color figure online)

Ω

A
10

Fig. 13 Behaviour chart for P11 = 0.0015, showing in the X-A10

plane the loci of PD bifurcation points (red line) which trigger the

a1,a3 solution (in the red-shadowed region), with contour plotof the

unimodal a1 solution (black lines) vanishing within the (white, in-

between) cancellation region. (Color figure online)

t t

q 3q 1

(a) (b)

Fig. 14 Time series of q1(a) and q3(b) obtained from the original ODEs for P11 = 0.0015, A20 = 0, A10 = 0.00025 (green line),

A10 = 0.0007 (orange line), A10 = 0.0015 (blue line). (Color figure online)

2562 Meccanica (2016) 51:2541–2575

123



apparently significant contribution of symmetric

external loading.

As a result of the analysis, which is still performed

by considering the original ODEs (6) and is summa-

rized in Fig. 24, a dynamic behaviour very similar to

the case P11 = 0, A10 = 0.002, A20 = 0.001, shown

in Fig. 22, is found: the basic (q1, q2) bimodal solution

(black curve) becomes unstable through two PD,

giving rise to a trimodal branch (q1, q2, q3), charac-

terized by a TB, close to which trimodal quasiperiodic

Ω

PB

HB

a 2

Ω

PB

HB

a 4

(a) (b)

Fig. 15 Frequency–response curves with varying A20: a2 (a) and a4 (b). Analytical results: P11 = 0, A10 = 0, A20 = 0.003

Fig. 16 Time histories obtained from the analytical calculations, for a X = 0.9, b X = 1.1, c X = 1.3; q1—black line, q2—blue line,

q4—red line; P11 = 0, A10 = 0, A20 = 0.003. (Color figure online)
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solutions occur, as shown in the phase portrait in

Fig. 24d. The contribution of P11 seems to be almost

inconsequential, but the amplitude of both the q1 and

q3 components is significantly smaller here than in the

case with P11 = 0. Therefore, the cancellation effect

owed to the interaction between P11 and A10, occurs

also here, in the presence of A20 excitation. The non-

vanishing q3 component (contrary to the case with sole

symmetric excitations of Sect. 4.2) is herein driven in

the response by the (q1, q2) bimodal solution, with the

ensuing q2 component—activated by the low, yet

unopposed, antisymmetric support motion A20—

reaching the same maximum values as in Fig. 22b

and the q1 one being solely reduced with respect to

values in Fig. 22a owing to the competing symmetric

excitations.

5 Conclusions and further developments

The four-degree-of-freedom model of a sagged cable

proposed in Benedettini et al. [1] has been resumed to

evaluate the effect of support motion on system

nonlinear response at first crossover, also in combi-

nation with distributed loading. The model embeds

external and parametric forcing terms arising from the

Ω

PB

m
ax

(q
 ) 1 TB

Ω

PB

m
ax

(q
 ) 2

TB

Ω

PB

m
ax

(q
 ) 4

TB

(a) (b)

(c)

Fig. 17 Frequency–response curves with varying A20: q1 (a), q2 (b), q4 (c). Numerical simulation of the original ODEs: P11 = 0,

A10 = 0, A20 = 0.003
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physical excitations. A general third-order multiple

scale solution at primary resonance and 1:1:1/2:1

multiple internal resonance has been accomplished, to

deal with weakly nonlinear planar/nonplanar multi-

modal oscillations. In the numerical investigation of

the ensuing modulation equations attention has been

focused on the effect of solely planar excitations, by

considering symmetric and/or antisymmetric support

motions, in possible combination with symmetric

external excitation, which entails an interesting can-

cellation phenomenon in the system response. Numer-

ical simulation of the original ordinary differential

equations of motion has validated analytical results for

medium–low excitation amplitudes, and has high-

lighted a higher multimodal contents of the regular

response at higher excitation amplitudes, along with

involved transitions to regimes of complex response.

