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Abstract
Chronic liver disease (CLD) is a serious condition where various toxins present in the blood affect the brain leading to 
type C hepatic encephalopathy (HE). Both adults and children are impacted, while children may display unique vulner-
abilities depending on the affected window of brain development.

We aimed to use the advantages of high field proton Magnetic Resonance Spectroscopy (1H MRS) to study longitu-
dinally the neurometabolic and behavioural effects of Bile Duct Ligation (animal model of CLD-induced type C HE) on 
rats at post-natal day 15 (p15) to get closer to neonatal onset liver disease. Furthermore, we compared two sets of animals 
(p15 and p21-previously published) to evaluate whether the brain responds differently to CLD according to age onset.

We showed for the first time that when CLD was acquired at p15, the rats presented the typical signs of CLD, i.e. 
rise in plasma bilirubin and ammonium, and developed the characteristic brain metabolic changes associated with type C 
HE (e.g. glutamine increase and osmolytes decrease). When compared to rats that acquired CLD at p21, p15 rats did not 
show any significant difference in plasma biochemistry, but displayed a delayed increase in brain glutamine and decrease 
in total-choline. The changes in neurotransmitters were milder than in p21 rats. Moreover, p15 rats showed an earlier 
increase in brain lactate and a different antioxidant response. These findings offer tentative pointers as to which neurode-
velopmental processes may be impacted and raise the question of whether similar changes might exist in humans but are 
missed owing to 1H MRS methodological limitations in field strength of clinical magnet.
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Introduction

Chronic liver disease (CLD) is a serious condition that can 
develop in adults or children. In CLD, various toxins pres-
ent in high concentrations in the blood stream (e.g. biliru-
bin, ammonium, bile acids, inflammatory factors) affect the 
brain and lead to a neuropsychiatric disorder called type 
C hepatic encephalopathy (HE) (Jalan and Kerbert 2020). 
Both adults and children are impacted, and children may 
display unique vulnerabilities depending on the affected 
window of brain development (Caudle et al. 2010; McLin 
and D’Antiga 2022).

CLD is associated with neurocognitive deficits in adults, 
which are partially reversible, while the brain of children 
might be more sensitive to the consequences of CLD 
because of ongoing brain development and growth (Brais-
sant et al. 2013; Felipo 2013; Semple et al. 2013). Indeed, 
there is growing evidence that neurocognitive impairment in 
children with CLD present before liver transplantation per-
sists also after (Gilmour et al. 2010; Robertson et al. 2013; 
Ng et al. 2014; Sorensen et al. 2014; McLin and D’Antiga 
2022). We know that children with urea cycle disorders 
exposed to hyperammonemia in infancy experience life-
long neurocognitive consequences, in excess of what is seen 
in adults, suggesting that insults in childhood are potentially 
associated with severe outcomes (Enns 2008; McLin and 
D’Antiga 2022). Plasma ammonium concentrations in chil-
dren with CLD are not as high as in urea cycle disorders. 
Nonetheless, the cumulative exposure to low grade hyper-
ammonemia spanning several developmental windows 
on the brain of children with liver disease is increasingly 
accepted to be deleterious. However, very few studies on 
the developmental metabolic events in healthy children and 
patients with CLD have been performed to date (Foerster 
et al. 2009; Razek et al. 2014; Hanquinet et al. 2017; Sriv-
astava et al. 2017). What more, the value of these studies 
in our understanding of the neurometabolic consequences 
of CLD in the developing brain is limited by the low mag-
netic fields at which they were performed. The lower spec-
tral resolution of lower magnetic fields is an impediment to 
detecting all relevant metabolites, especially the separation 
between glutamine and glutamate.

We previously showed in an animal model of CLD, 
that rats who underwent bile duct ligation (BDL) at post-
natal day 21 (p21) (still during a period of brain develop-
ment) suffered from more pronounced changes in many 
brain metabolites (a stronger increase in brain glutamine, 
decrease of osmolytes, energy metabolites, neurotransmit-
ters and antioxidants) compared to adult BDL rats (Brais-
sant et al. 2019; Rackayova et al. 2020).

Many children develop liver disease at a younger age, 
before the age of 9 months (equivalent to the developmental 

stage of a rat brain at p21 (Workman et al. 2013)), leading 
to the very limitation of the p21 study (Rackayova et al. 
2020). Therefore, we aimed to use our unique set of tools 
to study longitudinally the neurometabolic and behavioural 
effects of BDL on animals having developed disease at post-
natal day 15 (p15) corresponding to ≈ 4 months old human 
brain (Workman et al. 2013) to get closer to neonatal onset 
liver disease. We used the experimental advantages of high 
field proton Magnetic Resonance Spectroscopy (1H MRS) 
to analyze the longitudinal changes of brain metabolites in 
vivo measured in the hippocampus of rats having undergone 
BDL at p15 together with plasma biochemical parameters 
and behavioural tests. The final goal was to compare the 
two sets of animals (p15 and p21 (Rackayova et al. 2020)) 
to begin to unravel whether the brain responds differently to 
CLD according to age onset, and therefore developmental 
window.

