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Abstract
Hepatic Encephalopathy (HE) is a critically important complication of chronic liver disease and portal hypertension, but 
especially in early covert stages remains underdiagnosed and a common cause of hospitalization and morbidity. Defined 
by often subtle neuropsychiatric changes, significant cognitive deficits have been extensively described. While traditional 
methods of assessment remain underutilized in practice and subject to significant confounding with other diseases, mobile 
technology has emerged as a potential future tool to provide simple and dynamic cognitive assessments. This review dis-
cusses the proliferation of cognitive assessment tools, describing possible applications in encephalopathy and the challenges 
such an implementation may face. There are significant potential advantages to assessing cognition in real time in order to 
aid early detection and intervention and provide a more realistic measurement of real-world function. Despite this, there are 
issues with reliability, privacy, applicability and more which must be addressed prior to wide proliferation and acceptance 
for clinical use. Regardless, the rapid uptake of mobile technology in healthcare is likely to have significant implications for 
the future management of encephalopathy and liver disease at large.
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Introduction

Hepatic encephalopathy (HE) is an important cause of hos-
pitalization, need for transplant, and death in those with 
chronic liver disease and cirrhosis. Additionally, it has a 
profound deleterious effect on patient wellbeing. Multiple 
prior studies have demonstrated the negative quality of 
life changes in HE including increased fall risk, caregiver 
burden, reduced employability, and reduced performance 
at tasks requiring concentration such as driving (Amodio 
et al. 2016). As a progressive, relapsing and remitting con-
sequence of hepatic dysfunction and portal hypertension, HE 
is characterized by neuropsychiatric alterations with variable 
characteristics (Weissenborn 2019). One of the major mani-
festations of HE is altered cognition, which will be the focus 
of this review. Given the challenges of cognitive assessment 
in encephalopathy as well as the multiple factors that impact 

disease progression in HE, it’s of considerable future interest 
to develop dynamic testing strategies. Herein we discuss the 
advances of remote monitoring of cognition in general and 
within HE specifically as well as potential applications in 
clinical practice and challenges therein.

Cognition in hepatic encephalopathy

Cognition in HE should be distinguished from conscious-
ness, arousal, or psychiatric alterations. The classic West 
Haven criteria for grading of HE most readily assesses 
arousal and behavior in differentiating covert (stage 0 or 
1) from overt (2–4) HE whereby a patient may progress to 
coma and death (Vilstrup et al. 2014). While there is sig-
nificant interplay between arousal and cognition, the vast 
majority of HE in ambulatory medicine is covert encepha-
lopathy (CHE), with no clear alterations in behavior or 
consciousness.

Cognition, which encompasses intellectual functions 
including thought, attention and intelligence as well as 
judgment and decision making, is altered at all grades of 
encephalopathy, with significant implications for patients 
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with liver disease (Revlin 2013). The cognitive manifesta-
tions of liver disease have been described since Hippocrates 
(Amodio 2015) and remain a bedrock of disease assessment 
(Montagnese et al. 2022).

Attention, or vigilance, is a key component of cognition 
and has been repeatedly demonstrated to be diminished 
across the spectrum of HE (Weissenborn et  al. 2001b) 
Both visual and auditory attention are diminished even in 
those with CHE, and functional studies of cerebral glucose 
metabolism demonstrate reduced utilization in those with 
encephalopathy (Lockwood et al. 2002). Attention deficits 
are captured by many of the currently utilized assessment 
tools in CHE, including the psychometric hepatic encepha-
lopathy score (PHES), critical flicker frequency and Stroop 
(Felipo et al. 2012). Similarly, there is an ever-expanding 
body of research on the loss of fine motor skill and visuospa-
tial abilities in progressive liver disease, as well as memory 
decline (Bahceci et al. 2005).