The results have been discussed in the background of

the analytical/numerical ones already available for the

sagged cable under sole symmetric external excitation,

as well as of the experimental outcomes previously

obtained for a companion cable-mass system under

sole support motion, by also possibly referring some

observed behaviours to the presence of external and/or

parametric excitations. Anyway, no meaningful

effects to be specifically ascribed to the latter excita-

tion have been detected in the response.

The considered four-d.o.f. cable model has a

meaningful potential in terms of excitation cases to

be possibly addressed. However, just a few of them

have been investigated in this paper, thus leaving room

for possible future developments in different direc-

tions. Still in the monofrequent planar excitation

perspective herein pursued, analyses with symmetric/

antisymmetric support motion could be extended to

the �-subharmonic resonance range, via systematic

numerical investigations aimed at obtaining the

response charts highlighting some main regions of

regular and non-regular response in the excitation

control parameters, thus complementing and possibly

1.21.1
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-0.025

0.025

1.21.1

q2

-0.025

0.025

1.21.1

q4

-0.025

0.025

(a) (b)

(c)

Fig. 18 Bifurcation

diagrams with varying X
near the torus bifurcation

point (TB): q1 (a), q2 (b), q4

(c). Numerical simulation of

original ODEs: P11 = 0,

A10 = 0, A20 = 0.003
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cross-validating the parallel, yet independent, exper-

imental outcomes. Moreover, the effect of general

multifrequency excitations (ensuing from distributed

loading and support motion with different frequencies)

on system response could be considered, also in order

to check the actual robustness of the observed

0.025-0.025

q1

-0.05

0.05

q1

.

0.025-0.025

q2

-0.05

0.05

q2

.
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.
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(c) (d)

(e) (f)

Fig. 19 Poincaré maps of

q1 (a), q2 (b), q4 at X = 1.17

(c) and X = 1.19 (d), and

q2–q4 map (e) at X = 1.19

and phase diagram (f) at

X = 1.1; P11 = 0, A10 = 0,

A20 = 0.003
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Fig. 20 Force-response curves with varying A20: amplitudes a2 (a) and a4 (b). Analytical results: X = 1.1, P11 = 0, A10 = 0
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Fig. 21 Force-response curves with varying A20: q2 (a), q4 (b), q1 (c), and corresponding time histories for A20 = 0.0018 (d).

Numerical simulation of original ODEs: X = 1.1, P11 = 0, A10 = 0
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cancellation effect and the possibility to exploit it for

control purposes. Of course, consideration of also out-

of-plane excitations would further increase the rich-

ness of observable nonlinear responses.
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Appendix 1

Physical cable data

distance between the supports: l = 600.6 mm,

cable cross-section: A = 0.1257 mm2

gravity acceleration: g = 9.81 m/s2

sag: d = 30.5 mm

mass per unit length: m = 4.96014 9 10-4 kg/m

horizontal force (initial tension): H ¼ mg l2

8d
¼

0:719117 N

First natural frequency of the taut string: x0 ¼
p
l

ffiffiffi
H
m

q
¼ 19:92 rad/s

Vibration modes

• in-plane, symmetric (f1) and antisymmetric (f2):

Ω

PD
PD

m
ax

(q
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TB

Ω

PD

TB

m
ax

(q
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PD

Ω

PD PD

m
ax

(q
 ) 3 TB

(a) (b)

(c) (d)

Fig. 24 Frequency–response curves under external loading and

(higher) in-plane symmetric plus anti-symmetric support

motion: a mode 1, b mode 2, c mode 3. Phase portrait (blue

line) and Poincaré section (red points) for X = 1.08 (d).

Original ODEs: P11 = 0.002, A10 = 0.002, A20 = 0.001.