Methods

Study design

All animal experiments were conducted according to fed-
eral and local ethical guidelines, and the protocols were 
approved by the local Committee on Animal Experimenta-
tion for the Canton de Vaud, Switzerland (VD2761).

Eight (8) male Wistar pups underwent bile duct ligation 
(BDL) surgery and 8 male Wistar pups were sham oper-
ated at p15. One BDL pup was removed from the study as it 
recovered from surgery (plasma bilirubin decreased at nor-
mal values two weeks after surgery) leading to a total of 7 
BDL pups entering the study. The progression of CLD and 
HE was monitored longitudinally in each animal until post-
operative week 6. The BDL rat model is an animal model 
of type C HE recognized by the International Society for 
Hepatic Encephalopathy and Nitrogen Metabolism. In this 
model, biliary cirrhosis is associated with hyperammone-
mia, jaundice and portal hypertension (Butterworth et al. 
2009; DeMorrow et al. 2021). Wistar dams and their male 
pups were obtained on postnatal day 10 or 11 (p10/p11) 
from Charles River laboratories (L’Arbresle, France). The 
days that preceded BDL surgery, an olfactory conditioning 
of the dams was performed by putting wadding soaked with 
disinfectant solution (used during the surgery), in order to 
get mothers used to the smell of the pups after the surgery. 
On day p15, BDL surgery was performed under isoflurane 
anaesthesia: the common bile duct (CBD) was isolated and 
ligated as previously described (Rackayova et al. 2016, 
2020; Braissant et al. 2019). Sham animals underwent trans-
verse laparotomy and mobilization of the CBD, also on day 
p15. After the surgery, the pups were returned to the cage 
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with their mother only after they regained their motor skills 
and the ability to vocalize, the latter being important for 
interaction with the mother. The interaction between moth-
ers and pups after the surgery was carefully monitored.

With the aim of putting our study in the context of 
human development, we used a previously published model 
for the extrapolation of brain developmental characteris-
tics between mammalian species (Workman et al. 2013) 
http://translatingtime.org/translate). Nevertheless, mamma-
lian species develop at different rates, particularly when it 
comes to neurodevelopmental processes and brain regions, 
so determining when all neurodevelopmental processes in 
rats translate in a specific time window in humans is com-
plex and challenging (Erecinska et al. 2004). Here we esti-
mated that the sensorimotor development and brain growth 
(myelination, neurogenesis, axonal growth), specifically of 
the limbic system of the rat at p15 (day of BDL) corresponds 
to ≈ 4 months old human. The results from this study were 
compared to the group of rats that underwent BDL surgery 
at p21 (N = 12) (Rackayova et al. 2020), which corresponds 
to ≈ 9 months old human (Workman et al. 2013). Note that 
p21 and p15 operated BDL rats were scanned at the same 
time post BDL (week 2, 4, 6) but not the same age.

Biochemical measurements

Blood sampling was performed at week 2, 4, and 6, sublin-
gually under isoflurane anaesthesia. Plasma samples were 
analysed using Reflotron® System (F. Hoffmann-La roche 
Ltd.) for total bilirubin, and blood ammonium meter (Pock-
etChemTM BA PA-4140) for blood ammonium as markers 
of biliary obstruction and liver function (p15 BDL animals). 
In the p21 study (Rackayova et al. 2020) ammonium was 
measured in plasma using Integra® 400 Plus, therefore the 
ammonium values are always presented relative to week 2 
(week X/ week 2) to minimise the variation when using dif-
ferent measurement devices and so that the two groups p15 
vs. p21 (two measurement methods) could be compared. It is 
well known that ammonium measurements are challenging 
and sometimes variable in CLD, as such recent guidelines 
have been published to help improving these measurements 
(Mallet et al. 2022).

1H MRS

In vivo brain 1H MRS scans were performed at week 2, 
4, and 6. During the MR experiments, animals were kept 
under 1.5-2% isoflurane anaesthesia with respiration rate 
maintained at 60–70 breaths/min and body temperature at 
37.5–38.5 °C.

Measurements were conducted on a horizontal actively 
shielded 9.4 Tesla system (Magnex Scientific, Oxford, UK) 

interfaced to a Varian Direct Drive console (Palo Alto, 
CA, USA) using a home-built quadrature surface coil as a 
transceiver (17 mm diameter for each loop). The volume 
of interest (VOI = 2 × 2.8 × 2 mm3) for the 1H MRS scans 
was placed in dorsal hippocampus localized on axial and 
sagittal anatomical T2 weighted images (multislice turbo-
spin-echo sequence, with repetition time/effective echo 
time (TR/TEeff) = 4000/52 ms, echo train length = 8, field 
of view = 23 × 23 mm2, slice thickness = 1  mm, 2 aver-
ages, 256 × 256 image matrix). Hippocampus, as a part of 
limbic system, was chosen for 1H MRS measurements due 
to known problems with learning and memory in patients 
with type C HE (Bahceci et al. 2005; Nardelli et al. 2017). 
The static magnetic field homogeneity was adjusted using 
first and second order shims by fast, automatic shimming 
technique by mapping along projections (FAST(EST)MAP) 
(Gruetter 1993; Gruetter and Tkác 2000), reaching water 
resonance linewidth 9–10 Hz in the VOI. 1H localized spec-
tra were acquired with the ultra-short-echo time spin echo, 
full intensity acquired localized (SPECIAL) spectroscopy 
sequence (TE = 2.8 ms, TR = 4 s, 160 averages) (Mlynárik 
et al. 2006) as previously published (Braissant et al. 2019; 
Rackayova et al. 2020; Rackayová et al. 2020). Outer vol-
ume suppression (OVS) was used to improve signal local-
ization and was interleaved with water signal suppression 
consisting of RF pulses with variable power and optimized 
relaxation delays (VAPOR) (Tkáč et al. 1999).