While historically considered reversible, the cognitive 
changes from recurrent episodes of HE or persistent covert 
encephalopathy (CHE) may be permanent in some patients 
even after transplantation or other reversal of portal hyper-
tension. More recently, the chronic edema and oxidative 
stress of portal hypertension have been recognized to cause 
astrocyte senescence in those with HE preferentially (Görg 
et al. 2018). Senescence, or biological aging, is seen com-
monly in neurodegenerative diseases and correlates strongly 
with cerebral oxidative stress (Nagelhus et al. 2013). Such 
senescence may reduce synaptic potential in the brain, per-
manently reducing cognitive ability.

It is therefore of significant importance to identify cog-
nitive changes early in order to prevent complications aris-
ing from altered cognition, such as vehicular accidents, and 
reverse the etiology. There has been great progress in the 
classification and management of overt HE. Despite this, 
we often fail to capture and intervene on subtle cognitive 
changes which, while not requiring hospitalization, may 
nonetheless cause detrimental effects in real time for far 
more patients than does overt disease. Adequate detection 
and early intervention are imperative to the future of liver 
disease care, and this review will focus on the potential for 
and challenges of remote cognitive assessment and monitor-
ing in cirrhosis and encephalopathy.

Limitations of current cognitive assessment 
tools in HE

Given the importance of cognition for patient wellbeing, 
everyday functioning, and as a marker of progressive and 
potentially irreversible disease, there has been considerable 
focus on accurate measurement in cirrhosis. In fact, current 
HE guidelines suggest multimodal assessment of cognition 

via tests such as the Psychometric Hepatic Encephalopathy 
Score (PHES), Stroop, and critical flicker frequency. Despite 
the repeated validation of these tests, they are significantly 
underused in clinical practice. They are cumbersome, often 
unavailable outside of research settings, and, even when per-
formed, are often misinterpreted. Additionally, these tests 
identify only altered cognition, without pointing to a precipi-
tator and with significant risk of confounding (Amodio and 
Montagnese 2021).

Another significant weakness to in-office assessment of cog-
nition is that it’s widely accepted that cognition, and the abil-
ity to “think” more broadly, is dynamic. The PHES test must 
be performed under idealized conditions whereby patients are 
placed in a quiet room without distractions (Weissenborn et al. 
2001a). This, however, is a poor simulation of the real world, 
and therefore fails to capture cognition in everyday life, where 
it is needed. Even under the same set of stressors, cognitive 
performance is not static throughout the day, as anyone who’s 
had to accomplish a difficult task late in the evening can attest. 
Moreover, intraindividual cognitive ability, or the so-called 
noise that affects our cognition, may actually be prognostic of 
eventual permanent decline (Christensen et al. 2005). While 
understudied at this time, it would be no surprise if there was 
prognostic importance to intraindividual cognitive changes over 
the course of hepatic encephalopathy. A small study found that 
not only did those with minimal HE demonstrate reduced mean 
cognition when evaluated with the inhibitory control test (ICT), 
but they had increased intraindividual variability, especially 
when performing more complex tasks (Bisiacchi et al. 2014). 
As with all pen and paper studies, however, this variability was 
assessed in a laboratory setting, rather than in clinical practice 
much less real life.

Despite the many tools currently accepted to diagnose sub-
tle cognitive changes in encephalopathy, they all suffer from 
lack of specificity and inter-test reliability. There is now ample 
literature describing the multitude of factors which can reduce 
cognition during any single assessment, including drugs (pre-
scription and illicit), alcohol, concomitant neurological disease 
such as Alzheimer’s or Parkinson’s Disease, infection and elec-
trolyte abnormalities. Likewise, mood disorders are common 
in cirrhosis and may cause similar findings to CHE without 
sharing a pathophysiologic basis or appropriate therapeutic 
direction. Whether these alterations are persistent or transient 
are poorly captured by a single test, and there may be signifi-
cant discrepancy between test outcomes.

