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Abstract

Glioblastoma Multiforme (GBM) is the primary brain tumor and accounts for 200,000 deaths each year worldwide. The
standard therapy includes surgical resection followed by temozolomide (TMZ)-based chemotherapy and radiotherapy. The
survival period of GBM patients is only 12—15 months. Therefore, novel treatment modalities for GBM treatment are
urgently needed. Mounting evidence reveals that non-coding RNAs (ncRNAs) were involved in regulating gene expression,
the pathophysiology of GBM, and enhancing therapeutic outcomes. The combinatory use of ncRNAs, chemotherapeutic
drugs, and tumor suppressor gene expression induction might provide an innovative, alternative therapeutic approach for
managing GBM. Studies have highlighted the role of Long non-coding RNAs (IncRNAs) and microRNAs (miRNAs) in
prognosis and diagnosis. Dysregulation of ncRNAs is observed in virtually all tumor types, including GBMs. Studies have
also indicated the blood-brain barrier (BBB) as a crucial factor that hinders chemotherapy. Although several nanoparticle-
mediated drug deliveries were degrading effectively against GBM in vitro conditions. However, the potential to cross the
BBB and optimum delivery of oligonucleotide RNA into GBM cells in the brain is currently under intense clinical trials.
Despite several advances in molecular pathogenesis, GBM remains resistant to chemo and radiotherapy. Targeted therapies
have less clinical benefit due to high genetic heterogeneity and activation of alternative pathways. Thus, identifying GBM-
specific prognostic pathways, essential genes, and genomic aberrations provide several potential benefits as subtypes of GBM.
Also, these approaches will provide insights into new strategies to overcome the heterogenous nature of GBM, which will
eventually lead to successful therapeutic interventions toward precision medicine and precision oncology.
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Introduction children are Astrocytoma, Ependymoma, Diffuse Intrinsic

Pontine Glioma (DIPG), Germ cell Tumors, and Medullo-

Brain cancer accounts for 1.2% of the various cancers, with
17,000 new cases yearly, especially in the USA. The Central
Nervous System consists of the brain and spinal cord and
aids in giving motor signals by processing sensory infor-
mation. They control processes such as thoughts, hormone
secretion, movement, heartbeats, and respiration (Controlled
by the Brain stem). The various cancers found in the brain in
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blastoma (Packer et al. 2008; Warren 2012). In adults, along
with the above types, additional benign tumors like Oligo-
dendroglial tumors in the temporal or frontal lobe, mixed
gliomas, Pineal Parenchymal tumors in the pineal region,
Craniopharyngioma, a rare type found at the anterior end
of the brain just above the pituitary gland, and Meningeal
tumors in the surrounding layers of the brain and spinal cord
called meninges have been detected. (Farwell et al. 1977,
Jeuken et al. 2004; Lutterbach et al. 2002). In GBM, Grades
I-1I belong to lower-grade gliomas (LGG) [angiocentric gli-
oma and diffuse astrocytoma], and high-grade glioma (grade
III-IV) include mesenchymal astrocytoma and GBM (Louis
et al. 2007, 2016). The classification is based on isocitrate
dehydrogenase (IDH1), alpha-thalassemia/mental retarda-
tion, X-linked (ATRX), tumor suppressor protein (TP53),
and 1p/19 (Yang et al. 2016; Han et al. 2018). Most primary
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GBM cancers are wild-type IDH, while secondary GBM
develops from lower-grade glioma and carries mutations in
IDH. (Ohgaki and Kleihues 2013).

Intense research and investigations on palliative care
remain essential during various stages of GBM. Emerg-
ing studies have identified the potential use of TMZ in
0%-methylguanine-DNA-methyltransferase (MGMT) meth-
ylated genetic background and anaplastic glioma. Emerg-
ing studies have revealed BBB and tumor microenviron-
ment (TME) as significant challenges for disease therapy
(Tan et al. 2020). Bioinformatics analysis identified over-
expression of a few genes such as Cell Adhesion Associ-
ated, Oncogene Regulated (BOC), Elongation of very long
chain fatty acids protein 6 (ELOVL6), Vascular endothelial
growth factor C (VEGFC), etc. The molecular aberrations
in GBM include mutations in the p53 gene, Retinoblas-
toma, PI3K-Akt signaling, EGFR signaling, Neurogenic
locus STAT homolog protein 1 (NOTCH 1), and NOTCH
2 signaling, etc. (Brennan et al. 2013). The essential gene
that dictates a patient’s survival and responsiveness towards
TMZ is MGMT. Methylation of MGMT promoter results in
an increased survival rate when compared with the hypo-
methylated state. MGMT repairs the N7 and O° positions of
guanine, alkylated by TMZ. Kato et al. 2010 have reported
that small interfering RNA (siRNA) targeting MGMT can
enhance the ability of TMZ-induced cytotoxic effects.

Interestingly, O°®-Benzylguanine (O°-BG) and
06-(4-Bromotheny1) guanine (0%-4-BTG) can access
pseudo substrates and inhibit the catalytic activity of
MGMT protein (10 q26.3). In addition, miRNAs such as
miR-142, miR-181d, miR-221, miR-222, miR-603, and
miR-767-3p bind to 3’ untranslated region (3°UTR) of
MGMT and lead to degrade the mRNA. Studies by Mat-
thew H. Kulke et al. 2009, have shown that the therapeu-
tic efficiency of TMZ was enhanced during lower levels
of MGMT (Yu et al. 2020). Identifying the molecular
targets of GBM involved in disease pathogenesis and
developing small molecules is essential to anticancer
therapy. The nervous system cancers include astrocytoma,
ependymoma, glioma, meningioma, medulloblastoma,
and neuroblastoma. Chemotherapy has a role in treating
almost all newly diagnosed diffuse gliomas (WHO I-1V).
Emerging studies have identified potential benefits using
TMZ for grade IV GBM, Procarbazole, and Vincristine
for grade II and grade III cancers. Several alternatives
for GBM care include systemic therapies and combined
modality therapy. Furthermore, there are several factors,
such as tumor size and Karnofsky's performance score
(KPS). Interestingly, the tumor-treating fields (TTFields)
with TMZ represent an effective therapeutic strategy for
GBM therapy (Hottinger et al. 2016). In GBM cancers
and GBM cancer stem cells (GSCs), several chromosomal
alternations such as recurrent copy number changes,
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polysomy (chromosome 7), monosomy (chromosome 10),
loss of chromosome 10 g, and deletions in 9p21, as well
as cancer stemness markers such as CD15, CD31, CD34,
CD45, CD133, CD90 lead to genomic instability and can-
cer stemness (Pesenti et al. 2019). The other genomic
alterations include amplification of epidermal growth fac-
tor receptor (EGFR) and platelet-derived growth factor
receptor (PDGFR), aberrations in RTK/Ras/PI3K signal-
ing pathways, frequent mutations including alterations in
Neurofibromatosis type 1 (NF1), Phosphatase and Ten-
sin Homolog (PTEN), Mouse double minute 2 homolog
(FGF), and telomerase reverse transcriptase (hTERT)
(Reifenberger et al. 1993; Verhaak et al. 2010; Heiden-
reich et al. 2015). ncRNAs, a significant portion of the
transcriptome that do not appear to have protein-coding
functions, are crucial in various biological processes,
including disease development (Sun and Chen 2020).
ncRNAs are junk transcriptional products that regulate
various cellular processes such as chromatin remodeling,
transcription, post-transcription, and cancer signaling
pathways. These pathways were broadly classified into
oncogenic and tumor suppressive in nature. (Wang et al.
2019). Completing an understanding of ncRNAs will
provide useful insights for better therapy against various
diseases including cancer. LncRNAs, small interfering
RNA (siRNA), enhancer RNA (eRNA), circular RNA
(circRNA), Y RNA, miRNA, and piwi-interacting RNA
(piRNA) are classified as regulatory ncRNAs. In contrast,
ribosomal RNA (rRNA), transfer RNA (tRNA), small
nuclear RNA (snRNA), telomerase RNA (TERC), tRNA-
derived stress-induced RNAs (tiRNA), tRNA-Derived
Fragments (tRF), and Small nucleolar RNA (snoRNA)
classified as housekeeping ncRNAs (Zhang et al. 2019)
rRNAs and tRNAs play a role in protein translation and
that IncRNAs and miRNAs can control the expression of
genes (Decoding noncoding RNAs). Targeting many tran-
scripts that encode regulators of cell-cycle progression,
migration, invasion, and metastasis (Ma et al. 2010; Kim
et al. 2016; El Fatimy et al. 2017). miRNAs and IncR-
NAs are effective biomarkers for predicting treatment out-
comes or monitoring therapeutic responses. Additionally,
ncRNAs function as a nuclear receptor response element
mimic for glucocorticoid receptor (GR), which reduces
the expression of oncogenic miRNA and increases apop-
tosis while reducing proliferation, invasion, and migration
(Zhang et al. 2013; Zhao et al. 2015). ncRNAs reduce
the production of genes that improve lipid synthesis
(SCAP, SREBP-1), proliferation (CDK®6), and apoptosis
(MCL-1), as well as B cell proliferation (Garzon et al.
2009; Santanam et al. 2010; Ru et al. 2016). The present
review focuses on the emerging aspects of therapeutic,
prognostic, and diagnostic aspects, as well as drug deliv-
ery approaches against GBM cancer. The regulation of
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various genes involved in cancer cell proliferation by
miRNA and Inc RNA.