(Color figure online)
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f1ðxÞ ¼ B1 1 � tan
bl
2

� 	
sin

bl
2
x� cos

bl
2
x;

f2ðxÞ ¼ sin 2px;

• out-of-plane, symmetric (f3) and antisymmetric

(f4):

f3ðxÞ ¼ sinpx; f4ðxÞ ¼ sin 2px;

with bl
2
¼ p;B1 ¼ �0:25:

Natural frequencies of a sagged cable

x1 ¼ x0

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

I1;m
I1;d þ

K2

64
I2
1;y

� 	s

; x2 ¼ x0

p

ffiffiffiffiffiffiffi
I2;d

I2;m

s

;

x3 ¼ x0

p

ffiffiffiffiffiffiffi
I3;d

I3;m

s

; x4 ¼ x0

p

ffiffiffiffiffiffiffi
I4;d

I4;m

s

Dimensionless cable frequencies: ki
2 = xi

2/x1
2,

i = 174

At first crossover (1:1:1/2:1 internal resonance):

x1 ¼ 39:83 rad=s, x2 ¼ 39:84 rad=s;
x3 ¼ 19:92 rad=s, x4 ¼ 39:84 rad=s

where K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
64 EA=Hð Þ d=lð Þ2

q
¼ 6:28012, with

EA/H = 239.16

Ij;m ¼
Z 1

0

f 2
j ðxÞdx; Ij;d ¼

Z 1

0

f 0j ðxÞ
h i2

dx;

Ij;y ¼
Z 1

0

y0f 0j ðxÞdx

Modal damping coefficients

l11 ¼ l21 ¼ 0:05; l31 ¼ l41 ¼ 0:08

Structural coefficients

c1 ¼ �12:1441; c2 ¼ c4 ¼ �64:7893;

c3 ¼ �16:1973;

c21 ¼ c41 ¼ � 24:3039; c31 ¼ �6:07598;

d11 ¼ 49:1594; d12 ¼ d14 ¼ 786:805;

d13 ¼ 196:701;

d21 ¼ d41 ¼ 147:574; d22 ¼ d42 ¼ 2361:95;

d23 ¼ d43 ¼ 590:488;
d24 ¼ d44 ¼ 2361:95; d31 ¼ 36:8935;
d32 ¼ 590:488; d33 ¼ 147:622;
d34 ¼ 590:488:

Coefficients associated with parametric excitation

terms produced by support motion

c
p
2 ¼ c

p
4 ¼ 0; c

p
21 ¼ c

p
41 ¼ 0;

d
p
21 ¼ d

p
22 ¼ d

p
23 ¼ d

p
24 ¼ d

p
41 ¼ d

p
42 ¼ d

p
43 ¼ d

p
44 ¼ 0;

e
p
12 ¼ e

p
14 ¼ 159:44; e

p
22 ¼ e

p
44 ¼ 478:631;

e
p
24 ¼ e

p
42 ¼ 478:631; e

p
32 ¼ e

p
34 ¼ 119:658;

g
p
12 ¼ g

p
14 ¼ g

p
24 ¼ g

p
42 ¼ g

p
32 ¼ g

p
34 ¼ 0;

m
p
24 ¼ m

p
42 ¼ 0:

Coefficients associated with external excitation

terms produced by support motion

cs1 ¼ 2:66667; cs2 ¼ cs4 ¼ �0:63662;

cs3 ¼ �1:27324;

rs22 ¼ rs24 ¼ rs42 ¼ rs44 ¼ 0; ns2 ¼ ns4 ¼ 0;

hs12 ¼ hs14 ¼ 13:1291:

External load

P11 ¼ 0:002

ðreference value; varied as a bifurcation parameterÞ;
P21 ¼ P31 ¼ P41 ¼ 0:

Amplitudes of support motion

A10 ¼ 0:002; A20 ¼ 0:002;

ðreference values; varied as bifurcation parametersÞ;
A30 ¼ 0; A40 ¼ 0:

Appendix 2

Definitions of coefficients in Eq. (21) of second order

secular generating terms

• First equation
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Fs
10 ¼ � 1

2
iXA10c

s
1l11;

�Fs
1 ¼ � c1

6X2
hs12A

2
20 þ hs14A

2
40

� �
;

�Fp
1 ¼ 1

4
A2

20e
p
12 þ A2

40e
p
14

� �
;

F111 ¼ 3d11 �
10c2

1

3X2
;

F221 ¼ d12 þ
2c2

X2

c1

3
� c21

� �
;