Emergence of mobile and wearable 
technology

Mobile technology has become ubiquitous in the devel-
oped world, with approximately 85% of Americans own-
ing a phone with internet connectivity, often termed a 
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“smartphone” (Pew Research Center 2021). These devices, 
and others like them, have an almost constant bidirectional 
flow of data related to the consumer. Unsurprisingly, there 
has been keen interest in the applicability of mobile tech-
nology to healthcare, which now represents a greater than 
$90 billion annual industry globally (Lee and Lee 2020). 
Two major components of this expanding field are the use 
of smartphone-based applications and the use of wearable 
technology. Broadly speaking, wearable health technology 
is any mobile device which collects and integrates real time 
biometric or spatial data relating to the wearer (Rutherford 
2010). The wide variety of commercial and research tech-
nologies are beyond the scope of this review, but several 
have reached the level of FDA approval (Steil et al. 2006) 
or clearance (Dhruva et al. 2021) for the diagnosis of medi-
cal conditions. Likewise, given that nearly all age ranges in 
the developed world use smartphone applications on a daily 
basis (Parasuraman et al. 2017), many health researchers 
have sought to develop applications specifically for the pre-
vention, detection and monitoring of disease.

High frequency data collection in the setting of health-
care has the potential to produce a digital phenotype with 
dynamic information collected in a variety of settings and 
under true-to-life conditions (Torous et al. 2016). Such 
phenotypes are highly related to the fundamental goal of 
precision medicine, whereby diagnosis and management of 
medical conditions are derived from “n of 1” patient-centric 
data. Continuous monitoring leading to precision manage-
ment strategies is highly attractive for its potential in cogni-
tion and cirrhosis (Fig. 1).

Applications of remote cognitive assessment 
in patients without cirrhosis

There has been some research into the use of mobile technol-
ogy as a real-world test of a patient’s status. Termed “eco-
logical momentary assessment” (EMA), it relies on data col-
lection as patients undergo their daily activities (ecological), 
in any given state (momentary). Such random assessments 
would provide not only a better understanding of average 
mental state, but also their variations in state (Sliwinski et al. 
2018). Small studies have used EMA designs to evaluate 
ambulatory cognition as it relates to outcomes or disease 
states. In one, an ambulatory memory test with an aggre-
gated cognitive score was more sensitive than laboratory 
testing for reduced hippocampal volume in pre-clinical Alz-
heimer’s (Allard et al. 2014). The Stroop test, which has also 
been used in an ambulatory setting in cirrhosis, was found 
to be potentially useful in recovering addicts, with elevated 
attention bias predicting relapse events (Marhe et al. 2013). 
By using Stroop, the researchers were able to infer the par-
ticipants’ implicit cognitive state, increasing objectivity over 

subjective assessments of “focus” as relates to craving and 
likelihood of pending recidivism.

Research into mobile applications to assess attention, 
an important domain of cognition, has also proliferated in 
recent years, especially in aging and after traumatic brain 
injury. The FDA has cleared the Immediate Post-Concussion 
Assessment and Cognitive Test Quick Test (ImPACT QT) 
for assessment of cognitive functioning after concussion 
(Wallace et al. 2020). Using visual prompts and including 
modules such as reverse number counting, the approximately 
5-min test allows athletes to test cognitive performance 
against established baselines. An additional FDA cleared 
device, the SWAY System (SWAY Medical Inc., Tulsa, OK) 
was developed to leverage cognitive testing (reaction time, 
impulse control and inspection time) combined with balance 
and physical reaction times using the embedded tri-axial 
accelerometers within mobile devices (Burghart et al. 2019).