Spectra were fitted and metabolite concentrations were 
calculated by LCModel (Provencher 2001) and expressed 
in mmol/kgww using the unsuppressed water signal from the 
same VOI as an internal reference. According to literature, 
brain water content decreases until p28 and stays around 
80% afterwards (De Souza and Dobbing 1971; Tkác et al. 
2003). Rats in this study were scanned first time 2 weeks after 
BDL surgery (at p35), therefore brain water was assumed 
to be 80% during the whole study. The Cramer-Rao lower 
bounds (CRLB) were used as a reliability measure for the 
metabolite concentration estimate. Only metabolites with 
CRLB lower than 30% were considered for further analy-
sis. The LCModel basis-set for spectral fitting contained 
a spectrum of macromolecules acquired in vivo (Cudalbu 
et al. 2012; Simicic et al. 2021) and individual metabolites 
measured in vitro. The ultra-short echo-time MRS allowed 
the detection of the following 17 metabolites, all included 
in basis-set: alanine (Ala), ascorbate (Asc), aspartate (Asp), 
glycerophosphocholine (GPC), phosphocholine (PCho), 
creatine (Cr), phosphocreatine (PCr), γ-aminobutyric 
acid (GABA), glutamine (Gln), glutamate (Glu), glutathi-
one (GSH), inositol (Ins), lactate (Lac), N-acetylaspartate 
(NAA), N-acetylaspartylglutamate (NAAG), phospho-
ethanolamine (PE) and taurine (Tau). In addition, glucose 
(Glc), β-hydroxybutyrate (bHB) and scyllo-inositol (Scyllo) 
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the centre of the arena. Different parameters were evaluated 
with the video tracking system (Noldus Ethovision software 
11.5): frequency of crosses, percent time spent, latency to 
enter (s) in each zone and distance moved (cm) and velocity 
for the full OF test (cm/s). These parameters were calculated 
for the entire 10 min of the OF test.

Statistical methods

All results are presented as mean ± standard deviation 
(SD, except for behavioural tests presented as mean ± stan-
dard error of mean (SEM)). One-way analysis of variance 
(ANOVA) (Prism 5.03, Graphpad, La Jolla CA USA) with 
the Bonferroni’s multi-comparisons post-test were used to 
assess significance (* p < 0.05; ** p < 0.01; *** p < 0.001; 
**** p < 0.0001) in the measured parameters. If only two 
sets of data were compared, Student’s t test was used. Pear-
son correlation analysis was performed on all longitudinally 
acquired data to test for correlations between the measured 
parameters.

Results

CLD induced by BDL in p15 rats

Plasma bilirubin, as a marker of liver disease, increased 
to 4.2 ± 0.3 mg/dl already 2 weeks after BDL surgery and 
reached 7.6 ± 3.1 mg/dl at week 6. There was no significant 
difference in plasma bilirubin between BDL p15 and p21 
(Fig. 1).

Relative NH4
+ (relative to week 2) in BDL p15 and p21 

rats at week 4 and 6 after BDL surgery is shown in Fig. 1 
(right). These results show a similar trend of NH4

+ increase 
between p15 and p21 rats. An approximate ~ 2-fold aver-
age increase at week 4 and ~ 3-fold increase at week 6 was 
observed for p15, while the increase was slightly lower for 
p21.

Brain metabolic alterations assessed by in vivo 
longitudinal 1H MRS

Figure 2 illustrates the quality of obtained spectra in BDL 
and sham animals, and some of the most dominant changes 
(e.g. Gln increase and Ins decrease in both p15 and p21 
BDL rats, Glu decrease visible only in p21 BDL rats).

Gln and other main organic osmolytes

Two weeks after BDL surgery, p15 BDL rats did not show 
any increase in Gln, in contrast to p21 BDL rats that had 
significantly higher Gln at week 2 after BDL surgery. 

signals were included in the basis-set to increase the preci-
sion of quantification but their concentrations were not reli-
ably estimated and thus not presented. PCho and GPC were 
expressed only as tCho (PCho + GPC) due to better accu-
racy in the estimation of their concentration as a sum. Brain 
metabolites are expressed in absolute values (mmol/kgww) 
and in % difference between BDL rats and shams at each 
time-point in order to account for ongoing development.