Drugs and importance

GBM patients have a survival period of 12-15 months.
Most therapeutic drugs in clinical trials impair pathologi-
cal processes of glioma formation and thus improve qual-
ity of life. Recent high-through-hit identification (hit-ID)
strategies such as high throughput screening, DNA encoded
library screening, and fragment-based drug identification
led to drug discovery (Silvestri and Colbon 2021). Also,
emerging trends have indicated that Drug repurposing is
a novel concept for effectively treating cancers and many
other health disorders. Also, drug repurposing saves time
and is cost-effective (Tan et al. 2018). TMZ is the standard
drug with 100% bioavailability and lipophilicity in GBM
cancer therapy. In several GBM cases, the high expression
of MGMT resulting unresponsiveness to chemotherapeu-
tic drugs and enhancement in the GSCs. This indicates the
need to focus on identifying effective therapeutic drugs
against GBM cancers (William et al. 2018). To date, Food

and Drug Administration (FDA) has approved several drugs
such as Lomustine, Carmustine, Bevacizumab, carmustine
wafer implants, Dabrafenib, Trametinib, Afinitor, Belzutifan,
Danyelza, Welireg, and Tafinlar (Hadjipanayis and Stummer
2019; Odogwu et al. 2018; Novartis 2016; Fallah et al. 2022;
Mullard 2021) (Fig. 1). Also, it is imperative to identify the
specific, and effective drug molecules that specifically target
the GBM cancer tissue and BBB, cancer stem cells, etc. The
GBM anticancer drugs ideally possess less than 500 Da. The
effective entry of drugs can be prevented by various pro-
teins such as organic anion transporting polypeptide 1A2
(OATP1A2/SLCO1A2), organic anion transporter 3 (OAT3/
SLC22AB), p-glycoprotein (P-gp), multi-drug resistance-
associated protein 4 (MRP4/ABCC4), monocarboxylate
transporter 1 (MCT1/SLC16A1) (Urquhart and Kim 2009).

Recent drug developments have suggested using high
throughput (HTS), microwave-assisted organic synthesis
(MAOS), combinatorial chemistry, and medicinal chemistry
for drug discovery. The genomic-wide association studies
(GWAS) about metabolic modeling, transcriptomic data,
as well as system biology data have indicated that GBM
patients with low survival periods have upregulated glycine
(cytosol), methionine (cytosol), L-methionyl-tRNA (met)
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Fig.1 Chemotherapeutic molecules employed in GBM therapy
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(cytosol), formate (mitochondria) and low levels of heparin
sulfate precursor 14 (Golgi apparatus), taurine ( extracel-
lular), trichloroacetate ( cytosol), etc. (Larsson et al. 2020).

Drugs in clinical trials and their importance

Drugs involved in clinical trial II against GBM are multi-
kinase inhibitors, Poly ADP-Ribose Polymerase Inhibi-
tor, proteasome inhibitors, Stromal Cell-Derived Fac-
tor Chemokine Receptor Type-4 (CXCR-4) Inhibitors,
G-protein coupled receptor antagonists, BRAF inhibitors,
etc. (Wang et al. 2021b). To date, only one drug that has
reached clinical trial phase III is Bevacizumab, which is
presently approved for GBM cancer therapy. Emerging
studies have indicated that various drugs such as Tyrosine
kinase inhibitors inhibit various tyrosine kinases such as
Vascular endothelial growth factor receptor 1 (VEGFR1),
Fibroblast growth factor receptor (FGFR), PDGFR, etc., and
were found to inhibit tumor angiogenesis (Wilhelm et al.
2011). Several proteasome inhibitors disrupt the cell cycle
and are also known to inhibit the proteasomal degradation
of several proteins (Yin et al. 2005). Bortezomib inhibits
angiogenesis and cytokine signaling and enhances chemo-
therapy by enhancing apoptosis (Yin et al. 2005). Iniparib
(4-iodo-3-nitrobenzamide) (i.e., prodrug) and PARP inhibi-
tor were used to treat breast cancer, pancreatic cancer, and
GBM. Researchers have identified that Iniparib facilitates
the release of the radical nitro ion that binds to selenium
protein and thus enhances redox condition and cellular cyto-
toxicity (Fogelman et al. 2011; O'Shaughnessy et al. 2011).
In addition, BRAF belongs to the serine-threonine kinase
family and is an oncogene participating in the RAS-RAF-
MEK-ERK pathway. Interestingly, mutation BRAFV600E
was observed in 50% of anaplastic ganglions, xanthoastro-
cytomas, and high-grade gliomas (Chi et al. 2013; Brennan
et al. 2013; Schindler et al. 2011). The most important drugs
that are useful for treating GBM are presented below.

Lomustine (CCNU)

Chemotherapeutic drugs are also considered primary thera-
peutic agents to treat GBM. Lomustine was an approved
drug for treating recurrent high-grade glioma (HGG). CCNU
is an alkylating agent that crosslinks DNA as well as RNA in
dividing cells, thereby inducing apoptosis in tumor cells. In
GBM patients, CCNU is administered orally at 80-110 mg/
m? every 6 weeks (Wirsching et al. 2014; Wick et al. 2017).
Wick et al. conducted a randomized clinical trial (RCT) with
CCNU in combination with Bevacizumab, which improved
overall survival (Weller and Rhun 2020). Common toxici-
ties of chemotherapeutics were hematologic toxicity (49.7%)
(Weller and Rhun 2020). CCNU was a critical factor in PCV
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(P: procarbazine, C: Lomustine, V: Vincristine) regimen
against HGG (Lassen et al. 2014).

Carmustine: (BCNU; bis-chloroethyl nitrosourea)

The FDA approved Carmustine to treat HGGs (Hadjipanayis
and Stummer 2019). Walker et al. conducted an RCT that
reported a median overall survival (O.S.) of 11.75 months
(Walker et al. 1978). Currently, BCNU is only FDA-
approved to treat recurrent GBM. Surprisingly, Carmustine
induces several nonspecific effects on normal lung and eye
cells and pulmonary and ocular toxicity.