Finally, mobile and wearable technology may be able to 
improve disease outcomes by fundamentally altering patient 
behavior. This has been termed “automated hovering”, and 
constitutes a significant new horizon for healthcare interven-
tion (Asch et al. 2012) given that a significant majority of 
patient decisions are made without direct input from a clini-
cian. For example, in one pilot randomized study, a wearable 
fitness tracker that provided real time biometric data and 
feedback increased activity and reduced sedentary time in a 
group at risk for cardiovascular disease (Roberts et al. 2019). 
Such interventions rely on the control theory, whereby a dis-
crepancy between desired and observed performance leads 
to both conscious and unconscious behavioral alteration 
(Hermsen et al. 2016). While the long-term durability of 
such interventions remains to be determined, the concept is 
nonetheless appealing, especially given the limited relative 
time available for direct healthcare interaction with patients.

Current and future uses of mobile 
technology in cirrhosis

Biometric data is of critical importance in chronic liver dis-
ease and cirrhosis. Guidelines for the prevention of variceal 
bleeding recommend close titration of resting heart rate with 
blood pressure. Reduced mobility may represent progres-
sive frailty, worsening ascites, or progression of encepha-
lopathy. Likewise, fractured sleep may signal CHE or any 
of the mood disorders known to be intrinsic to liver disease. 
Because of the multitude of physiologic changes seen in 
cirrhosis, there are ample potential applications for mobile 
technology in liver disease (Fig. 2).

Given the approximately 50% readmission rate for 
patients with cirrhosis discharged from the hospital, and the 
outsized proportion of these for encephalopathy, it is clear 
that current outpatient monitoring strategies are inadequate 
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(Bajaj et al. 2016). In one study, patients with HE had a more 
than fourfold increased risk of 30-day readmission relative to 
those without (Sood and Wong 2019), and encephalopathy 
is responsible for up to one third of readmissions in patient 
with cirrhosis (Gaspar et al. 2019). Reasons for readmission 
are beyond the scope of this review, but may include medi-
cation non-adherence, infection, or lack of close follow up. 
Despite the high risk of many preventable causes of rehos-
pitalization, there are no widely accepted tools to monitor at 

risk patients and prevent emergent readmission. Overall, the 
literature regarding mobile health and remote monitoring in 
cirrhosis remains relatively sparse (Fig. 3).

Several attempts have already been made to assess cogni-
tion using mobile technology. Most notably, the Stroop test 
has been converted into mobile format in the EncephalApp, 
which has been broadly validated for the detection of CHE. 
More recently, a short form of EncephalApp, named Quick-
Stroop, has shown promise for detection of CHE with only 
one minute of patient engagement – making it a more practi-
cal test to be used in clinical practice (Acharya et al. 2022). 
Many other traditional pen/paper based neuropsychological 
assessments have been converted into computerized versions 
outside of the scope of cirrhosis. For cognitive impairment 
related to possible early Alzheimer’s disease, one system-
atic review identified no less than 36 smartphone applica-
tions available for assessing attention, memory, executive 
function and/or visual special abilities (Charalambous et al. 
2020). Some are simply conversions of previously published 
psychometric evaluations, such as the BrainTest, which is 
based on the Self-administered Gerocognitive Examination 
(SAGE) (Scharre et al. 2010). In many cases, the applica-
tion publishers also include normative and validation data 
(Scharre et al. 2017).

Verbal fluency is another cognitive domain known to 
be negatively affected by encephalopathy (Randolph et al. 
2009). Recent studies have validated use of simple fluency 
tests such as the Animal Naming Test for diagnosis of CHE 

Fig. 2   Potential applications of 
mobile and wearable technology 
to detect various complications 
of cirrhosis

Fig. 3   Annual publications found in a pubmed.gov search for stud-
ies pertaining to "mobile health" and "remote monitoring" by disease 
state. While disease prevalence plays a role, cirrhosis continues to lag 
behind other diseases in proliferation of mobile technology
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(Campagna et al. 2017). Such a test is simple, requires very 
little training to perform, and could be performed reason-
ably easily as a dynamic, mobile cognitive assessment 
(Moore et al. 2022). Further research has demonstrated slow 
speech in those with HE (Bloom et al. 2021), and while such 
technologies have yet to be assessed in cirrhosis, there are 
mobile applications being researched for real time assess-
ment of fluency and speech rate (Aharonson et al. 2017). 
Several other mobile applications have been built to assess 
fluency and phonation for disease states such as Parkinson’s 
Disease (Byrom et al. 2018a).