Behavioural tests

Behavioural tests were performed in the animal facility in a 
silent room at weeks 4 and 6 before MRS scans and blood 
sampling, always at the same moment of the day. Rats were 
gently handled 3 times per week by the same person that 
performed the behavioural tests for habituation. Before 
the tests, each cage of rats was covered with a tissue and 
placed in the behavioural room in a separated corner with 
no visual access to the behavioural tests. The tests started 
a few minutes after the transfer. Even though the 1H MRS 
experiments were performed in hippocampus as a part of 
limbic system, due to known problems with learning and 
memory in HE patients, locomotor activity was assessed in 
the open field (OF) test to test the presence of fine motor 
deficits characteristics of type C HE. It involved placing 
the rat in an open circular arena (100 cm diameter, 32 cm 
high) (Tzanoulinou et al. 2014). For analysis, the floor was 
divided into three virtual concentric parts, with a centre 
zone in the middle of the arena (20 cm diameter), an inter-
mediate zone (60 cm diameter), and an exterior zone com-
prising the remaining area along the sidewalls. At the start 
of the test, the animals were placed in the intermediate zone 
facing the sidewall, and their behaviour was monitored for 
10 min using a video camera mounted on the ceiling above 

Fig. 1  Evolution of bilirubin and ammonium. (Left) Evolution of 
plasma bilirubin in BDL p15 (in pink) and p21 (in blue) rats during the 
progression of the disease. Values are expressed in mg/dl. There was 
no significant difference between groups. (Right) Relative increase 
in NH4

+ always calculated as week X/ week 2. The data is presented 
as relative values because the NH4

+ was measured with two different 
approaches. In case of p21 rats from plasma, Integra ® 400 Plus 16, 
while for p15 rats it was measured directly from blood using blood 
ammonium meter (PocketChemTM BA PA-4140) as it was previously 
mentioned. Note that the relative NH4

+ value does not show the eleva-
tion of its absolute concentration usually observed at week 2.
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Gln increase, for p15 BDL rats, was significant at week 4 
(122 ± 79%, p < 0.01) and further increased at week 6 after 
BDL (247 ± 129%, p < 0.001) (Fig.  3A,B). The difference 
between p15 and p21 BDL rats in Gln increase at week 2 
was significant (p < 0.001). However, at week 4 and 6 there 
was no statistical difference in the Gln increase between p15 
and p21 BDL rats, even though p15 rats showed a slightly 
higher Gln increase in % change at week 6 (247 ± 129% for 
p15 compared to 190 ± 90% for p21, Fig. 3C).

Figure 4 displays changes in the metabolites considered 
as main brain organic osmolytes. Ins decreased in p15 BDL 
rats significantly at week 2 after BDL surgery (-19 ± 8%, 
p < 0.01) and reached a decrease of -45 ± 23% (p < 0.01) at 
6 weeks after BDL (Fig.  4A,B). There was no difference 
between Ins decrease in p15 and p21 BDL rats at any time-
point (Fig. 4C).

tCho showed a significant decrease 4 weeks after 
BDL (-23 ± 10%, p < 0.05) decreasing further to -35 ± 9% 
(p < 0.001) at week 6 (Fig.  4D,E). The response of tCho 
in p15 and p21 BDL was significantly different at week 2 
while there was no difference in tCho decrease at the other 
time-points (Fig. 3F). Tau decreased significantly 4 weeks 
after BDL (-13 ± 6%, p < 0.01), reaching − 17 ± 7% (p < 0.01) 
at week 6 (Fig.  4G,H). There was no difference in Tau 
decrease between p15 and p21 BDL rats (Fig. 4I).

P15 BDL rats showed strong correlations between the 
increase in Gln and the decrease in all osmolytes (Ins, tCho, 
Tau, Cr, tCr) (Fig. 5). This relation between Gln and osmo-
lytes was similar to that in p21 for Ins, Tau and tCr but p15 
BDL displayed a steeper slope for tCho, despite the fact that 
in p15 BDL rats Gln increased significantly 4 weeks after 
BDL surgery compared to a significant increase at week 2 in 
p21 BDL rats (Rackayova et al. 2020).

Energy metabolites and metabolic stress

Cr and PCr, which are considered both as being involved 
in energy metabolism and Cr also in osmoregulation (Hei-
lig et al. 1989; Bothwell et al. 2002; Hanna-El-Daher and 
Braissant 2016), decreased significantly at week 6 after 
BDL surgery. Cr decreased by -19 ± 9% (p < 0.01) and PCr 
by -14 ± 6% (p < 0.05) (Fig. 6D,E and G,H).There was no 

Fig. 3  Evolution of brain glutamine. (A) Absolute concentration in 
mmol/kgww in p15 BDL rats (pink) and sham (black). (B) Percental 
change in p15 BDL compared to sham rats at corresponding age. (C) 

Comparison between percental change in p15 BDL (pink) and in p21 
BDL rats (blue) compared to their sham at corresponding age. *(pink) 
is compared to change at week 2.

 

Fig. 2  Representative 1H MRS brain spectra measured in hippocampus 
of a sham animal, p15 BDL rat and p21 BDL rat at 6 weeks after sham 
or BDL surgery. The higher Gln and lower Ins in both p15 and p21 
BDL rats compared to the sham animal is visible in the spectra. The 
p21 BDL rat displayed a lower Glu signal than the p15 BDL rat which 
is also visible in the spectra.
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(Fig. 7D,E). p21 BDL showed a significant decrease already 
from week 4 and the difference between Asc decrease in p21 
and p15 was significant at week 4. There was no significant 
difference in Asc decrease between p15 and p21 BDL rats at 
week 6 after BDL surgery.