Carmustine wafer implants

The FDA approved carmustine wafer implants for recurrent
HGGs 2003 (Hadjipanayis and Stummer 2019).

Bevacizumab

Bevacizumab (BVZ) is FDA-approved drug as a mono-
therapy and combined with Irinotecan (Cohen et al. 2013;
Vredenburgh et al. 2007). In several clinical trials, combin-
ing Etoposide and Carboplatin with Bevacizumab has exhib-
ited potential benefits against recurrent GBM (Carrillo et al.
2014; Mrugala et al. 2012) (Fig. 1; Table 1).

Temozolomide

TMZ, an oral alkylating agent, is the first-line treatment for
GBM, resistance to TMZ is a significant hurdle in GBM
patients. The combination of TMZ, difluoromethylornith-
ine (DFMO), an inhibitor of ornithine decarboxylase, and
radiation in GBM cell lines resulted in consistently higher
suppression of proliferation, causing cell-cycle arrest in the
G2/M phase and caspase-8 activity (Alexiou et al. 2019).

Nanoparticle-mediated drug delivery
in GBM

Emerging studies have emphasized using nanoparticles to
deliver chemotherapeutic drugs or agents specific to the
tumor site. Thus, the application of nanoparticle-mediated
drugs and siRNA delivery has enormous potential in drug
discovery. These nanoparticles were classified as organic or
inorganic (Bukhari et al. 2021). Throughout the body, the
blood vessels supply nutrients and oxygen to various types
of cells. It comprises endothelial cells, neurons, astrocytes,
and pericytes (Keaney and Campbell 2015). BBB facilitates
the movement of molecules with only molecular weight
molecules of less than 500 Da. Nanoparticles carry small
molecules such as siRNAs, miRNAs, and drugs into various
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cells and tissues. Thus, it aids in preventing cancer, cardiac
diseases, and diabetes. Recently, several attempts were made
to effectively deliver siRNA and miRNA to inhibit RNA-
dependent RNA polymerase (RdRP) and viral replication
against COVID-19. Organic nanoparticles, including den-
drimers, chitosan, etc., and inorganic, iron, zinc oxide, etc.,
were found to have future therapeutic utility against vari-
ous cancers. The most important property of an ideal nano-
particle is biodegradability, biostability, ease of synthesis,
and multiple modifications (Kozielski et al. 2019). Multiple
nanoparticle modifications will allow the incorporation of
small molecules, siRNAs, and antibodies in multiple sys-
tems for targeting cancer (Pourgholi et al. 2016). Most of
these nanoparticles are in clinical trials.

Further, exploring nanoparticles provides better results
for effective stabilization in the bloodstream or circulating
system. These nanoparticles have considerable advantages in
the future therapy of GBM cancer. Nanoparticles that deliver
siRNA have amino groups on the outer surface (Weber et al.
2000). siRNA easily binds with the amino group. For exam-
ple, the PAMAM nanoparticle has 64 amino groups, but
the potential application of the PAMAM nanoparticle was
limited due to heavy cytotoxic effects on normal cells (Wu
et al. 2013). The other types of PAMAM dendrimer modifi-
cations include hydroxy, carboxy, etc. In addition, Magnetic
nanoparticles were also utilized for the miRNA delivery,
which will be further tracked in vivo animal model systems
using the magnetic resonance analytic technique.

Nano-formulations generally have a lesser particle size,
bulky surface area, reactivity, and several active sites with
sufficient adsorption ability. The key advantages of the
nanoparticle are increased drug absorption, bioavailability,
and prolonged circulating time (Yin et al. 2020). SGT-p53
comprises wild-type p53 plasmid DNA in a cationic lipo-
some containing transferrin receptor and single-chain anti-
body. This nano-complex crosses the BBB and sensitizes
the TMZ resistant GBM (Kim et al. 2015). It was found
that SGT-p53 reverses TMZ resistance via abrogation of
MGMT and enhances the TMZ-induced cytotoxic effect in
TMZ-resistant GBM (Kim et al. 2016). The various nano-
particles employed for GBM cancer therapy are liposomes,
polymers, magnetic nanoparticles, etc. Further, the inhibi-
tors used in nanoparticle-mediated drug delivery in GBM
are interferon p (IFN p), Signal transducer, and activa-
tor of Transcription 3 (STAT3) inhibitor, etc. (Yoshino
et al. 2009; Koh Saka et al. 2012; Bobustuc et al. 2010;
Hirose et al. 2001). A mutant form of p5S3 was observed
in both primary and secondary GBM, and thus improv-
ing wild-type p53 has a beneficial effect (Steele and Lane
2005; ShChors et al. 2013). Transferrin receptor (TfR) is
a receptor that was widely expressed in BBB and GBM
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cells (Ramalho et al. 2022; Voth et al. 2015). Interestingly,
Transferrin receptor 1 was found to control the rate of
iron uptake by fine-tuning the amount of iron delivered to
the cells to meet metabolic needs (Cazolari et al. 2007).
Recent studies have identified the critical hurdles in GBM
therapy, such as the inability to cross BBB and ineffective
penetration in the BBB.

Liposome (Yang et al. 2012)

The initiation, progression, of GBM cancer was dys-
regulation due to differential changes in miRNAs. Thus,
targeting dysregulated miRNA with various oligonu-
cleotides has clinical limitations, including poor RNA
stability, off-target effects, and inefficiency in crossing
the BBB. The BBB was found to prevent many small
molecule drugs from entering the brain tumor environ-
ment. However, focused ultrasound (FUS) combined with
intravenous microbubbles (MBs) have shown a promising
result and enhanced the BBB permeability. Interestingly,
modified liposomes (i.e., liposomal-doxorubicin) target-
ing Interleukin-4 (IL4) receptor has exhibited promising
result in nonobese diabetic-severe combined immuno-
deficiency (NOD-scid) mice. Both drug delivery, and
survival of NOD Mice of GBM cancer was enhanced.

Polymers

Several copolymers include polyethylene glycol (PEG),
polypropylene glycol (PPG), and poly(L-lysine). These
copolymers have properties such as self-assembly, siRNA
binding, particle size, surface potential, the architecture
of the complexes, and siRNA delivery. Silencing of green
fluorescent protein (GFP) using copolymer to deliver GFP-
specific siRNA to Neuro-2a cells expressing GFP was
almost as effective as using Lipofectamine 2000, with min-
imal cytotoxicity. Thus, the copolymer platform for siRNA
delivery exhibited improved siRNA delivery in vitro and
in vivo (Dai et al. 2014). Recent studies have identified
that specifically designed siRNA bind and induce post-
transcriptional silencing of target genes (mRNA).

Magnetic hyperthermia therapy

Magnetic Hyperthermia Therapy (MHT) is a modern,
advanced therapeutic option for treating GBM. Hyperther-
mia therapy (H.T.) involves exposure of a body region
to elevated temperatures to achieve and potential anti-
cancer effect. This includes radiofrequency, ultrasound,
microwave, laser, and magnetic nanoparticles (MNPs)
(Mahmoudi et al. 2018).
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Gold nanoparticle

Emerging studies have revealed that the surface reactivity of
gold nanoparticles (AuNPs) has gained attention as a radia-
tion therapy radiosensitizer for cancer cells and as a drug
carrier to target cells. This calf thymus DNA with HAuCl4
solution as a radiosensitizer of human glioma cells with
cancer stem cell (CSC)-like properties (e.g., U251MG-P1),
to reduce their survival. The radiosensitivity of the AuNP-
associated cells is significantly enhanced. Also, the gen-
eration of reactive oxygen species (ROS), apoptosis induc-
tion, or DNA damage was enhanced (Kunoh et al. 2019).
In vivo, 1.9 nm nanoparticles were found to be toxic fol-
lowing intracerebral delivery in rats bearing glioma, while
no toxicity was observed using 15 nm nanoparticles at the
same concentration (50 mg/mL). Survival of rats that had
received the combination of treatments (AuNPs:50 mg/mL,
15 Gy) was significantly increased compared with the sur-
vival of rats that had received irradiation alone (Bobyk et al.
2013). Gold-iron oxide nanoparticles (polyGIONSs) surface
loaded with therapeutic miRNAs (miR-100 and antimiR-21)
inhibit GBM cancer cell proliferation and enhance apoptosis
(Sukumar et al. 2019).

