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Abstract Medium thickness plates resting on a peri-

odic Winkler’s foundation are investigated. New aver-

aged non-asymptotic models for those plates are

proposed. These models are based on the tolerance

averaging technique. The main feature of these models

is that they describe the effect of period lengths on the

overall behaviour of the plate. It is also shown that from

governing equations of these models, equations of

simplified averaged models (called asymptotic models)

can be obtained. An additional interesting feature of the

proposed models is that the equations describe also the

effect of normal stress in the thickness direction.

Keywords Medium thickness plate � Periodic

Winkler’s foundation � Effect of period lengths

1 Introduction

Plates interacting with a subsoil are often applied as

elements of constructions in the civil engineering, e.g.

as elements of building foundations or reinforcements

of roads foundations. In many cases as a certain

approximation the subsoil is modelled as a Winkler’s

foundation.

In this paper a special case of the aforementioned

plates is considered, i.e. a medium thickness plate

(homogeneous and anisotropic) resting on a periodic

Winkler’s foundation, cf. Fig. 1. Plates of this kind are

used as constructions under roads, e.g. as concrete

plates resting on a weak subsoil, which is reinforced by

a system of periodically distributed vertical pillars,

made of sand or gravel.

The above systems, i.e. plates on a periodic

foundation, consist of many small identical elements,

called periodicity cells. Properties of these structures

are described by highly oscillating, periodic and often

non-continuous functions. Because an analysis of

engineering problems of these plates is too compli-

cated using exact equations of the plate theory,

different averaged models have been proposed. These

models have usually described certain homogeneous

plates with constant homogenized properties instead

of real periodic plates. Between these models it can be

mentioned those based on the method of asymptotic

homogenization for periodic solids proposed in Ben-

soussan et al. [3]. Models of this kind for periodic

plates were presented in a series of papers, e.g.

Caillerie [5], Kohn and Vogelius [17]. Other models of

these plates are based on the microlocal parameters

approach, cf. Matysiak and Nagórko [18]. However,

the aforementioned models usually neglect the effect

of period lengths on the overall dynamic plate

J. Jędrysiak (&)

Department of Structural Mechanics, Łódź University of
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behaviour. Behaviour of functionally graded plates

resting on a foundation is also analysed, e.g. Tahouneh

and Naei [21], where considerations are based on the

three-dimensional elasticity theory, Yajuvindra

Kumar and Lal [26], where vibrations of nonhomo-

geneous plates with varying thickness interacting with

a foundation are investigated.

In order to take into account this effect new non-

asymptotic averaged models, based on the tolerance

averaging technique, have been proposed. This

approach was discussed for periodic composites and

structures in the monograph by Woźniak and Wierzb-

icki [25] and in the book edited by Woźniak et al. [24].

The tolerance averaging procedure were applied to

analyse non-stationary problems for different periodic

structures in many papers, e.g. for periodic grounds by

Dell’Isola et al. [7], for wavy plates by Michalak [19],

Kirchhoff plates by Jędrysiak [11–14], for Hencky–

Bolle plates by Baron [2], for honeycomb lattice-type

plates by Cielecka and Jędrysiak [6], for thin cylin-

drical shells Tomczyk [22]. These papers showed that

the effect of period lengths plays a crucial role in

dynamics of periodic structures. Moreover, some

static problems of periodic thin plates with moderately

large deflections were analysed by Domagalski and

Jędrysiak [8]. This modelling method was also applied

to analysis some dynamical problems of functionally

graded media or structures, e.g. transversally graded

thin plates were considered by Kaźmierczak and

Jędrysiak [16] and longitudinally graded thin plates by

Michalak and Wirowski [20].

The main aim of this note is to formulate a new non-

asymptotic averaged model, which describes the

above effect on non-stationary problems of medium

thickness plates interacting with a periodic Winkler’s

foundation. The peculiar feature of the proposed

model is that the plane stress assumption S33 = 0 is

omitted, i.e. the effect of the stress S33 is not neglected,

cf. Jemielita [10].

Considerations of this contribution are based on the

well-known Hencky–Bolle plate theory assumptions,

cf. Bolle [4], Hencky [9], which are extended on the

effect of Winkler’s foundation, cf. Ambartsumyan [1],

and the effect of the stress S33, cf. Jemielita [10].