GSH showed a decrease of -26 ± 17% at 6 weeks after 
BDL (Fig.  7G,H), significant compared to its change at 
week 2 after BDL surgery but insignificant when compared 
to shams. GSH decrease in p15 BDL rats, when compared to 
p21 BDL, was more pronounced and became significantly 
different at week 6 (Fig. 7I).

Neurotransmitters

None of the neurotransmitters (Glu, Asp, GABA) showed 
any significant decrease throughout the study in p15 BDL 

significant difference in Cr or PCr decrease between p15 and 
p21 BDL rats throughout the study (Fig. 6F,I). The sum, tCr 
(Cr + PCr) decreased significantly in p15 BDL rats week 4 
(-9 ± 7%, p < 0.05) and further to -16 ± 7% (p < 0.01) at week 
6 (Fig. 6A,B) with no significant difference in its decrease 
between p15 and p21 BDL rats (Fig. 6C).

Lac levels were significantly increased in p15 BDL 
brain at week 4 after BDL surgery (50 ± 22%, p < 0.01) and 
remained high at week 6 (16 ± 16%) without reaching sig-
nificance (Fig. 7A,B). Lac increase was significantly higher 
than in p21 BDL rats at weeks 4 and 6 (Fig. 7C).

Antioxidants

Asc stayed stable until week 4 and showed a decrease 
at week 6 (-19 ± 17%) without reaching significance 

Fig. 5  Correlations between brain 
glutamine and the other brain 
osmolytes. Correlation between 
change in Gln and change in 
other osmolytes (Ins, tCho, Tau, 
Cr, tCr). P15 BDL are presented 
in pink and p21 BDL in blue.

 

Fig. 4  Evolution of brain organic 
osmolytes. (A, D, G) Absolute 
concentration in mmol/kgww 
in p15 BDL (pink) and sham 
(black). (B,E,H) Percental change 
in p15 BDL compared to sham 
at corresponding age. (C,F,I) 
Comparison between percental 
change in p15 BDL (pink) and 
in p21 BDL (blue) compared to 
their sham at corresponding age. 
*(pink) is compared to change 
at week 2; § indicates significant 
change in sham animals due to 
ongoing brain development in 
agreement with (Račkayová et 
al. 2021). Note: the scale of right 
y-axis in the middle column in 
mmol/kgww is set at the same 
range for all metabolites. This 
is for better visual comparison 
of their contribution to the 
osmoregulation.
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decrease between p21 and p15 BDL rats was significant at 2 
weeks after BDL (Fig. 8I).

The correlations between Gln increase and decrease in 
neurotransmitters were much weaker in p15 BDL rats com-
pared to p21 BDL rats. The correlation between Gln and 
Glu was present in p15 BDL rats but the slope was not as 
steep as in p21 BDL rats (Fig. 9A). There was no correlation 

rats. Glu showed an insignificant decrease of -7 ± 7% at 6 
weeks after BDL (Fig. 8A,B) in contrast to p21 BDL rats 
with significantly more important decrease in Glu at weeks 
4 and 6 after BDL (Fig. 8C). Asp did not show any change 
throughout the study. GABA reached − 15 ± 13% at week 6 
(Fig. 8G,H), insignificant compared to sham but significant 
compared to its change at week 2. The difference in GABA 

Fig. 7  Evolution of brain lactate 
and antioxidants. (A, D, G) Abso-
lute concentration in mmol/kgww 
in p15 BDL (pink) and sham 
(black). (B, E, H) Percental 
change in p15 BDL compared to 
sham at corresponding age. (C, F, 
I) Comparison between percental 
change in p15 BDL (pink) and 
in p21 BDL (blue) compared to 
their sham at corresponding age. 
*(pink) is compared to change at 
week 2.

 

Fig. 6  Evolution of brain cre-
atines. (A, D, G) Absolute con-
centration in mmol/kgww in p15 
BDL (pink) and sham (black). 
(B,E,H) Percental change in p15 
BDL compared to sham at cor-
responding age. (C,F,I) Compari-
son between percental change in 
p15 BDL (pink) and in p21 BDL 
(blue) compared to their sham 
at corresponding age. *(pink) is 
compared to change at week 2.
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at 6 weeks after BDL (Fig.  10C). P21 BDL rats showed 
only a trend of increased delay to enter the centre of arena 
(Fig. 10D).

Discussion

The present work showed for the first time that when CLD 
was acquired in rats at p15, the rats presented the typical 
signs of CLD, i.e. rise in plasma bilirubin and ammonium, 
and developed the characteristic brain metabolic changes 
associated with type C HE namely an increase in brain Gln 
which correlated with the decrease in the other main osmo-
lytes (Ins, Tau, tCho, Cr). When compared to the group 
of rats that acquired CLD at p21, p15 rats did not show 
any significant difference in plasma biochemistry (biliru-
bin and ammonium) but did display a delayed increase in 
brain Gln and decrease in tCho. In addition, the changes 

between Gln and Asp in p15 BDL rats, in contrast to p21 
BDL (Fig. 9B). Moreover, there was no correlation between 
Gln and GABA neither in p21 nor p15 BDL rats (data not 
shown). However, the change in Glu and Asp correlated 
well in both p15 and p21 BDL rats (Fig. 9C).