F441 ¼ d14 þ
2c4

X2

c1

3
� c41

� �
;

F
p
1 ¼ 1

2
A2

20e
p
12 þ A2

40e
p
14

� �
;

Fs
1 ¼ c1

X2
A2

20h
s
12 þ A2

40h
s
14

� �
;

F122 ¼ 2d12 �
4

X2
c2 c1 þ

1

3
c21

� 	
;

F133 ¼ 2d13 �
c3

X2
4c1 � c31ð Þ;

F144 ¼ 2d14 �
4c4

X2
c1 þ

c41

3

� �

• Second equation

Fs
20 ¼ � 1

2
iXcs2l21A20;

F112 ¼ 2d21 �
2c21

X2
c1 þ

c21

3

� �
;

�Fs
2 ¼ � c21

12X2
A2

20h
s
12 þ A2

40h
s
14

� �
;

�Fp
2 ¼ 1

4
A2

20e
p
22 þ A2

40e
p
24

� �
;

�F112 ¼ d21 þ
c21

X2

c1

3
� c21

� �
;

F222 ¼ 3d22 �
5c2c21

3X2
;

F442 ¼ d24 þ
c21c4

3X2

� 	
;

Fs
2 ¼ c21

2X2
A2

20h
s
12 þ A2

40h
s
14

� �
;

F
p
2 ¼ 1

2
A2

20e
p
22 þ A2

40e
p
24

� �
;

F233 ¼ 2 d23 �
c21c3

X2

� 	
;

F244 ¼ 2 d24 �
c21c4

X2

� 	
:

• Third equation

F113 ¼ 2d31 �
c31

X2
2c1 �

c31

2

� �
;

F223 ¼ 2 d32 �
c2c31

X2

� 	
;

F333 ¼ 3d33 �
2c3c31

X2
;

Fs
3 ¼ c31

2X2
A2

20h
s
12 þ A2

40h
s
14

� �
;

F
p
3 ¼ 1

2
A2

20e
p
32 þ A2

40e
p
34

� �
;

F344 ¼ 2 d34 �
c31c4

X2

� 	

• Fourth equation

Fs
40 ¼ � 1

2
iXA40c

s
4l41;

F114 ¼ 2 d41 �
c41

X2
c1 þ

c41

3

� �� �
;

F334 ¼ 2 d43 �
c3c41

X2

� 	
;

�Fs
4 ¼ � c41

12X2
A2

20h
s
12 þ A2

40h
s
14

� �
;

�Fp
4 ¼ 1

4
A2

20e
p
42 þ A2

40e
p
44

� �
;

F224 ¼ d42 þ
c2c41

3X2
;

F242 ¼ 2 d42 �
c2c41

X2

� 	
;

F444 ¼ 3d44 �
5c4c41

3X2
;

�F114 ¼ d41 þ
c41

X2

c1

3
� c41

� �
;

Fs
4 ¼ c41

2X2
A2

20h
s
12 þ A2

40h
s
14

� �
;

F
p
4 ¼ 1

2
A2

20e
p
42 þ A2

40e
p
44

� �

Appendix 3

Definitions of coefficients of complex amplitude

modulation equation (23)

• coefficients of dA1

dt
equation
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Gs
01 ¼ A10

16X
c1s ir1 þ 3l11Xð Þ;

G33 ¼ c3

2X3
iq3 þ

i

4
r1 �

1

4
l11Xþ 1

2
l31X

� 	
;

�Gs
1 ¼ � ic1

12X3
hs12A

2
20 þ hs14A

2
40

� �
;

�Gp
1 ¼ i

8X
A2

20e
p
12 þ A2

40e
p
14

� �
;

�G111 ¼ i

X
3

2
d11 �

5

3

c2
1

X2

� 	
;

G221 ¼ i

2X
d12 þ

c2i

X3

c1

3
� c21

� �
;

G441 ¼ ic4

X3

c1

3
� c41

� �
þ id14

2X
;

G
p
1 ¼ i

4X
A2

20e
p
12 þ A2

40e
p
14

� �
;