Dendrimers

2,2-bis(methylol)propionic acid (Bis-MPA) as "nonviral
vectors" for transfection of siRNA in cell cultures. The
study encompassed dendrimers of generation one to four
(G1-G4), modified to bear 6—48 amino end-groups, where
the G2-G4 proved capable of siRNA complexation and pro-
tection against RNase-mediated degradation. The G2 den-
drimers were nontoxic to astrocytes, glioma (C6), and GBM
cancer cells (U87), while G3 and G4 dendrimers exhibited
concentration-dependent toxicity towards primary neurons
(Stenstrom et al. 2018). Specific properties in cancer cells
compared to normal cells, such as overexpression of various
receptors and differences in biological conditions like pH,
temperature, and redox of tumor microenvironment, cause
an increase in site-specific targeting efficiency. Thus, modi-
fications of dendrimers through the attachment of lipids,
amino acids, proteins/peptides, aptamers, vitamins, antibody
were effective against GBM (Ghaffari et al. 2018). Studies
also proved that Poly (amidoamine) (PAMAM) dendrim-
ers are well-defined, highly branched macromolecules with
numerous active amine groups on the surface. These N.P.s
carry drugs and genes (pDNA, siRNA) and deliver them to
cancer cells.

Inorganic nanoparticles

Titanium dioxide nanoparticles (TiO,NPs) have attracted
interest due to their use in various applications. TiO,NPs

can enter the brain; toxicity was assessed at different levels:
mitochondrial function (by MTT), membrane integrity, and
cell morphology (by calcein AM/PI staining) after acute
exposure at various doses ranging from 1.5 to 250 pg/ml for
7-10 days at sub-toxic concentrations (from 0.05 to 31 pg/
ml). Prolonged exposure has revealed that the proliferative
capacity (colony size) was compromised at the shallow
TiO,NP doses, such as 1.5 pg/ml and 0.1 pg/ml, respec-
tively, for D384 and SH-SY5Y (Coccini et al. 2015).

Polymicelles

Polymeric micelles are core—shell-type nanoparticles that act
as promising nanoparticles due to their size, stability, and
drug incorporation efficiency and release rate (Nishiyama
et al. 2016).

Quantum dots

Quantum dots (Q.D.) nano-transporters are Carbon quantum
dots (CQDs) that were successfully functionalized with Mal-
PEG-NHS linked RGERPPR. They exhibit double functions
of both tissue imaging and targeting train gliomas (Devi
et al. 2022).

Nanogels

Nanogels are unique local tailorable drug delivery sys-
tems and consist of a three-dimensional polymeric network
formed via physical or chemical assembly. Nanogel deliv-
ery systems (DPPC) with cell-penetrating peptides (CPP)
are introduced into the astrocyte. DPPC is around 300 nm,
the potential is about 0—5 Mv. The DPPC is verified as the
“biocompatible carrier for further application by cell viabil-
ity tests. The in vitro- constructed BBB model proves that
Dipalmitoyl phosphatidylcholine (DPPC) can efficiently
penetrate the BBB, attributed to both the temperature-sen-
sitive passive targeting and the active cell-penetrating pep-
tides (CPP) penetration. This indicates that the use of these
nanoparticles acts effectively against glioma.

Graphene

Graphene, graphene oxide, and reduced graphene oxide were
considered promising for industrial and biomedical applica-
tions due to their high mechanical stiffness and strength.
Synthesized techniques, such as liquid phase exfoliation
and wet chemical oxidation, often require toxic organic sol-
vents, surfactants, strong acids, and oxidants for exfoliating
graphite flakes. The residual contaminants cause of gra-
phene-induced toxicity in biological cells. Pooresmaeil and
co-workers developed the pH-responsive magnetic (Fe304
NPs)/G.O. hybrids to deliver doxorubicin. Approximately
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65% drug release was observed at 40 °C and pH 5.0 in can-
cer cells, which was 22% in normal cells (37 °C and pH 7.4)
(Borandeh et al. 2021). Liu et al. 2012 fabricated electrically
responsive rGO / poly (vinyl alcohol) (PVA) membranes for
the delivery of lidocaine hydrochloride (Liu et al. 2012).
The G.O. nanocarrier system has more advantages such as
anti—tumor drug delivery systems, like liposomes, ©® good
blood compatibility and optimal dispersibility in the liquid
environment of the human body (Daniyal et al. 2020); @
sizeable specific surface area facilitating multi-functional
modification by biomolecules and small molecules, such as
proteins and single—stranded DNA bases (Shahmoradi et al.
2018). (Wang et al. 2022).

Nanopeptide-drug combination

Studies have indicated that platinum pro drug (Pt IV) was
effectively transported into GBM tissue by M13 peptide, A
cell-penetrating peptide transporter 10, that can deliver the
drugs to the tumor site and inhibit the growth of the tumor.
Emerging studies have identified the tumor homing peptide,
also known as tumor-promoting peptides such as TT1 and its
linear form Lin TT1 (AKRGARSTA), bind to cell surface
receptors expressed on GBM cancer cells and follow the pro-
cess of tumor accumulation and penetration. These peptides
will process and generate the c-terminally expose a C-end
rule motif RXXR/K-OH in TT1, which will further bind to
another receptor neutrophilic-1 (NRP-1) which eventually
results in endocytic/exocytic transcytosis, extravasation, and
tumor penetration (Teesalu et al. 2013; Sugahara et al. 2009;
Teesalu et al. 2009; Sharma et al. 2017). Recent studies have
also indicated that Iron oxide nano worms (N.W.s) coated
with LinTT1, a nanocarrier system optimized for peptide-
mediated tumor targeting (Park et al. 2008, 2009, 2010;
Agemy et al. 2011; Roth et al. 2012).

Signaling pathways in GBM cancer

GBM (grade IV cancer) has poor patient survival. GBM
cancers are primarily primary and are up to 90% in inci-
dence. The majority of patients are in the elderly category.
Secondary-grade GBM cancers are low-grade astrocyto-
mas. The critical genetic alterations and pathway alter-
ations in GBM were found to be p53, EGFR, PDGFR,
PTEN, MDM?2, phosphatidyl inositol-3-kinase PI3K/ Akt/
mammalian target of rapamycin (mTOR), mitogen-acti-
vated protein kinase (MAPK), nuclear factor-kappa beta
(NF-kB), Wnt, STAT-3, and NOTCH pathway. Under-
standing the complex disease biology and the signaling
provides effective therapeutic strategies and improves the
prognostic and diagnostic aspects of GBM pathogenesis
and prevention.
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The p53 gene is a regulator and a critical tumor suppressor
that induces cell-cycle arrest and apoptosis (Huang et al.
2007; Huse and Holland 2010), many of which are involved
in tumor development and invasion. GBMs are divided into
primary and secondary subtypes. Primary GBMs develop
quickly and robustly, while secondary GBMs develop pro-
gressively from low-grade astrocytoma. p53 mutations
are the most common development of secondary GBMs,
whereas mutations in the p53 pathway are also detected in
primary gliomas at a lesser frequency (St Louis et al. 1999;
Ohgaki and Kleihues 2013). PTEN mutations were found to
be widely mutated in high-grade gliomas (Lespagnard et al.
1999; Fulci et al. 2000). The chromosomal regions (chro 9p,
chro 10g23.3, and chro10qg25.26) that encompass genes such
as CDK2A cyclin-dependent kinase 2A), CDK2B (cyclin-
dependent kinase 2B), ARF, MDM?2, EGFR, and PTEN
were also found to be mutated or deleted. pS3 protein expres-
sion was associated with significantly longer survival rates,
as observed in univariate analysis. Also, it was found that in
multivariate analysis of overall survival (Cox regression),
only postoperative Karnofsky performance status remained
as an independent prognostic factor (Birner et al. 2002).
Inactivation of p53 can result in resistance to apoptosis, a
critical mechanism in treatment failure during DNA-dam-
aging agents (Nieder et al. 2000). Mutations of the p53 gene
on (exons 5 to 8) were found in many primary tumors and
to a lesser extent in oligodendroglia, 1 oligoastrocytoma).
(Reifenberger et al. 1996).