Wearable technology may also be a useful tool in dynamic 
assessment of cognitive state in HE. Electroencephalogram 
(EEG) alterations have been demonstrated to correlate to 
encephalopathy grades, but laboratory-based testing is too 
cumbersome for routine clinical use (Amodio et al. 2006). 
While it may never be feasible for long term ambulatory 
monitoring, so called “dry” lead EEG technology has been 
demonstrated to provide adequate approximation of real time 
neural activity (Hinrichs et al. 2020), potentially increasing 
its utility in encephalopathy. Dry lead EEG, which does not 
require specially applied, messy, and cumbersome gel for 
electrode placement, has rapidly increased interest in EEG 
technology for rapid cognitive assessment (Pei et al. 2018). 
For example, one study evaluating a dry lead EEG against 
established EEG technologies found comparable or even 
improved performance for cognitive assessment with visual 
evoked potentials (Hinrichs et al. 2020).

Use of remote assessment for positive 
interventions in cirrhosis

Another potential application of mobile cognitive tools 
in cirrhosis is to seek active cognitive improvement. Sev-
eral commercially available applications have been exten-
sively developed and marketed, including but not limited to 
Lumosity, Elevate Brain Training and NeuroNation. Inter-
estingly, NeuroNation is now reimbursed by the national 
German health insurance (Byrom et al. 2018a). In another 
study, online cognitive training improved processing speed 
and cognitive flexibility in breast cancer survivors suffering 
from cognitive impairment after chemotherapy (Kesler et al. 
2013). Such games have already been demonstrated to iden-
tify some of the same cognitive impairments as traditional 
tests for CHE (Tartaglione et al. 2014). While as yet no study 
has evaluated cognitive training in cirrhosis, future research 
could identify an important benefit.

Remote monitoring also has the potential to further eluci-
date the relationship between intraindividual cognitive vari-
ability and outcomes in encephalopathy. There is a known 
continuous decline in performance in neurocognitive assess-
ment as encephalopathy progresses from covert to overt. 

Declining activity levels and changes in biometrics such as 
body temperature and heart rate could be combined with 
dynamic assessment of cognition to signal an impending 
overt episode, potentially initiating therapy prior to disease 
progression. Given the known amount of noise in a single 
assessment, it’s important to better understand how variation 
from baseline and throughout the day may be correlating to a 
change in disease state. Such an assessment is possible only 
with mobile technology.

Similarly, it can potentially improve our understanding 
of how other determinants of cognition relate to function 
in HE, allowing targeted interventions. For example, circa-
dian rhythm disruption and sleepiness are known to impact 
concentration and working memory (Manly et al. 2002), and 
those with HE have repeatedly been demonstrated to have 
disruptions in sleep architecture and quality (Labenz et al. 
2018). Sleep measurement is a ubiquitous feature of many 
commercially available wearable technologies, and several 
publications have suggested that such measurements rea-
sonably approximate four stage sleep detection with gold 
standard polysomnography (Chinoy et al. 2021; Miller et al. 
2021). Passively collected sleep data serves as just one 
example of how mobile technology could help researchers 
and clinicians better understand the course of encephalopa-
thy. Sleep is also an example of how clinicians could impact 
outcomes in encephalopathy through wearable technology. If 
it becomes clear, for example, that consistent bed and wake 
times are preferrable for those with CHE, a clinician could 
“prescribe” a certain time, and then rely on control theory 
and passive feedback to encourage patient adherence.