Gs
1 ¼ ic1

2X2
A2

20h
s
12 þ A2

40h
s
14

� �
;

G1 ¼ � i

8X
l2

11 þ r2
1

� �
;

G122 ¼ � 2ic2

X3
c1 þ

1

3
c21

� 	
þ i

X
d12;

G133 ¼ i

X
d13 �

2ic1c3

X2

� 	
;

G144 ¼ � 2ic4

X3
c1 þ

1

3
c41

� 	
þ id14

X

• coefficients of dA2

dt
equation

Gs
02 ¼

cs2
16X

A20 3l21Xþ iq2ð Þ;

�G121 ¼� ic21

X3
c1 þ

1

3
c21

� 	
þ id21

X
;

�Gp
2 ¼

i

8X
A2

20e
p
22 þA2

40e
p
24


 �
;

�Gs
2 ¼� ic21

24X3
A2

20h
s
12 þA2

40h
s
14

� �
;

�G112 ¼� ic21

2X3
c21 �

1

3
c1

� 	
þ id21

2X
;

�G222 ¼
i

2X
3d22 �

5c2c21

3X2

� 	
;

�G442 ¼
i

2X
d24 þ

c21c4

3X2

� 	
; G

p
2 ¼

i

4X
A2

20e
p
22 þA2

40e
p
24


 �
;

Gs
2 ¼

ic21

4X3
A2

20h
s
12 þA2

40h
s
14

� �
;

G2 ¼� i

8X
l2

21 þ
q2

2

X2

� 	
; �G233 ¼

i

X
d23 �

c21c3

X2

� 	
;

�G244 ¼
i

X
d24 �

c21c4

X2

� 	

• coefficients of dA3

dt
equation

G232 ¼ 2i

X
d23 �

c2c31

X2

� 	
;

�Gs
3 ¼ � ics1c31

4X
A10;

�G333 ¼ i

X
3d33 �

5c3c31

2X2

� 	
;

�G131 ¼ ic31

X3

3

2
c31 � 2c1

� 	
þ 2i

X
d31;

�G13 ¼ c31

2X2
l11 þ

ir1

X

� 	
;

G
p
3 ¼ i

2X
A2

20e
p
32 þ A2

40e
p
34

� �
;

Gs
3 ¼ ic31

2X3
A2

20h
s
12 þ A2

40h
s
14

� �
;

G3 ¼ � i

X3
q2

3 þ
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31X
2

4
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;

�G344 ¼ 2i

X
d34 �

c4c31

X2

� 	

• coefficients of dA4

dt
equation

Gs
04 ¼ A40
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16X

iq4 þ 3l41Xð Þ;

�G141 ¼ � ic41

X3
c1 þ

1

3
c41

� 	
þ id41

X
;

�G343 ¼ i

X
d43 �

c3c41

X2

� 	
;
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4 ¼ � ic41

24X3
A2

20h
s
12 þ A2

40h
s
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� �
;
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4 ¼ i

8X
A2
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p
42 þ A2

40e
p
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;
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d41 þ

c41
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1
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c1 � c41
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;

�G224 ¼ i
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c2c41

3X2

� 	
;
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3d44 �

5c4c41

3X2

� 	
;

Gs
4 ¼ ic41

4X3
A2

20h
s
12 þ A2

40h
s
14

� �
;

G
p
4 ¼ i

4X
A2

20e
p
42 þ A2

40e
p
44

� �
;

G4 ¼ � i

8X
l2

41 þ
q2

4

X2

� 	
;

G242 ¼ i

X
d42 �

c2c41

X2

� 	

Meccanica (2016) 51:2541–2575 2573

123



References

1. Benedettini F, Rega G, Alaggio R (1995) Non-linear

oscillations of a four-degree-of-freedom model of a sus-

pended cable under multiple internal resonance conditions.