pRB-CDK2-CDK4 axis in GBM pathogenesis

Retinoblastoma (R.b) is located at the chromosome location
13q14.1-q14.2 and was found to be involved in the cancer
progression of astrocytomas (Henson et al. 1994). Muta-
tions in R.B. are detected in more than 20% of high-grade
gliomas. Interestingly loss of 13q was associated with the
transition from low- to intermediate-grade gliomas (Hen-
son et al. 1994; Bahuau et al. 1998). CDKNZ2B, i.e., (p15),
a CDK inhibitor commonly inactivated in GBM, forms a
complex with CDK4 or CDKG®, thus preventing the activa-
tion of CDKs leading to the inhibition of cell growth and the
cell-cycle arrest at G1 phase.

PI3K-PTEN-Akt-mTOR pathway

The PI3K-PTEN-Akt-mTOR pathway regulates normal cel-
lular functions and plays a critical regulatory role in cancer
cell migration and metabolism. It was found that the PI3K
pathway is altered in about 70% of GBMs, due to various
biological aspects such as deletion of PTEN or amplifi-
cation of EGFR and vascular endothelial growth factor
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receptor (VEGFR)/ platelet-derived growth factor receptor
o (PDGFRa) (Zhi et al. 2009). Overexpression of EGFR,
which is one of the most frequent signaling mutations in
GBM, and its amplification leads to increased activation of
the PI3K pathway (Peraud et al. 1997; Watanabe et al. 1996).

RAS/MAPK pathway

Human RAS genes (Rat Sarcoma) transform oncogenes,
including H-Ras, N-Ras, and K-Ras. K-RAS belongs to
the G protein family. The activation and deactivation of
RAS are controlled by its binding to guanosine triphos-
phate (GTP) or guanosine diphosphate (GDP), respectively
(Lu et al. 2005; Hurley et al. 1984). Activated RAS fur-
ther activates RAF kinase through direct binding, regu-
lating downstream signaling pathways such as the mito-
gen-activated protein kinase (MAPK) pathway (Moodie
et al. 1993; Thomas et al. 1992). RAS also regulates the
activities of other pathways, such as the PI3K pathway,
and consequently, RAS regulates cancer cell prolifera-
tion, differentiation, signal transduction, apoptosis, and
tumorigenesis.

STAT3 and zinc importer 4 (ZIP4) pathway

Signal transducer and activators of transcription (STAT) pro-
tein complexes are a family of cytoplasmic proteins with
Scr Homology-2 (SH2) domains that functions as cytokines
and transduce signals from the cytoplasm to the nucleus.
Interestingly, these proteins acted as transcription factors and
were found to regulate various biological processes related
to cancer cells, such as proliferation, and migration (Abal
et al. 2006; Rahaman et al. 2002). Interestingly, STAT3
was once thought to possess only oncogenic properties, but
emerging studies have identified both the suppressive and
oncogenic roles in GBM, depending on the genetic profile
of the tumor (de la Iglesia et al. 2008).

WNT pathway

Wht signaling is overexpressed GBM. Activation of the Wnt
pathway in these tumors is associated with mutations in,
Adenomatous polyposis coli (APC), p-catenin, AXIN, and
transcription factor 4 (TCF4). Mutations in Wnt signaling
genes were extensively characterized in colorectal cancers.
Mutations in Wnt signaling components were observed in
B-catenin, APC, and AXINT1 of colon cancer and medullo-
blastoma, hepatocellular carcinoma. In contrast, aberration
of the key components of the Wnt pathway is not of common
occurrence in GBM, and gastric cancers (Nageret al. 2012;
Morris et al. 2013). Recent reports from a small cohort have

reported the existence of APC mutations observed in 13%
of GBM (Tang et al. 2015). Overexpression of leucine-rich
protein 1 (PELP1) was observed in almost all GBM sam-
ples (Sareddy et al. 2019). Studies have identified the pivotal
role of epigenetic modifications regulating the Wnt pathway.
Further, Gene Expression Omnibus miRNARNA profiling
of GBM versus the normal brain found that miR-138-2-3p
and miR-770-5p were differentially expressed.

The mammalian homologs of the Drosophila mela-
nogaster protein Van Gogh (VANGL). VANGL1, VANGL2,
and frizzled protein 7 (FZD7) are transcriptionally upregu-
lated in glioma and correlate with poor patient outcomes.
Consequently, knocking down of VANGL1 suppresses the
motility of GBM cell lines, restoration of Neuregulin recep-
tor degradation protein-/ (NRDP1), a RING finger type E3
ubiquitin ligase whose decreased expression in GBM cor-
relates with poor prognosis, reduces GBM cell migration,
and invasiveness by suppressing Planar Cell Polarity (PCP)
signaling. These findings revealed an essential mechanis-
tic role for this pathway in GBM malignancy (Wald et al.
2017). In addition, receptor-like tyrosine kinase (RYK), a
typical member of the receptor tyrosine kinase (RTK) family
involved in the control of neuronal differentiation (Lyu et al.
2008), resulted in being essential for WNT5a-dependent
invasiveness in glioma. (Hirano et al. 2014). MuTSigCV has
indicated that in GBM cancer, the mutation of genes such
as PTEN, EGFR, p53 (Lawrence et al. 2013). In addition,
loss of chromosome 10q, alterations of p53, amplification
of EGFR and PDGFR, and aberrant tyrosine kinase (RTK/
Ras) signaling contributes to GBM cancer. Interestingly,
studies have shown the differential expression of transform-
ing growth factor beta 1 (TGFB1) induced and SRY box 4
(SOX4) were also considered as therapeutic drug targets
(Qiu et al. 2018). Furthermore, genes such as nucleolar
and spindle-associated protein 1 (NUSAP1) and G-protein
coupled receptor 65 (GPR65) were considered survival
biomarkers.

Gene expression patterns in GBM cancer

In GBM cancer, three genes TP53, PTEN, and EGFR are
the most significantly mutated genes (SMG) as observed
by MuTSigCV (Lawrence et al. 2013). The loss of chromo-
some 10q, alteration of p53, R.B., amplification of EGFR,
PDGFR, and aberrations in receptor tyrosine kinase (RTK/
Ras) signaling. Other frequent alterations include NF1 and
MDM2. Differentially expressed genes such as transforming
growth factor beta-induced (TGFf1) and SRY box 4 (SOX4)
were also considered therapeutic target genes. Further, in
survival analysis, nucleolar and spindle-associated protein
1 (NUSAP1) and G-protein coupled receptor 65 (GPR65)
were significant genes.
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Dynein, cytoplasmic 1, intermediate chain 1 (DYNCI1I1)
was down-regulated in glioma. The lower expression of
DYNCII1 was correlated with poor patient survival. The
epigenetic mark H3K27me3 on lysine 4 was found in the
promoter region, revealing the active transcription region.
The SEMA3C is another essential gene with multiple
mutations observed in GBM cancer. Telomerase reverse
transcriptase (TERT) gene -124 bp (hg19chr5:1; 295, 228
C>T; -146 bp (hg 19 chr5, 1, 295, 250 C>T (Heidenre-
ich et al. 2015). The homeobox gene 5 DLXS, distal-less
homeobox 5, affects glioma cell motility via PAX6/DLXS5-
WNTS5A axis (Hu et al. 2016; Cell; 167:1281-1295). Among
GBM and ISL1 are. 90% of GBM cases belong to the IDH-
WT type ( high grade), and 10% of cases IDH mutant type
( lower grade). The other vital mutations are protein tyros-
ine phosphatase receptor type Z1 (PTPRZI and promoter
methylation in MGMT. Thus, it is imperative to investigate
the mutations, methylation, and other epigenetic changes to
identify the prognostic and diagnostic markers and thera-
peutic response.