Challenges for implementation of remote 
monitoring of cognition

In a multi-disciplinary perspective paper following a work-
shop organized by the NIH’s Big Data to Knowledge Centers 
of Excellence, the workshop participants outlined several 
tenets to implementing successful digital health programs, 
adapted in Table 1 below (Smuck et al. 2021). Full integra-
tion of such a program for cognition in cirrhosis is out of 
scope in this review, but several factors are worth consider-
ing for the challenges they may pose.

In order to be successfully implemented, the mobile 
health technology must be capable of performing its 
prescribed task. In the case of HE, this means assess-
ing whether remote cognitive assessment outperforms, 
or at least approximates, the current testing practices. 
Test performance itself can be judged by many met-
rics, but key among them is discriminatory ability for 
the diagnosis of interest. This is often weighted against 
an accepted gold standard, which may or may not be an 
appropriate metric. Validation of mobile technology for 
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determining health indicators and outcomes is inevita-
ble, with over 900 trials currently registered just within 
the United States at clinicaltrials.gov (Mitsi et al. 2022). 
Regulatory considerations are unlikely to be a significant 
barrier to accessing cognitive assessment tools, as most 
are likely to be classified as minimal potential for harm 
and clearable through an expedited 510(k) pathway in 
the United States or similar in the European Union and 
Canada (Byrom et al. 2018b).

Generally speaking, the practical validity of a clinical 
tool should follow the “three V’s” of validation, includ-
ing verification, analytical validity, and clinical validity 
(Goldsack et al. 2020). Verification evaluates the actual 
tool/sensor performance itself, insofar that it consistently 
generates an accurate reading of its intended biomarker. 
This could be acceleration, temperature, or attention and 
should be performed by the technology manufacturer, with 
published results available for clinicians and researchers. 
Analytical validation requires testing in human subjects 
to evaluate performance of the sensor for converting raw 
collected data into a meaningful metric (Witt et al. 2019). 
For example, validation may be performed to show that 
motion and accelerometry data can actually interpret gait 
velocity, or that temperature change, heart rate and motion 
can identify sleep duration. These should be tested against 
reference standards, for example polysomnography for 
sleep. Importantly, this analytical validation needs to be 
performed in each population of interest, and as companies 
are unlikely to expand their own validation studies beyond 
healthy volunteers, much of the burden will fall on clini-
cians and researchers. Finally, clinical validation applies 
an analytically valid tool to achieve a clinically meaning-
ful endpoint. That endpoint could be whether ambulatory 
measurement of blood pressure impacts mortality, for 
example (Banegas et al. 2018). In the case of cognitive 
monitoring in HE, clinical validity may be whether an 
ambulatory assessment program reduces hospitalization 
for overt HE. As yet, there are no passive or active remote 
cognitive monitoring tools that have been clinically vali-
dated in cirrhosis.

Additionally, it’s important that the technology be applied 
in a clearly defined patient population, a clearly defined 
disease state, and preferably clearly defined thresholds for 
action. One potential diagnosis sought by remote monitor-
ing is the cognitive decline when patients transition from a 
covert or latent encephalopathy to an overt form requiring 
immediate medical attention, believed to be at an approxi-
mately 20% rate annually. In one pilot study, the Patient 
Buddy App was evaluated in a cirrhosis-specific context in 
an attempt to close some of this gap. The App was devel-
oped to improve provider and patient/caregiver communi-
cation across healthcare, and in this study its capabilities 
were enhanced by including simultaneous weekly use of 
EncephalApp and orientation questions, to be entered into 
the Buddy App. Likewise, the study team received alerts if 
patients were non-adherent to medications or failed to moni-
tor sodium intake. In their short pilot study, the researchers 
identified 8 HE-related admissions (from 40 enrolled par-
ticipants) which had been likely avoided by in app commu-
nication after assessments or alerts (Ganapathy et al. 2017). 
Overall, the app was well received but admission rates over-
all were similar to those previously published and overall 
usage and adherence was moderate at best. An illustrative 
example was recently published using mobile technology for 
ascites management (Bloom et al. 2020). In their study, they 
a weight increase of > 5 pounds over one week automatically 
triggered an email alert to providers, with high adherence 
on both the provider and patient side, and more than half of 
the alerts eliciting an intervention.