2 Fundamental relations

2.1 The generalized Hencky–Bolle theory

assumptions

Let us denote by 0x1x2x3 the orthogonal Cartesian co-

ordinate system in the physical space and by t the time

co-ordinate. Let subscripts a, b, …(i, j, …) run over 1,

2 (over 1, 2, 3) and indices A, B,… (a, b,…) run over

1,…, N (1,…, n). Summation convention holds for all

aforementioned indices. Denote also x : (x1, x2) and

z : x3. Let us assume that the undeformed plate

occupies the region X : {(x, z):-d/2 \ z \ d/2, x [
P}, where P is the midplane with length dimensions

L1, L2 along the x1- and x2-axis, respectively, and d is

the plate thickness.

It is assumed that a plate structure, being a subject

of investigations, is consisted of an anisotropic and

homogeneous medium thickness plate, interacting

with a periodic Winkler’s foundation, which rests on

a rigid undeformable base, cf. Vlasov and Leontiev

[23]. A fragment of such plate is presented in Fig. 1.

Hence, plate properties, i.e. a mass density q and

elastic modulae aijkl, are constant. Moreover, the

heterogeneous foundation is periodic in planes parallel

to the plate midplane, i.e. along the x1- and x2-axis

Fig. 1 A fragment of a

medium thickness plate

resting on a periodic

Winkler’s foundation

1578 Meccanica (2014) 49:1577–1585

123



directions with periods l1 and l2, respectively; how-

ever, it has constant properties along the z-axis

direction. Hence, foundation properties i.e. a mass

density per an unit area l̂ ¼ l̂ðxÞ and Winkler’s

coefficients ki = ki(x), i = 1,…3, along the xi-axis

directions, can be periodic functions in x = (x1,x2).

Below, it is assumed k3 = k(x), k1 = k2 = kt(x).

These foundation parameters can be defined

following Vlasov and Leontiev [23]. The

periodicity basic cell on 0x1x2 plane can be denoted

by D : (-l1/2, l1/2) 9 (-l2/2, l2/2). The parameter

l : (l1
2 ? l2

2)� describes the cell size and satisfies the

condition d � l � Lmin (Lmin is a minimum charac-

teristic length dimension of the plate in its midplane).

Moreover, it is assumed that the plate cannot be torn

off from the foundation.

Denote displacements, strains and stresses by ui, eij

and Sij, respectively; virtual displacements and virtual

strains by �ui and �eij; loadings (along the xi-axis

direction) on the bottom P? and upper P- surfaces of

the plate by pþi and p�i ; respectively.

The problem under consideration is analysed in the

framework of the generalized Hencky–Bolle plate

theory. A simplified problem of this kind was presented

by Jędrysiak and Paś [15], where the effect of the stress

S33 was neglected. Below, the well-known assump-

tions of this generalized theory are recalled.

• The kinematic constraints

uaðx; z; tÞ ¼ z/aðx; tÞ; a ¼ 1; 2;

u3ðx; z; tÞ ¼ uðx; tÞ;
ð1Þ

where u(x,t) is the deflection of the midplane, /a(x,t)

are independent rotations; for virtual displacements

we have:

uaðx; zÞ ¼ z/aðxÞ; u3ðx; zÞ ¼ uðxÞ: ð2Þ

• The strain–displacement relations

eij ¼ uði;jÞ: ð3Þ

• The stress–strain relations (constitutive equations)

(under the assumption that the plane of elastic

symmetry is parallel to the plane z = 0)

Sab ¼ cabcdecd þ ĉab33S33;

Sa3 ¼ ca3c32ec3;

S33 ¼ aab33eab;

ð4Þ

where:

cabcd ¼ aabcd � aab33a33cd
�

a3333;

ca3c3 ¼ aa3c3 � aa333a33c3

�
a3333;

ð5Þ

ĉab33 ¼ aab33

�
a3333: ð6Þ

• The relations for ‘‘extra’’ stresses

�Sa3 ¼ �S3a ¼ pþa þ
Zd=2

z

Sabdz

0

B@

1

CA

;a

� €/a

Zd=2

z

zqdz; ð7Þ

�S33 ¼ pþ3 þ
Zd=2

z

�Sa3dz

0

B@

1

CA

;a

�€u

Zd=2

z

qdz; ð8Þ

where �Sa3; �S3a; �S33 are ‘‘extra’’ stresses, obtained

from equilibrium equations with boundary conditions

on the bottom P? and upper P- surfaces of the plate,

cf. Jemielita [10].