Prognostic and diagnostic markers

Glioma cells can invade the neighboring tissues beyond
detection leading to tumor relapse. This leads to an inevi-
tably critical recurrence even after the surgical removal of
GBM tissue (Jacobs et al. 2011; Stylli et al. 2005).

IDH

IDH mutation was prognostic of more prolonged survival in
low-grade Glioma (Leu et al. 2013; Sabha et al. 2014; Metel-
lus et al. 2010; Gorovets et al. 2012). IDH mutations were
most common in cases of oligodendroglioma (94%) and little
lesser extent in cases of astrocytoma or mixed tumors (Leu
et al. 2013). Metabolic mapping and image analysis on GBM
cancer samples revealed the occurrence of IDHI (R132)
mutation. NADP + -dependent IDH activity and other
NADPH-producing dehydrogenases, glucose-6-phosphate
dehydrogenase, 6-phosphogluconate dehydrogenase, malate
dehydrogenase, and hexose-6-phosphate dehydrogenase.
Mutation of Isocitrate dehydrogenase (IDH) gains onco-
genic function. It converts alpha-ketoglutarate to the onco-
metabolite 2-hydroxyglutarate (2-HG), ultimately leading to
genome-wide methylation change in GBM patients, leading
to altered gene expression (Najafi et al. 2022). Heterozygous
mutations of isocitrate dehydrogenase-1 (IDH1) dominantly
inhibit wild-type IDH in GBM cancer. Studies have revealed
that IDH1 activity results in the inactivation of enzymes.
Interestingly, forced expression of a mutant form of IDH1
in cultured cells decreased alpha-ketoglutarate (alpha-
KG) and thus enhances hypoxia-inducible factor subunit
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HIF-1 alpha (HIF-a) that facilitates tumor growth during
low oxygen availability. Thus, HIF-1a levels were higher
in tumors with mutant IDH than in wild-type tumors (Zhao
et al. 2009). Interestingly, IDH mutation was observed to be
associated with enhanced DNA methylation, called Glioma
CpG island methylation phenotype (G-CIMP) (Noushmehr
et al. 2010). It was observed that in secondary GBMs, IDH
mutation and G-CIMP phenotype exist exclusively (Cohen
et al. 2013). The key IDH mutations include those associated
with R132 (CGT): 12R132H (CeG—TeA) and 1 R132G
(CeG — Ge() that functions as a homodimer. The mutant
IDH1 protein acts as a dominant negative by combining with
the wild-type (W.T.) allele product to afford a dysfunctional
heterodimer of the wild-type and mutant (Zhang et al. 2019).

MGMT

MGMT was known to play an essential role in chemoresist-
ance to TMZ. Thus, MGMT is considered a promising tar-
get in GBM treatment (Yu et al. 2020). GBM patients with
MGMT methylation were associated with more prolonged
overall survival but not progression-free survival (PFS)
(Binabaj et al. 2018). It was also established that methyla-
tion of MGMT promoter is a crucial predictor of alkylating
agents’ ability to kill glioma cells. The methylation sites
and rich CpG islands vary in MGMT-deficient GBM can-
cer cells. However, the change in the methylation status of
the MGMT promoter after chemotherapy, radiotherapy, or
both still need to be fully explored. Several studies have
demonstrated that chemotherapy can induce MGMT expres-
sion in gliomas. Thus, researchers have employed several
strategies that have been pursued to improve the anti-tumor
effects of TMZ which include the synthesis of analogs of
0°-methylguanine (0%-meG) such as O°-benzylguanine
(0°%-BG) and O%-(4-bromothenyl) guanine (O°-BTG), RNA
interference (RNAi), and viral proteins (Yu et al. 2020).
The expression level of MGMT in glioma has no relation
with gender, age, tumor size, surgical approach, and Kar-
nofsky Performance status (KPS) score. MGMT has shown
a profound influence on cancer cell survival and prolifera-
tion during the treatment with O6-alkylating agents such
as TMZ, Carmustine, Lomustine, etc. In addition, to these
drugs, MGMT deficiency causes O6-methylguanine lesions
to mispair with thymine, which leads to mismatch repair
(MMR) mediated apoptosis in gliomas. Thus, MGMT,
MMR, and DNA replication were found to be crucial fac-
tors in cell resistance (Li et al. 2017a, b). In general, as a
part of diagnostics as well as prognostics, the methylation
of MGMT promoter was detected by methylation-specific
PCR, and bisulfite sequencing (BiSEQ). EGFR amplification
was detected by fluorescence in situ hybridization (FISH) or
next-generation sequencing was co-related (Goldstein et al.
2019). Studies have indicated that optimal assessment of
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MGMT status function as a prognostic biomarker for patients
with newly diagnosed GBM treated with chemo-radiation
requires determination of both promoter methylation and
immunohistochemistry (IHC) protein expression (Lalezari
et al. 2013). Interestingly concordant MGMT methylation
and lack of protein expression result in a response in TMZ
therapy-treated patient subgroups with HR of 2.02 and 0.76
(p<0.05) (Pandith et al. 2018; Uno et al. 2011).

3.p%3

Expression of the neoplastic phenotype in GBM cells was
inhibited when rat cells were transfected with the murine
wild-type p53 gene, mutant p53 gene, and other oncogenes
(Finlay et al. 1989). Moreover, the short arm of chromosome
17 is often deleted in human tumors. In colorectal cancers,
deletion of 17pl3.1 (Baker et al. 1989); harbors the p53 gene.
In general, p53 gene mutations are clustered in four 'hot
spots' that coincide with highly conserved regions. DNA
sequence analysis has revealed that p53 mutations were rare
in primary GBMs (11%), whereas secondary GBMs were
characterized by a high number of p53 mutations (67%). The
incidence of p53 protein accumulation (nuclear immunore-
activity to PAb 1801) was also lower in primary (37%) than
in secondary GBMs (97%) (Watanabe et al. 1996). Progres-
sion of low-grade astrocytomas to anaplastic astrocytoma or
GBM occurred at an equal frequency (Watanabe et al. 1997).