A common challenge when considering mobile or wear-
able technology is its reliability, whether within the device 
itself or in comparison with another. It’s worth noting, how-
ever, that even presently accepted tools for measuring cog-
nition are unreliable in some ways. Significant discordance 
between tests such as EncephalApp and PHES have been 
previously published (Duarte-Rojo et al. 2019). While it has 
not been significantly discussed in publication, it is unclear 
whether true technological reliability will be a limiting fac-
tor in implementing remote monitoring platforms.

An effective cognitive monitoring tool in encephalopathy 
will retain patient engagement, which will likely prove chal-
lenging. In one study evaluating mobile device proficiency 
in cirrhosis, 84.6% owned mobile devices and 61.5% were 
interested in personalized mobile health management pro-
grams (Ismond et al. 2021). The researchers found simi-
lar technical proficiency among those with cirrhosis com-
pared to the general population. Interestingly, a history of 
HE was not associated with worse technical proficiency, 
but formal cognitive assessment was not performed in that 
study. Regardless, given the known sociodemographic chal-
lenges facing those with liver disease, a cognitive moni-
toring tool has the potential to widen the already present 
gap in outcomes based on access to technology and health 

Table 1   Challenges and recommendations for successful implementa-
tion of digital health programs. Adapted from Smuck et al 2021 and 
derived from a multidisciplinary NIH Big Data Workshop and subse-
quent position paper

Clearly Defined Problem and Disease State
Integrated System of Healthcare Delivery
Technology support and service
Personalized Experience
Enhanced End User Experience
Aligned Payment and Reimbursement Models
Clinical Champions and Stakeholder Support
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literacy (Reiners et al. 2019). Unfortunately, few studies 
have attempted to evaluate real world usage of cognitive 
monitoring in encephalopathy. In one prospective study, 
patients with cirrhosis were evaluated for usage of Enceph-
alApp longitudinally, but only 32% actually completed a run 
of EncephalApp despite most expressing interest on enroll-
ment (Louissant et al. 2020). There were multiple reasons 
cited for failure to complete, including technical difficulties, 
forgetting to use it, and recurrent admission. One recently 
presented study found that passively collected sleep data 
using commercially available wearable technology had 
higher (71.4%) participant adherence over a 6-month period 
(Buckholz et al. 2022), suggesting that perhaps passive data 
collection could improve some test performance. One solu-
tion posited by the Smuck et al. position paper was to incor-
porate “Apple genius bar” style technical support whereby 
trained staff members incorporate physician recommenda-
tions to assist patients in setting up and delivering appropri-
ate data back to the physician. Passive data collection would 
require validation of indirect markers of cognition which 
has as yet not been performed. In a non-cirrhotic popula-
tion, passively collected interactions with smart phones were 
strongly correlated with outcomes of neurocognitive testing 
(Dagum 2018).

Overall, it seems likely that increased points of contact for 
patients with healthcare, even digital healthcare, are likely to 
improve outcomes. A study conducted by the Oshsner health 
system found that blood pressure data collected at home with 
a loop feedback approach to a treating physician helped 71% 
of patients reach target blood pressure, compared to 31% 
with usual care (Milani et al. 2017). One potential barrier, 
however, is uptake by gastroenterologists. In comparison 
with other specialties, the providers most responsible for the 
management of patients with chronic liver disease are among 
the least likely to use telemedicine and mobile health tech-
nology. In one study, only 7.9% of gastroenterologists used 
telemedicine, the lowest of any specialty, albeit the study 
was conducted prior to the COVID-19 pandemic, so usage 
is undoubtedly higher in the present day (Kane and Gillis 
2018). Overall, the COVID-19 pandemic has increased com-
fort level among both patients and providers with remote 
health technology, and payer models are adjusting to the new 
health landscape. For example, the Centers for Medicare and 
Medicaid Services in 2018 incorporated Current Procedural 
Terminology (CPT) code 99,091, which allows billing for 
physiologic and patient-generated digital health information 
(Smuck et al. 2021). Mobile technology applied appropri-
ately may also reduce caregiver and physician burden, which 
is a major concern in the management of encephalopathy. 
A study performed in the Kaiser Permanente health system 
noted that electronic management of diabetes medication 
improved glycemic control and reduced direct physician 
workload by 35% (Zhou et al. 2017).