J Sound Vib 182(5):775–798

2. Rega G (2004) Nonlinear vibrations of suspended cables. Part

I: modeling and analysis. Appl Mech Rev 57(6):443–478

3. Rega G (2004) Nonlinear vibrations of suspended cables.

Part II: deterministic phenomena. Appl Mech Rev 57(6):

479–514

4. Rega G (2012) Theoretical and experimental nonlinear

vibrations of sagged elastic cables. In: Warminski et al (eds)

Dynamic phenomena in mechanics. Springer, Berlin,

pp 157–207

5. Rega G, Lacarbonara W, Nayfeh AH, Chin CM (1999)

Multiple resonances in suspended cables: direct versus

reduced-order models. Int J Non-Linear Mech 34(5):901–924

6. Nayfeh AH, Arafat HN, Chin CM, Lacarbonara W (2002)

Multimode interactions in suspended cables. J Vib Control

8(3):337–387

7. Benedettini F, Rega G (1994) Analysis of finite oscillations

of elastic cables under internal/external resonance condi-

tions. In: Bajaj et al (eds) ASME Nonlinear and stochastic

dynamics AMD-192/DE-78, pp 39–46

8. Rega G, Alaggio R, Benedettini F (1997) Experimental

investigation of the nonlinear response of a hanging cable.

Part I: local analysis. Nonlinear Dyn 14(2):89–117

9. Benedettini F, Rega G (1997) Experimental investigation of

the nonlinear response of a hanging cable. Part II: global

analysis. Nonlinear Dyn 14(2):119–138

10. Alaggio R, Rega G (2000) Characterizing bifurcations and

classes of motion in the transition to chaos through 3D-tori

of a continuous experimental system in solid mechanics.

Physica D 137(1–2):70–93

11. Rega G, Alaggio R (2001) Spatio-temporal dimensionality in

the overall complex dynamics of an experimental cable/mass

system. Int J Solids Struct 38(10–13):2049–2068

12. Rega G, Alaggio R (2009) Experimental unfolding of the

nonlinear dynamics of a cable-mass suspended system

around a divergence-Hopf bifurcation. J Sound Vib

322(3):581–611

13. Gattulli V, Alaggio R, Potenza F (2008) Analytical pre-

diction and experimental validation for longitudinal control

of cable oscillations. Int J Non-Linear Mech 43(1):36–52

14. Hu J, Pai P (2012) Experimental study of resonant vibra-

tions of suspended steel cables using a 3D motion analysis

system. J Eng Mech 138(6):640–661

15. Warnitchai Y, Fujino T, Susumpov A (1995) A nonlinear

dynamic model for cables and its application to a cable

structure-system. J Sound Vib 187(4):695–712

16. Nayfeh SA, Nayfeh AH, Mook DT (1995) Nonlinear

response of a taut string to longitudinal and transverse end

excitation. J Vib Control 1(3):307–334

17. Pinto da Costa A, Martins J, Branco F, Lilien JL (1996)

Oscillations of bridge stay cables induced by periodic

motions of deck and/or towers. J Eng Mech 122(7):613–622

18. Nielsen SRK, Kirkegaard PH (2002) Super and combina-

torial harmonic response of flexible elastic cables with small

sag. J Sound Vib 251(1):79–102

19. Berlioz A, Lamarque CH (2005) A non-linear model for the

dynamics of an inclined cable. J Sound Vib 279(3–5):

619–639

20. Cai Y, Chen SS (1994) Dynamics of elastic cable under

parametric and external resonances. J Eng Mech 120(8):

1786–1802

21. Georgakis CT, Taylor CA (2005) Nonlinear dynamics of

cable stays. Part 1: sinusoidal cable support excitation.

J Sound Vib 281(3–5):537–564

22. Ying ZG, Ni YQ, Ko JM (2006) Parametrically excited

instability of a cable under two support motions. Int J Struct

Stab Dyn 6(1):43–58

23. Wang L, Zhao Y (2009) Large amplitude motion mech-

anism and nonplanar vibration character of stay cables

subject to the support motions. J Sound Vib 327(1–2):

121–133

24. Macdonald JHG, Dietz MS, Neild SA, Gonzalez-Buelga A,

Crewe AJ, Wagg DJ (2010) Generalised modal stability of

inclined cables subjected to support excitations. J Sound

Vib 329(21):4515–4533

25. Marsico MR, Tzanov V, Wagg DJ, Neild SA, Krauskopf B

(2011) Bifurcation analysis of a parametrically excited

inclined cable close to two-to-one internal resonance.