PTEN

PTEN deleted on chromosome 10 is a tumor suppressor
gene that regulates various biological processes such as
proliferation, survival, genomic stability, and cell motil-
ity (Bazzichetto et al. 2019). Regulation of PTEN func-
tion involves genetic, transcriptional, post-transcriptional,
and post-translational events (Yang et al. 2017a, b). Recent
meta-analysis studies indicated that PTEN mutation is asso-
ciated with poor prognosis and shorter survival time (Han
et al. 2016a, b; Sasaki et al. 2001). (Han et al. 2016a, b).
Mutation of PTEN is the second common oncogenic muta-
tion in GBM, occurring in 30% of the tumors (Gao et al.
2013; Cerami et al. 2012). PTEN mutation and mutations
in EGFR are critical prognostic factors in anaplastic astro-
cytoma with GBM (Smith et al. 2001). PTEN on chromo-
some 10q23.3 regulates the Akt signaling pathway and thus
modulates cell growth and apoptosis. It was found that the
PTEN gene is mutated in 20-40% of GBM. Very few GBMs
showed loss of PTEN. PTEN methylation frequently occurs
in GBMs leading to loss of PTEN expression. Loss of Het-
erozygosity (LOH) at the PTEN locus and loss of PTEN
protein expression was inconsistent. (Baeza et al. 2003). The
novel chromatin-associated function of PTEN in complex
with the histone chaperone death domain associated protein

(DAXX) and the histone variant H3.3. Interestingly, PTEN
interacts with DAXX and, regulates oncogene expression
by modulating DAXX-H3.3 association on the chromatin,
independently of PTEN enzymatic activity. DAXX inhibi-
tion inhibits tumor growth explicitly and improves the sur-
vival of orthotopically engrafted mice implanted with human
PTEN-deficient glioma samples, associated with global H3.3
genomic distribution changes leading to upregulation of
tumor suppressor genes and downregulation of oncogenes.

EGFR & CDKN2A

EGFR gene amplification and overexpression are striking
features of GBM in up to 40% of tumors (Hatanpaa et al.
2010). It was found that the Median survival was longer
in the high-amplifier group (Hobbs et al. 2012). Overex-
pression of EGFR was an indicator of poor prognosis in
overall survival in glioma patients (Li et al. 2018a, b). The
serum levels of EGFR are enhanced many folds in patients
with malignant Glioma, suggesting poor survival (Quar-
anta et al. 2007; Li et al. 2018a, b). The highly oncogenic
mutant is produced by the deletion of exons 2 to 7 of the
EGFR causing a loss of 267 amino acids from the receptor's
external domain. Since EGFRVIII cannot attach a ligand, it
signals automatically. EGFRVIII shares the same signaling
domain as the wild-type EGFR, but it appears to produce
a unique set of downstream signals that may boost tumori-
genicity. EGFR and Cyclin-Dependent Kinase Inhibitor 2A
(CDKN2A) alterations and determine the prognostic signifi-
cance in lower-grade glioma (LGG).

Neurofibromin 1 (NF-1)

NF1 is a tumor suppressor gene and a RAS-GTPase. Dys-
regulated NF1 expression activates cancer cell prolifera-
tion, migration, and invasion. Loss of NF1 expression in
GBM was associated with increased tumor aggressiveness.
The neurofibromin protein contains at least four significant
domains. The leucine-rich domain (LRD) of neurofibro-
min inhibits the invasion of human GBM cells without
affecting their proliferation. NF1-LRD fails to hydrolyze
Ras-GTP to Ras-GDP. Thus, NF1-LRD inhibits glioma
invasion (Fadhlullah et al. 2019).

MDM2

Whole transcriptome analysis has identified MDM?2 as
associated with sensitivity and resistance to the chemo-
therapeutic drugs against GBM. MDM?2 amplification
occurred in 2 primary (7%) GBMs but none of the sec-
ondary GBMs. Only one out of 15 primary GBMs over-
expressing MDM?2 contained a p53 mutation (Biernat
et al. 1997).
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MALAT1

MALATI is a prognostic factor in GBMs that induces chem-
oresistance to TMZ via suppression of miR-203, thereby
promoting thymidylate synthase (TS) expression. MALAT1
knockdown reversed TMZ resistance in GBM cells. In con-
trast, MALAT1 overexpression induced chemoresistance by
suppressing miR-203, promoting TS expression. (Chen et al.
2017).

HOTAIR

HOTAIR is an adverse prognostic factor overexpressed in
multiple human cancers.

HOTAIR has overexpressed in GBM. HOTAIR was fre-
quently co-expressed with HOXAO in high-grade gliomas.
Integrated into silico analyses, chromatin immunoprecipita-
tion (chIP) and quantitative RT-PCR (qPCR) data showed.
GBM patients with high HOTAIR expression have a sig-
nificantly reduced overall survival, (Xavier-Magalhaes et al.
2018).

Maternally Expressed Gene 3 (MEG 3)

MEG3 expression, when observed in studies, was signifi-
cantly downregulated in GBM cancer, and negatively cor-
related with WHO grade in glioma patients. Low MEG3
expression was associated with the advanced WHO grade.
This indicates the role of MEG3 in glioma cell proliferation,
apoptosis, and autophagy (Zhao et al. 2018).

Plasmacytoma Variant Translocation 1 (PVT1)

The expression of IncRNA PVT1 oncogene (PVT1) in Gli-
oma and its clinical samples of gliomas have shown that its
level is positively related to WHO glioma grade and prog-
nosis of gliomas.

Urothelial Carcinoembryonic Antigen 1 (UCA 1)

Urothelial carcinoembryonic antigen 1 (UCA1), overex-
pressing glioma cell lines. LncRNA UCAT1 can promote
glioma cells' proliferation by upregulating cyclin D1 tran-
scription. Thus, UCA1 may serve as a prognostic indicator
(Zhao et al. 2017).

The epigenetic mechanism, genetics,
and epigenetics in GBM cancer
LncRNA is an epigenetic player of the size of more than 200

nucleotides in length. Studies have identified that a delicate
balance between genetic and epigenetic alterations drives tumor
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recurrence and chemoresistance. The Cancer Genome Atlas
(TCGA) has identified the involvement of a considerable num-
ber of IncRNAs which can specifically be expressed in low-
grade glioma (LGG) subtypes (IDH1/2 wt, IDH1/2 mut, and
IDH mut 1p19q co-deletion), as well as classical, mesenchymal,
neural, and pro-neural types of GBM (Reon et al. 2016). Micro-
array analysis has shown few IncRNA, such as ACo16745.3,
XLOC_001711, and RP11-128A17.1 were involved in glioma
recurrence. The critical target of ACo16745.3 is fork-head box
protein D4- likel (FOXD L1). Higher expression of FOXDL1
correlates with higher expression of IncRNA. LncRNA (up to
50,000) and miRNA (up to 3,000) broadly and profoundly regu-
late gene expression. Like in other cancers, the expression sta-
tus of various IncRNAs in GBM cancer can be used as diagnos-
tic and prognostic markers. Frequent deregulation of IncRNAs
was observed in cancer cells which regulate several aspects of
malignancy, including tumor cell proliferation, survival, inva-
sion, and migration, as well as cancer stemness, angiogenesis,
tumor immune responses, therapy resistance, and microenvi-
ronment (Fig. 2A-D). Lnc RNA participates in the differentia-
tion and maintenance of pluripotency of stem cells. Chromatin
RNA In situ reverse transcription sequencing (CRIST-seq) has
emphasized that the IncRNA interacts with promoters of Oct4,
and Sox-2 dictates the fate of stem cells (Chen et al. 2020).

Nuclear RNAs interact with various RNA types, such as
transcription factors, chromatin modifying factors, and sev-
eral RNA binding factors to regulate gene expression. The
IncRNA Gm15055 was found to be induced by Oct4 and reg-
ulated the HOX gene expression by interacting with PRC2,
which was involved in the maintenance of H3K27me3 (Liu
et al. 2016). Mechanistically, IncRNA, which is p53-reg-
ulated and ESC-associated 1 (IncPRESS1), interacts with
SIRT6. Inhibiting SIRT6 decreases the histone H3K56 and
H3KO9 acetylation levels to safeguard human embryonic stem
cell (hESC) pluripotency (Jain et al. 2016). P53 inhibits the
IncPRESS1, and the knockdown of IncPRESS1 result in the
differentiation of hESC by increased expression of HOXAZ2,
HOXB1, and FOXA?2 and decreased expression of c-Myc,
oct-4, and Nanog, etc. (Jain et al. 2016).