• The virtual work principle

Z

P

Zd=2

�d=2

Sijðx;z; tÞ�eijðx;zÞdzda

þ
Z

P

Zd=2

�d=2

qðx;zÞ€ujðx;z; tÞ�uiðx;zÞdijdzda

¼
Z

P

p�i ðx; tÞ�uiðx;�d=2Þdaþ
Z

P

pþi ðx; tÞ�uiðx;d=2Þda;

ð9Þ

which is satisfied for arbitrary virtual displacements

described by (2), under the assumption that these

displacements neglect on the plate boundary; where

da = dx1dx2 and �/a; �u are sufficiently regular, inde-

pendent functions.

Loadings on the bottom and upper surfaces of the

plate are assumed as:

pþi ðx; tÞ ¼ qþi ðx; tÞ � kiðxÞuiðx; d=2; tÞ
� l̂ðxÞ€uiðx; d=2; tÞ;

p�i ðx; tÞ ¼ q�i ðx; tÞ;
ð10Þ

where qþi ðx; tÞ are the parts of the loadings which are

independent of the foundation; kiðxÞ are Winkler’s

coefficients (kaðxÞ ¼ ktðxÞ,k3(x) = k(x)) and l̂ðxÞ is
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the mass density of the foundation per an unit area,

which are determined as following Vlasov and Leontiev

[23]. It can be observed that the effect of the foundation

is taken into account in equation (9) by loadings on the

bottom surface of the plate pþi , cf. (10)1.

2.2 Equations with terms describing the effect

of the stress S33

Using the above assumptions (1)–(10) of the general-

ized Hencky–Bolle plate theory, after some manipu-

lations equations of medium thickness plates resting

on Winkler’s foundations can be written in the form:

• Equilibrium equations

Mab;b � Qa þ 1

2
dðpþa � p�a Þ � # €/a ¼ 0;

Qa;a þ p3 � l€u ¼ 0;
ð11Þ

• Constitutive equations

Mab ¼ Babcd/ðc;dÞ þ sab þ ŝab;

Qa ¼ Dabðu;b þ /bÞ þ
1

2
kþabdpþb þ

1

2
k�abdp�b ;

ð12Þ

where:

– # and l are the rotational inertia of the plate

and the mass density per an unit area, respec-

tively, which for the homogeneous plate with a

constant thickness d are given by:

# ¼ 1

12
qd3; l ¼ qd; ð13Þ

– Dab and Babcd are the tensor of shear stiffnesses

and the tensor of bending stiffnesses, respec-

tively, for the homogeneous anisotropic plate

with a constant thickness d given by:

Dab ¼ kabdca3b3; Babcd ¼
1

12
d3cabcd; ð14Þ

– sab, ŝab are terms taking into account the effect of

the stress S33, which for the homogeneous

anisotropic plate with a constant thickness d

are described by:

These terms are obtained from formulas (7)–(8)

for ‘‘extra’’ stresses. The outline of this proce-

dure can be described in the following form, cf.

Jemielita [10]. Stresses Sa3 are calculated from

(7) and then stress S33 from (8). It is caused that

stresses Sa3, obtained from suitable constitutive

equations, do not satisfy boundary conditions

on the bottom P? and upper P- surfaces of the

plate, and then a form of stress S33 along the

plate thickness is not correct.