J Sound Vib 330(21):6023–6035

26. Szabelski K, Warminski J (1997) Vibration of a non-linear

self excited system with two degrees of freedom under

external and parametric excitation. Nonlinear Dyn

14(1):23–36

27. Warminski J (2010) Nonlinear normal modes of a self-ex-

cited system driven by parametric and external excitations.

Nonlinear Dyn 61(4):677–689

28. Luongo A, Zulli D (2012) Dynamic instability of inclined

cables under combined wind flow and support motion.

Nonlinear Dyn 67(1):71–87

29. Rega G, Srinil N, Alaggio R (2008) Experimental and

numerical studies of inclined cables: free and parametri-

cally-forced vibrations. J Theor Appl Mech 46(3):

621–640

30. Perkins NC (1992) Modal interactions in the non-linear

response of elastic cables under parametric/external exci-

tation. Int J Non-Linear Mech 27(2):233–250

31. Zhang W, Tang Y (2002) Global dynamics of the cable

under combined parametrical and external excitations. Int J

Non-Linear Mech 37(3):505–526

32. Chen H, Zuo D, Zhang Z, Xu Q (2010) Bifurcations and

chaotic dynamics in suspended cables under simultaneous

parametric and external excitations. Nonlinear Dyn 62(3):

623–646

33. Rhoads JF, Shaw SW, Turner KL, Moehlis J, De Martini

BE, Zhang W (2006) Generalized parametric resonance in

electrostatically actuated microelectromechanical oscilla-

tors. J Sound Vib 296(4–5):797–829

34. Luongo A, Paolone A (1999) On the reconstitution problem

in the multiple time-scale method. Nonlinear Dyn 19(2):

135–158

35. Nayfeh AH (1981) Introduction to perturbation techniques.

Wiley, New York

36. Rahman Z, Burton TD (1989) On higher order methods of

multiple scales in non-linear oscillations periodic steady

state response. J Sound Vib 133(3):369–379

2574 Meccanica (2016) 51:2541–2575

123



37. Nayfeh AH (2005) Resolving controversies in the applica-

tion of the method of multiple scales and the generalized

method of averaging. Nonlinear Dyn 40(1):61–102

38. Doedel EJ, Oldeman BE (2012) AUTO-07p: continuation

and bifurcation software for ordinary differential equations.

Concordia University, Montreal

39. Nusse H, Yorke J (1994) Dynamics: numerical explorations.

Appl Math Sci (Book 101), Springer US

40. Nayfeh AH, Balachandran B (1995) Applied nonlinear

dynamics. Wiley, New York

Meccanica (2016) 51:2541–2575 2575

123


	Revisited modelling and multimodal nonlinear oscillations of a sagged cable under support motion
	Abstract
	Introduction
	Reduced-order model of a suspended cable
	Multiple scale solution
	Nonlinear response to planar symmetric/antisymmetric excitations
	Direct external loading or symmetric support motion (P11 ne 0 or A10 ne 0, A20 = 0)
	Direct external loading P11 and symmetric support motion A10: cancellation effect
	Antisymmetric support motion (P11 = 0, A10 = 0, A20 ne 0)
	Symmetric plus antisymmetric support motion (P11 = 0, A10 ne 0, A20 ne 0)
	External loading and symmetric plus antisymmetric support motion (P11 ne 0, A10 ne 0, A20 ne 0)

	Conclusions and further developments
	Acknowledgments
	Appendix 1
	Physical cable data
	Vibration modes
	Natural frequencies of a sagged cable
	Modal damping coefficients
	Structural coefficients
	 Coefficients associated with parametric excitation terms produced by support motion
	Coefficients associated with external excitation terms produced by support motion
	External load
	Amplitudes of support motion

	Appendix 2
	Appendix 3
	References