Stable metabolites during CLD

Ala, NAA, NAAG and PE did not show any significant dif-
ference between p15 BDL rats and their shams throughout 
the study.

Behavioural tests

In the Open Field test, there was no difference in the dis-
tance moved between p15 BDL and their shams (Fig. 10A), 
in contrast to p21 BDL rats (Fig. 10B). But p15 BDL rats 
showed a significant delay in first enter to the centre of arena 

Fig. 9  Correlations between metabolites involved in neurotransmission. (A,B) Correlation between change in Gln and change in neurotransmitters 
(Glu, Asp). (C) Correlation between change in Glu and change in Asp. P15 BDL are presented in pink and p21 BDL in blue.

 

Fig. 8  Evolution of neurotrans-
mitters. (A, D, G) Absolute con-
centration in mmol/kgww in p15 
BDL (pink) and sham (black). 
(B, E, H) Percental change in p15 
BDL compared to sham at corre-
sponding age. (C, F, I) Compari-
son between percental change in 
p15 BDL (pink) and in p21 BDL 
(blue) compared to their sham 
at corresponding age *(pink) is 
compared to change at week 2; 
§ indicates significant change 
in sham animals due to ongoing 
brain development in agreement 
with (Račkayová et al. 2020).
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takes place after birth and continues until the weaning period 
(Rice and Barone Jr 2000). Therefore, there are distinctive 
differences in the neurodevelopmental processes in p15 and 
p21 rats. Thus, it is interesting to consider that neurocogni-
tive outcomes are in part influenced by time of CLD onset 
and cumulative exposure to liver derived metabolites and 
other compounds. Not only does time of CLD onset have 
the potential to influence neurodevelopmental processes, 
but the earlier the onset, the longer the exposure and higher 
the risk of influencing multiple, sequential neurodevelop-
mental events.

Ammonium and brain glutamine

Differential Gln increase between p15 and p21 rats might be 
explained by the maturation of glutamine synthetase (GS) 
– the enzyme that allows astrocytes to detoxify ammonium 
by condensing Glu and ammonium. GS seems not to be 
fully active until p26 (Bayer and McMurray 1967), possi-
bly explaining why in rats that underwent BDL surgery at 
p15 Gln did not increase at week 2 (corresponding to p29). 
Therefore, at this stage, the effect of ammonium might be 
a direct toxic effect rather than through Gln and osmotic 
stress. Finally, a role of maturation of the blood-brain bar-
rier cannot be excluded (Hirase et al. 1997; Cagnon and 
Braissant 2007).

Osmotic response

P15 and p21 BDL rats showed a very similar decrease in 
main organic brain osmolytes, except for tCho. At 2 weeks 

in neurotransmitters were milder than in p21 rats. On the 
other hand, p15 rats showed an earlier increase in brain Lac 
and a different antioxidant response than p21 rats, and a 
decrease in exploratory behaviour. The cellular and enzy-
matic underpinnings remain unknown, yet these differences 
suggest that the brain of younger pups does respond differ-
ently to the metabolic insults of CLD. Whether this is due 
to maturing enzymes and metabolic pathways remains to be 
elucidated. Nonetheless, these novel findings raise the ques-
tion of whether similar changes might exist in humans but 
are missed owing to 1H MRS methodological limitations in 
field strength in clinical magnets.

P15 BDL rats started to develop CLD during earlier 
phases of brain development than p21 BDL rats. An increase 
of NAA has been observed by 1H MRS in humans during 
infancy and early childhood and connected with the increase 
in the number of neurons, formation of dendritic arboriza-
tions and synaptic connections (Pouwels et al. 1999). In the 
rat brain NAA has been shown to increase in hippocampus 
between p15 and p21 and to stabilize thereafter (Tkác et 
al. 2003), in agreement with our shams. Even though the 
hippocampus grows in mass through p70, the non-neuronal 
to neuronal cell ratio increases only until p20 (Bandeira et 
al. 2009). Although neurogenesis occurs mainly during the 
embryonal development in rats (Wiggins 1986), the hip-
pocampal dentate gyrus undergoes quite late neurogenesis 
and dentate granule cells are formed until p19 (Bayer et 
al. 1993). This period of time coincides with the first week 
after BDL in p15 rats. Similarly, rat brain synapses seem to 
mature until p21 (Jacobson 1991). Also, an important part 
of gliogenesis (especially astrocytes and oligodendrocytes) 

Fig. 10  Performance in behav-
ioural tests. (A, B) Distance 
moved during 10 min Open Field 
test. (C, D) Latency to enter the 
center of arena for the first time 
during the Open Field test. P15 
BDL (n = 7) are presented in pink 
and p21 (n = 9) BDL in blue.
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neural plasma membrane and phosphatidyl-ethanolamine 
on the intracellular layer (Ikeda et al. 2006; Deleke 2007; 
Harper et al. 2014). It is well known that tCho decreases 
in the healthy developing rat brain until p28 (Tkác et al. 
2003) and that it increases after p29 as shown in the pres-
ent study and in agreement with previously published work 
(Račkayová et al. 2021). This might explain the different 
behaviour of tCho in p15 and p21 BDL rats.