– kab; kþab; k�ab are shear coefficients, for the

homogeneous anisotropic plate equal:

kab ¼ 5

6
; kþ11 ¼ kþ22 ¼ k�11 ¼ k�22 ¼

1

6
;

kþ12 ¼ k�12 ¼ kþ21 ¼ k�21 ¼ 0:
ð16Þ

Substituting Eq. (12) into (11) and using formulas

(13)–(16) the governing equations of the homogeneous

anisotropic medium thickness plates with the constant

thickness resting on a periodic Winkler’s foundation

can be written in the form of equations of motion:

Babcdð/c;dÞ;b�Dabðu;bþ/bÞ�# €/a�
1

4
d2ðkt/aþ l̂ €/aÞ

� 1

60
d2lĉab33 €u;b� 1

10
d2ĉab33ðkuþ l̂€uÞ;b

� 1

240
d4ĉab33ðkt/cþ l̂ €/cÞ;cbþ

1

24
d2ðk/bþ l̂ €/bÞdab

¼� 1

10
d2½qþ3 þq�3 þ

1

12
dðqþc þq�c Þ;c�;bĉab33

þ 1

12
dðqþb �q�b Þdab� 1

2
dðqþa �q�a Þ;

Dabðu;bþ/bÞ;a�l€u� ku� l̂€u

� 1

24
d2ðkt/bþ l̂ €/bÞ;adab¼� 1

12
dðqþb �q�b Þ;adab

�ðqþ3 þq�3 Þ: ð17Þ

The characteristic feature of equations (17) is that for

periodic structures under consideration these equations

have highly oscillating, periodic, functional and, in

general, non-continuous coefficients, which describe the

effect of the periodic foundation: k; kt; l̂. Moreover,

underlined terms describe the effect of the stress S33

sab ¼ ndĉab33; n ¼ 1
10

d½qþ3 � ðkuþ l̂€uÞ þ q�3 � þ 1
120

d2½qþc � 1
2
dðktuc þ l̂ €/cÞ þ q�c �;c;

ŝab ¼ n̂dĉab33; n̂ ¼ ð 1
40

dl� 1
2
d�1#Þ€u ¼ � 1

60
qd2 €u

: ð15Þ
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and double-underlined terms—the corrected effect of

the shear. Because the direct application of equations

(17) to special problems is difficult, the equations are

approximated by equations with constant coefficients.

In order to take into account the effect of the period

lengths on the overall dynamic behaviour of medium

thickness plates on a periodic foundation the tolerance

averaging technique will be applied.

3 Tolerance averaging technique

3.1 Introductory concepts

In order to obtain the governing equations with

constant coefficients, describing the effect of period

lengths, the tolerance averaging method (cf. Woźniak

and Wierzbicki [25], Woźniak et al. [24]) will be

applied to the equations of motion for homogeneous

medium thickness plates resting on a periodic Win-

kler’s foundation. Using the modelling procedure

some concepts introduced in these books will be

employed, i.e. an averaging operator, a tolerance

system, a slowly-varying function, a periodic-like

function, an oscillating function. Some of them are

recalled below (cf. Woźniak and Wierzbicki [25] ).

Let us denote a periodicity cell at x [ PD,

PD = {x: x [ P, D(x) , P}, by D(x) : x ? D.

The averaging operator for considered periodic sys-

tems plates-foundation is defined as

uh i ¼ uh iðxÞ �

ðl1l2Þ�1

Z

DðxÞ

uðyÞdy; x 2 PD; y 2 DðxÞ ð18Þ

where u is an arbitrary integrable function on the

midplane P. For periodic function u its averaged

value by (18) is constant.

Let function Fð�Þ 2 F, where F is a set of unknown

functions in the problem under consideration,

be a continuous, bounded function defined on the

midplane P. Function F(�) (with its derivatives)

is called a slowly-varying function, F 2 SVD, if

8x1; x2 2 domFð�Þ x1�x2k k�l) Fðx1Þ�Fðx2Þj j�eF ,

where l is the diameter of the cell (the parameter of a

periodic structure), eF is the tolerance parameter.

Let f be a bounded function defined on P and / be a

periodic function. Function f is called a periodic-like

function, if for every x [PD a periodic function fx exists

such that the condition h/fi (x) % h/fxi (x) holds.

Hence, function fx is referred to as a periodic approx-

imation of f at x. If the above condition is satisfied for

all derivatives of function f, it can be denoted f 2 PLD.