LncRNAs were involved in various cancers, includ-
ing hepatocellular carcinoma and ovarian cancers. RNA
sequencing analysis has identified vital IncRNA SOX2OT,
and its nearby Sex determining region Y-box 2 (SOX2)
was upregulated in TMZ -resistant cancer cells (Shahryari
et al. 2015). SOX2 activates the Wnt / -catenin pathway
and induces cisplatin-resistance of lung adenocarcinoma
(He et al. 2017). SOX20T can regulate SOX2 to promote
cancer cell growth and proliferation via regulating the miR-
NAs such as miR-195-5p and miR-122 in glioma cells (Su
et al. 2017). SOX20T is positively regulated with tumor
grade, and the level of SOX2OT is higher in relapsed GBM
patients than in primary GBM patients. Cancer stem cell-
associated distal enhancer of SOX2 (CASCADES) functions



Metabolic Brain Disease (2023) 38:1801-1829

1813

POLYMER ENCAPSULATION ANTIBODY-MEDIATED

=\ NK Cell
/ > o] o Polymer Matrix s

’ NH, L ~_ NH /l\ Receptor .

Al Blocking _»
o) Adsorbed Drug . ADCC
Polymer Polifeprosan 20 ~N Mcg:pycgg ]
+

bis-chloroethylnitrosourea Entrapped Drug ADCF

= .‘.‘
6BM 4 & @ 8
5 " Ligard :',
anocapsule | i =
:> — . S = Apoptos's

TUMOR REDUCED : K

Fig.2 Various ways of killing GBM cancer cells. A Magnetic effect by using helmet B. Nano-particle mediated drug delivery C. Antibody

induced cell death D. Polymer based drug delivery

as an epigenetic regulator, and the knockdown of CASCADE
in GSCs results in the differentiation of neurons (Shahzad
et al. 2020). Another essential IncRNA MATN-AS1 and its
regulation of RELA genes, such as p65, p50, p52, c-Rel,
and RelB, is involved in GBM cancer stem cell proliferation
(Han et al. 2019) (Fig. 3; Table 2).ncRNAs such as TALC,
MALATI, OIPS-AS1, HOXD-ASI1, H19, UCA1, NEATI,
and HOTAIR regulate several miRNAs that can regulate
several genes involved in carcinogenesis.

RNA-guided RNA modification in GBM
diagnosis

RNA-protein complexes involved in the RNA-dependent
modifications. In human RNAs, approximately 200 types
of 2'-O-methylations and pseudouridylations are introduced
by two RNA-guided RNA modification systems, such as
box C/D and H/ACA RNA-protein complexes (RNPs)
(Table 3). A distinct guide RNA belongs to each complex
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Fig.3 A The oncogenic role of ncRNAs in GBM. Figure 3b. The role of tumor suppressor ncRNAs in GBM. Non-coding RNAs such as CASC-
2, MEG-3, PVT1, and XIST regulate several miRNAs involved in the expression of several genes, such as PTEN, involved in tumor suppression
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for determining the target RNAs and binding to their com-
plementary regions. Similarly, a group of proteins with the
modifying enzyme (2'-O-methylase or pseudouridylase)
belongs to each complex (Ye et al. 2009). For example,
snoRNPs, a small nucleolar ribonucleoprotein complex,
are involved in RNA-guided RNA modification. Box C/ An
RNA-guided RNA modification system carries out altera-
tion of the primary sequence and modulation of the func-
tion of target RNAs, including rRNAs, snRNAs, tRNAs, and
perhaps mRNAs. From various eukaryotic RNAs, uridines
are converted to pseudouridines with the help of H/ACA
RNPs. The functional H/ACA RNP complex consists of a
guide RNA and four proteins such as Cbf5, Garl, L7Ae, and
Nop10. L7Ae and Cbf5 interact with guide RNA. Cbf5 cata-
lyzes the modification via explicitly identifying and binding
to H/ACA guide RNAs. Guide RNAs help modify specific
ribonucleotides by base pair with target RNAs (Baker et al.
2005).

D guide RNAs involved in the 2'-O-methylation of spe-
cific nucleotides. C/D RNAs are the methylation guide
RNAs with a C (RUGAUAG, R is purine) and D (CUGA)
box near the 5" end and 3’ end, respectively. A bipartite C/D
RNA functional enzyme complex consists of a guide RNA
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and three different proteins: methyltransferase fibrillarin,
Nop5 (Nop56/58), and L7Ae. In the eukaryotic complex,
a single Nop5 protein is replaced by paralogs Nop56 and
Nop58 and a 15.5-kDa protein instead of L7Ae. Fibrillarin
catalyzes the transfer of a methyl group to the ribose 2'-OH
group from the unbound SAM. A scaffold protein, Nop5
consists of three domains, (i) a coiled-coil domain for self-
dimerization; (ii) an N-terminal domain (NTD) for binds to
fibrillarin; (iii) a C-terminal domain (CTD) for binding to
the L7Ae-RNA complex. L7Ae—C/D RNA complex forma-
tion is the initial step, followed by Nop5 association with the
preassembled L7Ae—C/D RNP in the C/D RNP assembly
process. Finally, fibrillarin is recruited into the assembly
by its interaction with Nop5. The activity of this complex
is dependent mainly upon the integrity of the symmetric
structure (Ye et al. 2009) (Table 3).

Conclusion

GBM is the most malignant and aggressive type of Glioma.
Understanding GBM progression and epigenetic regu-
lation by ncRNA will help in future diagnostic tools and
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therapeutic strategies. A further role of IncRNAs in glio-
mas may lead to the discovery of novel molecular mech-
anisms behind glioma biological features. It also enables
the development of new solutions to overcome the most
significant obstacles in treating glioma patients. Epige-
netic alterations can cause the mis-regulation of ncRNAs.
Primarily, IncRNAs will act as a scaffold for various epi-
genetic proteins, such as EZH2 and LSDI1, and influence
the epigenetic chromatin state at various genomic loci in
cancer cells. Both miRNAs and IncRNAs can interact with
numerous epigenetic modifiers and transcription factors to
influence gene expression. Studies found that most abnor-
mally expressed ncRNAs impact cellular proliferation and
apoptotic pathways, and such changes are cancer-dependent.
Further, the nature of miRNA binding to multiple mRNAs
and the precise molecular and biological mechanisms tar-
geting a miRNA should be carefully studied. These studies
should be conducted not only in the tumor cells but also in
the tumor microenvironment. LncRNAs hold great promise
in the treatment of cancer. Up to 102,000 IncRNAs were
known to regulate various processes by various interactions
with DNA, mRNA, and protein in cancer cells. Recent stud-
ies have revealed urine, and blood-based IncRNAs as key
diagnostic markers. For example, PCA3 was approved for
the detection of prostate cancer. Similarly, IncRNAs such as
CASC2, and CRNDE were found to be effective biomarkers
against GBM. HOTAIR, and MALAT1 in case of breast and
gastric cancers, etc. Several miRNAs and IncRNAs act as
oncogenes as well as tumor suppressors. The important miR-
NAs include miR-10b in GBM and breast cancers, miR-21 in
the case of B-chronic lymphocytic leukemia, miR-155 in the
case of lymphoma, and miR-221 in liver cancer. Similarly,
the key IncRNAs include GASS in the case of GBM, MEG3
in lung cancer, MALATI in lung cancer, and breast cancer,
etc. Targeting some miRNAs and IncRNAs with RNA-inter-
fering molecules in GBM cell lines and GBM mouse models
has resulted in beneficial effects. However, delivering RNAi
molecules to the brain is challenging as BBB precludes most
substances' passage into the brain. Developing a complete
network of all ncRNAs involved in glioma formation, and
progression could supplement other therapeutic approaches
such as immunotherapy and gene therapy.
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