Importantly, it has been shown that the consequences 
of a decrease in brain phospholipids caused by malnutri-
tion in young rats could not be recovered by rehabilitation 
(Reddy and Sastry 1978). Therefore similarly, the decrease 
of tCho in BDL rats, as a metabolite involved in phospho-
lipid metabolism, could potentially have long-term effects 
such as contributing to the residual neurocognitive deficits 
in children even after liver transplantation (Stewart et al. 
1991; Caudle et al. 2010, 2012; Sorensen et al. 2014).

Taurine

As mentioned, Tau showed a tendency to decrease at week 2 
that became significant 4 weeks after BDL in p15 BDL rats 
compared to their shams, and this mimicked the observa-
tions in p21 BDL rats. The concentration of Tau physiologi-
cally decreases during brain development (Huxtable 1992), 
something which we observed in the shams and in our pre-
vious study (Račkayová et al. 2021). It has been hypoth-
esized that this decrease may reflect the loss of maternal 
Tau (Agrawal et al. 1971). The decrease of Tau in BDL rats 
was more drastic than the one physiologically occurring in 
shams. Tau has an important osmoregulatory function there-
fore it is highly possible that its decrease is primarily linked 
with osmoregulation. However, Tau in the infant brain is 
considered cytoprotective possibly assuming an antioxi-
dant role. Therefore, a supraphysiological decrease in Tau 
may deprive the developing brain from this protection at a 
time when it would crucially need it (Pasantes-Morales and 
Hernández-Benítez 2010).

Energy metabolism

Cr and PCr showed a similar decrease in p15 and p21 rats 
at all time-points. As p21 rats, p15 rats showed a quick 
decrease in Cr already 2 weeks after BDL surgery, probably 
as osmoregulatory process. However, a long-term decrease 
in Cr and consequently in tCr over 6 weeks after BDL sur-
gery might be due to its impaired synthesis, as ammonium 
was shown to inhibit the first of the two enzymes respon-
sible for Cr synthesis (arginine:glycine amidinotransferase 
(AGAT)) in developing brain cell 3D cultures (Braissant et 
al. 2008). Such a significant decrease in both metabolites 
can further create an impairment in energy metabolism.

after BDL surgery, Ins decreased significantly and Tau, Cr 
showed a trend of decrease even though Gln still did not 
rise. Whether the decrease in these metabolites was driven 
by direct osmotic effects of ammonium, or other mecha-
nisms were involved needs further investigation.

Inositol

Similar to Tau, Ins showed a decrease in p15 and p21 BDL 
rats during the progression of the liver disease. This strong 
decrease in Ins starting from week 2, probably as osmotic 
compensation, can have an important impact on the brain 
development. Myo-inositol is a main source of inositol for 
phosphatidyl-inositol and phosphoinositides, playing an 
important role in membrane metabolism and signalling as 
well in the formation of myelin. Ins has a very high met-
abolic turnover in living systems which can be altered in 
pathologies where Ins pool is reduced (Greene et al. 1975; 
Zhu and Eichberg 1990). In addition, inositol trisphosphate 
(IP3) – Ca2+ signalling pathways in the CNS are contribut-
ing to the synaptic plasticity and thus learning and mem-
ory (Berridge 1998). IP3 receptors are also located in the 
dendritic spines of Purkinje cells in the cerebellum and are 
responsible for motor learning (Sharp et al. 1993). There-
fore, type C HE symptoms such as memory problems and 
motor deficits could be potentially linked with Ins decrease, 
especially if the Ins decrease occurs early in life at a time 
of intense synaptic development. Moreover, in physiologi-
cal conditions, Ins should increase in the developing brain, 
as has been previously shown by us and others (Tkác et 
al. 2003; Račkayová et al. 2020) and also observed for the 
sham animals in the present study. Therefore, it can be sug-
gested that a depletion of Ins might be deleterious for mem-
brane formation, another way in which CLD impacts the 
developing brain.