A periodic-like function f will be called an oscil-

lating function, f 2 PL
l
D, with the weight l, if for

every x[PD it satisfies the condition hlfi (x) % 0,

where l(�) is a positive value periodic function. For

constant values functions l the condition takes the

form l hfi (x) = hfi (x) % 0 for every x[PD, and set

of those functions is denoted by f 2 PL1
D:

In the aforementioned books there are shown that

these definitions are related to a periodicity cell D and

a certain tolerance system T.

The above concepts together with lemmas and

assertions, formulated and proved in the book by

Woźniak and Wierzbicki [25] are used in the model-

ling procedure.

3.2 Modelling assumptions

In the tolerance averaging technique there are formu-

lated two fundamental assumptions.

The Micro–Macro Decomposition (MMD) states

that the generalized displacements—the deflection u

and the rotations /a—of the homogeneous medium

thickness plate on a periodic foundation, can be

decomposed in the following form:

uðx; tÞ ¼ wðx; tÞ þ gAðxÞVAðx; tÞ; A ¼ 1; . . .;N;

/aðx; tÞ ¼ uaðx; tÞ þ haðxÞUa
aðx; tÞ; a ¼ 1; . . .; n;

ð19Þ

where ua and w are averaged parts of the rotations and

the deflection, called the macrorotations and the

macrodeflection, respectively; functions gA, ha are

known and can be obtained from periodic problems for

the periodicity cell. They are called fluctuation shape

functions. Functions gA or ha stand the system of N or

n linear–independent periodic functions, such that

hgAi = 0 and gAð�Þ; lgA
;að�Þ 2 OðlÞ or hhai = 0 and

hað�Þ; lha
;að�Þ 2 OðlÞ. The fluctuation shape functions

approximate the expected form of the oscillating part

of free vibration modes of the periodic structure of the

plate, cf. Jędrysiak and Paś [15]. On the other side,

slowly-varying functions Ua
að�; tÞ;VAð�; tÞ 2 SVD are

new kinematic unknowns, called the fluctuation
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amplitudes for the rotations and for the deflection,

respectively.

The Tolerance Averaging Approximation (TAA)

states that in the framework of the tolerance averaging

technique terms of an order O(e) in the modelling

procedure have to be neglected.

3.3 The modelling procedure

In the framework of the tolerance averaging technique

and following the book by Woźniak and Wierzbicki [25]

the modelling procedure we can divide into four steps.

In the first step we substitute relations (19) into

equations (17). Then, in the second step we average

the resulting equations by applying (18) and using

TAA (cf. Jędrysiak [12]), deriving equations for the

macrodeflection w and the macrorotations ua.

In the third step we multiply equations (17) by test

functions (hb, b = 1,…,n, for (17)1, gB, B = 1,…,N,

for (17)2), then we substitute (19) into equations. In the

last step, after averaging (18) and some manipulations

we arrive at additional governing equations for the

fluctuation variables Ua
a and VA.

These governing equations are presented in the

subsequent sections.

4 Equations of the tolerance model

4.1 The tolerance model

The aforementioned procedure of the tolerance aver-

aging technique leads from equations (17) with

highly-oscillating non-continuous coefficients to aver-

aged equations of the tolerance model of medium

thickness plates resting on a periodic foundation with

stress S33, which under the following denotations:

can be written in the form:

Babcduc;db�
1

60
d2Cabl €w;b�Dabðw;bþubÞ�# €ua

� 1

10
d2CabðKw;bþm €w;bþ lKAVA

;bþ lmA €VA
;bÞ

þð 1

24
�1

4
Þd2ðKtuaþm €uaþ l ~Ka

t Ua
aþ l ~ma €Ua

aÞ

¼� 1

10
d2Cab½ðqþ3 þq�3 Þ;bþ

1

12
dðqþc þq�c Þ;cb�

þð 1

12
�1

2
Þdðqþa �q�a Þ;

Dabðw;abþub;aÞ�ðlþmÞ €w�Kw� lðmA €VAþKAVAÞ
� 1

24
d2ðKtub;aþm €ub;aþ l ~Ka

t Ua
b;aþ l ~ma €Ua

b;aÞdab

¼� 1

12
dðqþb;a�q�b;aÞdab�ðqþ3 þq�3 Þ;