In order to achieve broad physician acceptance and 
patient benefit for a mobile health program, there must be 
efficient integration of the data into the electronic health 
record (EHR). It is likely unrealistic that healthcare provid-
ers will actively monitor all of the vast number of data points 
generated with mobile technology, and equally unrealistic 
that patients themselves can or would sift through to find 
meaningful metrics. By one estimate, over 400 wearables 
already have the ability to integrate into EHRs, but such 
a significant amount of data can overwhelm health system 
storage capacity (Kalid et al. 2017) and induce provider 
fatigue (Ramirez et al. 2018). Artificial technology may be 
a potential solution in the future, but such usage is in its 
infancy (Dinh-Le et al. 2019). This problem reiterates the 
need to have clearly defined thresholds for “alert” states and 
clearly outline mutual goals and recommendations with phy-
sicians and patients.

A final challenge regards the privacy concerns with using 
often proprietary mobile technology for patient care. The 
relative lack of regulatory oversight means that mobile 
health data faces significant transmission and storage con-
cerns across healthcare. In one study by the United King-
dom’s Health service, 66% of apps that were categorized 
as “trusted” for clinical use were transmitting data that was 
not properly encrypted, while 20% did not have any privacy 
policy at all (Huckvale et al. 2015). Moreover, the prolifera-
tion of entrepreneurially focused apps has the potential to 
create data silos (Mamlin and Tierney 2016), whereby there 
are so many different mobile applications that it’s unrealistic 
to expect clinicians to understand privacy and safety policies 
for each. Similarly, many mobile health companies do not 
publicize proprietary algorithms used to obtain or interpret 
health biometrics, deepening distrust between researchers, 
clinicians and mobile health companies (Depner et al. 2020). 
To adequately integrate a mobile cognitive assessment plat-
form in cirrhosis, improved transparency and strict data 
management strategies will need to crucial.

Conclusion

Hepatic encephalopathy remains a devastating complication 
of chronic liver disease, responsible for considerable mor-
bidity and healthcare expenditure. Because the vast majority 
of HE is covert, cognitive assessment is a critical component 
of disease identification and management. However, cur-
rent assessment tools are cumbersome and underutilized in 
clinical practice, and capture only an isolated and idealized 
moment in a patient’s course. It’s well understood that cogni-
tion is dynamic and changes can occur due to myriad factors. 
From both a research and clinical care standpoint, the prolif-
eration of mobile healthcare may offer new insight into cog-
nition in HE. While many mobile cognitive tools have been 
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developed, tested, and marketed, there has yet to be signifi-
cant penetration within HE. While many questions remain 
as to how such tools can be validated and leveraged in cir-
rhosis, it’s important that researchers embrace the challenge 
in order to modernize and improve cognitive assessment. 
Certainly, all advances within mobile health and wearable 
technology should be met with appropriate levels of scrutiny 
and caution until they’re effectively validated. There is con-
siderable research needed at all levels prior to true clinical 
implementation of such tools. Despite this, entrepreneurs, 
patients, healthcare providers, insurance companies and even 
government entities understand that mobile health will only 
continue to grow, and failing to capitalize on that growth 
within HE would represent a significant opportunity lost.
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