Total choline

tCho showed a later decrease in the p15 rats than in p21 BDL 
rats (at week 2). Whether tCho decreased as a part of an 
osmoregulatory process or as a result of impaired phospho-
lipid metabolism is not clear. However, it could be argued 
that its decreased concentration in the brain during devel-
opment could significantly impact membrane metabolism. 
PCho and GPC are the main sources of choline for phospha-
tidyl-choline (Amenta et al. 2001) and phosphatidyl-choline 
together with phosphatidyl-ethanolamine account for 90% 
of membrane phospholipids (Vance 2008). In addition, the 
decrease in tCho but no change in PE in the brain of BDL 
rats will change the choline-ethanolamine ratio. This might 
in turn influence membrane properties as phosphatidyl-cho-
line is located predominantly on the extracellular layer of 
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BDL rats might be related to the delayed increase in Gln 
in p15 BDL rats. However, another reason could be a later 
maturation of brain enzymatic activities involved in amino 
acid metabolism. Many enzymes importantly increase their 
activities between p10-p20, GS even until p26 (Bayer and 
McMurray 1967; Agrawal et al. 1971), and stabilize only 
afterwards. This can influence the coupling between Gln 
increase and decrease in neurotransmitters. Nevertheless, 
Asp and Glu decrease seemed to be closely related in both 
p15 and p21 BDL rats demonstrated by their tight correla-
tion in both groups of rats (Fig. 9C). It is unclear whether 
the differences between the p15 and p21 neurotransmitter 
profiles are indicative of differences in enzymatic matura-
tion or of protective mechanisms is the younger brain.

Although some of the neurometabolic differences are 
very subtle between the p15 and p21 BDL rats, p15 BDL 
rats were visually sicker than p21 BDL rats and performed 
less well on behavioural tests. While their motor activity 
was similar when compared to their shams (in contrast to 
p21 BDL rats), p15 BDL rats showed significantly increased 
latency to enter the centre of Open Field arena during the 
test. Indeed, this difference in the decrease of motor activity 
in p21 BDL rats and decrease in the exploratory behavioural 
in p15 BDL may simply be related to behavioural develop-
ment. Exploratory activity dominates over locomotor activ-
ity between p20 and p30 and they interchange afterwards 
(Bâ and Seri 1995). Our behavioural tests are performed 
at p30, but p15 BDL rats were developing CLD during the 
window of the development of exploratory behaviour what 
might have affected this feature in p15 BDL rats more than 
in p21 BDL rats.

Limitations

It is important to note that the goal of this study was to 
analyze the neurometabolic response of the brain to CLD 
depending on the time/age of the disease onset. Therefore, 
the animals were always scanned at the same timepoint dur-
ing disease development (i.e. 2, 4 and 6 weeks after BDL 
surgery). However, this approach did not allow a direct 
comparison of the animals at the same age, meaning that 
p15 BDL operated rats are at p29 (p43, p57) at week 2 (4, 6) 
after surgery while p21 BDL operated rats are at p35 (p49, 
p63) at week 2 (4, 6) after surgery.

Conclusion

In conclusion, we showed that the neurometabolic changes 
of rats that developed CLD at p15 display many similarities 
with p21 BDL rats and even adult rats, for example in the 

Lac showed a very different pattern in p15 BDL than in 
p21 BDL rats. In p15 BDL rats, Lac increased significantly 
at 4 weeks after BDL surgery and stayed significantly higher 
than in p21 BDL rats also at week 6. Of note, the p21 rats 
showed an increase of Lac at week 8 post-BDL reaching 
similar values to p15 pups at 6 weeks post-BDL. This dif-
ferent behaviour can be explained by the fact that p21 rats 
seemed visually less sick at 6 weeks post-BDL and survived 
longer.

Antioxidants

P15 BDL rats showed a different pattern in the antioxidant 
response to CLD than p21 BDL rats. In p15 BDL rats, Asc 
decrease was non-significant and smaller than in p21 BDL 
rats, showing a more important decrease only later in the 
disease (6 weeks after BDL). In p21 BDL rats, Asc showed 
a continuous decrease, significantly stronger at week 4 after 
BDL surgery than for p15. On the other hand, GSH in p15 
BDL rats decreased gradually showing a more pronounced 
change than GSH in the brain of p21 BDL rats. GSH in p21 
BDL rats stayed stable until week 6.

As Asc is known to be predominantly in neurons and 
GSH to be in glial cells (Raps et al. 1989; Makar et al. 
1994; Rice and Russo-Menna 1998), different antioxidant 
response in p15 and p21 BDL brain might be an indica-
tion that different cell types are more affected in p15 com-
pared to p21 BDL rats. Taken together, a more pronounced 
decrease in GSH in p15 BDL rats than p21 with a rising ratio 
of non-neuronal cells to neuronal cells until p21 (Bandeira 
et al. 2009), combined with an ongoing gliogenesis (Rice 
and Barone Jr 2000) and with a phase of strong myelination 
(Jacobson 1963; Wiggins 1986; Meier et al. 2004), could 
suggest that the glial cells might be more affected by the 
disease in p15 BDL rats than in p21. On the other hand, the 
stronger Asc decrease as well as a more significant decrease 
in neurotransmitters in p21 BDL rats compared to p15 BDL 
rats can indicate a stronger effect on neurons. In addition, 
significantly higher levels of Asc in the brain of p15 BDL 
than in p21 BDL rats can also have a protective effect on 
glutamatergic neurotransmission, as Asc has been linked to 
Glu release and uptake (Rice 2000).

Neurotransmitters

Neurotransmitters were not strongly affected in p15 BDL 
rats, especially compared to p21. Glu showed a non-sig-
nificant trend of decrease, Asp did not change and GABA 
decreased significantly only at week 6.

We previously suspected that Glu decrease could be 
considered as a consequence of increased Gln synthesis. 
Therefore, a smaller Glu decrease in p15 compared to p21 
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