�BabcdHab
dbU

a
cþ

1

60
d2l ~GAb

b Cabl €VA� lDab ~HbA
b VA

� l2HabðDabU
a
bþ# €Ua

aÞ
þ 1

10
d2Cabð ~Kb

bwþ ~mb
b €wþ l ~KAb

b VAþ l ~mAb
b

€VAÞ

þð 1

24
�1

4
Þd2lð ~Kb

t uaþ ~mb €uaþ l ~Kab
t Ua

aþ l ~mab €Ua
aÞ¼0;

�DabGAB
ab VA� l ~HaB

a DabU
a
b� l2GABl €VA

þ 1

24
d2ðKB

taubþmB
a €ubþ l ~KaB

ta Ua
bþ l ~maB

a
€Ua

bÞdab

� lðKBwþmB €wÞ� l2ðKABVAþmAB €VAÞ¼0;

ð21Þ

where w, ua, VA, Ua
a are the basic unknowns, being

slowly-varying functions.

Kt � kth i; KA
t � l�1 ktg

A
� �

; ~Ka
t � l�1 kth

ah i; ~Kab
t � l�2 kth

ahb
� �

K � kh i; KA � l�1 kgA
� �

; KAB � l�2 kgAgB
� �

; ~Ka � l�1 khah i
~Kab � l�2 khahb

� �
;

KA
ta � ktg

A
;a

D E
; ~KAa

a � l�1 kgAha
;a

D E
; ~Ka

a � kha
;a

D E
; ~KaA

ta � l�1 kth
agA

;a

D E
;

m � l̂h i; mA � l�1 l̂gA
� �

; mAB � l�2 l̂gAgB
� �

;
~ma � l�1 l̂hah i; ~mab � l�2 l̂hahb

� �
;

~ma
a � l̂ha

;a

D E
; ~mAa

a � l�1 l̂gAha
;a

D E
; mA

a � l̂gA
;a

D E
; ~maA

a � l�1 l̂hagA
;a

D E

Hab � l�2 hahb
� �

; GAB � l�2 gAgB
� �

; Hab
ab � ha

;ahb
;b

D E
; GAB

ab � gA
;agB

;b

D E
;

~GAa
a � l�1 gAha

;a

D E
; ~HaA

a � l�1 hagA
;a

D E
;

Cab � ĉab33

ð20Þ

1582 Meccanica (2014) 49:1577–1585

123



The characteristic features of the derived governing

equations (21) are:

1� Constant coefficients;

2� Equations describe the effect of period lengths by

terms involving parameter l;

3� Terms with coefficients Cab (a, b = 1, 2)

describe the effect of stress S33;

4� Terms with the underlined ratios 1
24

and 1
12

describe

the corrected effect of the shear;

5� Terms with the coefficient # describe the rota-

tional inertia of the plate;

6� Terms with the coefficient l̂ (cf. (20)) describe

the inertia of the foundation.

Recapitulating, the tolerance model is defined by:

1� Equation (21) for N ? 1 and 2(n ? 1) unknowns,

w, VA, A = 1,…, N, and ua;U
a
a, a = 1,2,

a = 1,…, n, which make it possible to analyse

the effect of period lengths on the overall

behaviour of the system – a medium thickness

plate-a periodic Winkler’s foundation;

2� Conditions determining applications of the

model, i.e. equations (21) have physical sense

for the unknowns w(�,t), VA(�,t) and

uað�; tÞ;Ua
að�; tÞ, being slowly-varying functions

for every t;

3� The plate deflection, which is approximated by

means of the formula

uðx; tÞ ¼ wðx; tÞ þ gAðxÞVAðx; tÞ

and the plate rotations, which are given by

/aðx; tÞ ¼ uaðx; tÞ þ haðxÞUa
aðx; tÞ;

where A = 1,…, N, a = 1,…, n.

It has to be emphasized that the above equations can

be obtained for the certain mode-shape functions gA,

A = 1,…,N, and ha, a = 1,…, n, which have to be

previously derived for every periodic system plate-

foundation under consideration as solutions to certain

periodic problems for the periodicity cell. In most cases

our considerations can be restricted to approximate

forms of these solutions and to single mode shapes for

N = 1, n = 1. It makes it possible to show that it is

sufficient from the computational point of view.

Neglecting in equations (21) some terms the

governing equations of simplified tolerance models

can be obtained.

4.2 The simplified tolerance model

without the inertia of the foundation

If terms with coefficients m; mA; mAB; ~ma; ~mab;

~ma
a; ~mAa

a ; mA
a ; ~maA

a are omitted in equations (21) we

obtain:

Babcduc;db�
1

60
d2Cabl €w;b�Dabðw;bþubÞ�# €ua

� 1

10
d2CabðKw;bþ lKAVA

;bÞþð
1

24
�1

4
Þd2ðKtuaþ l ~Ka

t Ua
aÞ

¼� 1

10
d2Cab½ðqþ3 þq�3 Þ;bþ

1

12
dðqþc þq�c Þ;cb�

þð 1

12
�1

2
Þdðqþa �q�a Þ;

Dabðw;abþub;aÞ�l €w�Kw� lKAVA

� 1

24
d2ðKtub;aþ l ~Ka

t Ua
b;aÞdab¼� 1

12
dðqþb;a�q�b;aÞdab

�ðqþ3 þq�3 Þ;�BabcdHab
dbU

a
cþ

1

60
d2l ~GAb

b Cabl €VA

� lDab ~HbA
b VA� l2HabðDabU

a
bþ# €Ua

aÞ

þ 1

10
d2Cabð ~Kb

bwþ l ~KAb
b VAÞ

þð 1

24
�1

4
Þd2lð ~Kb

t uaþ l ~Kab
t Ua

aÞ¼0;

�DabGAB
ab VA� lDab ~HaB

a Ua
b� l2GABl €VA

þ 1

24
d2ðKB

taubþ l ~KaB
ta Ua

bÞdab� lKBw� l2KABVA¼0;

ð22Þ

which describe the simplified tolerance model without

the inertia of the foundation.

4.3 The simplified tolerance model

without the inertia of the foundation

and the rotational inertia of the plate

Neglecting in equations (21) terms with coefficients

m; mA; mAB; ~ma; ~mab; ~ma
a; ~mAa

a ; mA
a ; ~maA

a and also

with the coefficient # we arrive at:
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Babcduc;db�
1

60
d2Cabl €w;b�Dabðw;bþubÞ

� 1

10
d2CabðKw;bþlKAVA

;bÞ

þð 1

24
�1

4
Þd2ðKtuaþl ~Ka

t Ua
aÞ¼�

1

10
d2Cab½ðqþ3 þq�3 Þ;b

þ 1

12
dðqþc þq�c Þ;cb�þð

1

12
�1

2
Þdðqþa �q�a Þ;

Dabðw;abþub;aÞ�l €w�Kw�lKAVA

� 1

24
d2ðKtub;aþl ~Ka

t Ua
b;aÞdab¼ 1

12
dðq�b;a�qþb;aÞdab

�ðqþ3 þq�3 Þ;�BabcdHab
dbU

a
cþ

1

60
d2l ~GAb

b Cabl €VA

�lDab ~HbA
b VA�l2HabDabU

a
bþ

1

10
d2Cabð ~Kb

bwþl ~KAb
b VAÞ

þð 1

24
�1

4
Þd2lð ~Kb

t uaþl ~Kab
t Ua

aÞ¼0;�DabGAB
ab VA

�lDab ~HaB
a Ua

b�l2GABl €VAþ 1

24
d2ðKB

taubþl ~KaB
ta Ua

bÞdab

�lKBw�l2KABVA¼0; ð23Þ

which describe the simplified tolerance model without

the inertia of the foundation and the rotational inertia

of the plate.

The characteristic feature of equations (23) is that

they involve time derivatives only for unknowns:

w and VA, A = 1,…,N.

5 Equations of the asymptotic models

It can be observed that neglecting in equations (21),

(22) or (23) terms involving parameter l the governing

equations of the simplified averaged models can be

obtained.

Hence, from equations (21) we arrive at:

Babcduc;db�
1

60
d2lCab €w;b�Dabðw;bþubÞ�# €ua

� 1

10
d2KCabw;b� 1

10
d2mCab €w;bþð 1

24
� 1

4
Þd2Ktua

þð 1

24
� 1

4
Þd2m €ua ¼�

1

10
d2½ðqþ3 þ q�3 Þ;b

þ 1

12
dðqþc þ q�c Þ;cb�Cabþð 1

12
� 1

2
Þdðqþa � q�a Þ;

Dabðw;baþub;aÞ� ðlþmÞ €w�Kw� 1

24
d2Ktub;adab

� 1

24
d2m €ub;adab ¼� 1

12
dðqþb;a� q�b;aÞdab�ðqþ3 þ q�3 Þ;

�BabcdHab
dbU

a
c þ

1

10
d2Cab ~Kb

bwþ 1

10
d2Cab ~mb

b €w¼ 0;

�DabGAB
ab VAþ 1

24
d2KB

taubdabþ 1

24
d2mB

a €ubdab ¼ 0;

ð24Þ

where the effect of period lengths is not taken into

account. Coefficients in the above equations are

defined by formulas (20). Because equations (24) do

not describe the effect of period lengths, the averaged

model describe by these equations can be called the

asymptotic model.

Similarly, from equations (22) we obtain:

Babcduc;db �
1

60
d2lCab €w;b � Dabðw;b þ ubÞ � # €ua

� 1

10
d2KCabw;b þ ð 1

24
� 1

4
Þd2Ktua

¼ � 1

10
d2½ðqþ3 þ q�3 Þ;b þ

1

12
dðqþc þ q�c Þ;cb�Cab

þ ð 1

12
� 1

2
Þdðqþa � q�a Þ;

Dabðw;ba þ ub;aÞ � l €w� Kw� 1

24
d2Ktub;adab

¼ � 1

12
dðqþb;a � q�b;aÞdab � ðqþ3 þ q�3 Þ;

� BabcdHab
dbU

a
c þ

1

10
d2Cab ~Kb

bw ¼ 0;�DabGAB
ab VA

þ 1

24
d2KB

taubdab ¼ 0; ð25Þ

which describe the averaged model called the asymp-

totic model without the inertia of the foundation.

Finally, neglecting in equations (23) terms with

parameter l we have:

Babcduc;db �
1

60
d2lCab €w;b � Dabðw;b þ ubÞ

� 1

10
d2KCabw;b þ ð 1

24
� 1

4
Þd2Ktua

¼ � 1

10
d2½ðqþ3 þ q�3 Þ;b þ

1

12
dðqþc þ q�c Þ;cb�Cab

þ ð 1

12
� 1

2
Þdðqþa � q�a Þ;

Dabðw;ba þ ub;aÞ � l €w� Kw� 1

24
d2Ktub;adab

¼ � 1

12
dðqþb;a � q�b;aÞdab � ðqþ3 þ q�3 Þ;

� BabcdHab
dbU

a
c þ

1

10
d2Cab ~Kb

bw ¼ 0;�DabGAB
ab VA

þ 1

24
d2KB

taubdab ¼ 0 ð26Þ

describing the averaged model called the asymptotic

model without the inertia of the foundation and the

rotational inertia of the plate.

6 Summary

Using the tolerance averaging technique, which was

proposed for periodic structures by Woźniak and

Wierzbicki [25] and summarized in the book edited by
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Woźniak et al. [24], the governing equations with

constant coefficients of a non-asymptotic averaged

model for medium thickness plates resting on a

periodic Winkler’s foundation are derived. This

model, called the tolerance model, makes it possible

to investigate the effect of period lengths on vibrations

of these structures. Moreover, the derived model takes

into account the effect of stress S33, on the contrary to

the model shown by Jędrysiak and Paś [15].

Summarizing, it can be observed that:

1. The proposed tolerance model is governed by

equations with terms dependent explicitly on

parameter l (being the diameter of the periodicity

cell). Hence, certain phenomena in dynamic

problems, related to the internal periodic structure

of the system of the plate and the foundation, can

be investigated in the framework of this model.

2. Neglecting some terms in the governing equa-

tions, describing different effects related to the

plate or the foundation, we obtain averaged

models, which make it possible to analyse

dynamical problems of systems under consider-

ation on different levels of accuracy.

Some applications of the proposed models to

dynamic problems of medium thickness plates resting

on a periodic Winkler’s foundation will be presented

in the forthcoming papers.
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