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Abstract
Sirtuin3 (SIRT3) is a deacetylase that plays an important role in normal physiological activities by regulating a variety of 
substrates. Considerable evidence has shown that the content and activity of SIRT3 are altered in neurological diseases. 
Furthermore, SIRT3 affects the occurrence and development of neurological diseases. In most cases, SIRT3 can inhibit clini-
cal manifestations of neurological diseases by promoting autophagy, energy production, and stabilization of mitochondrial 
dynamics, and by inhibiting neuroinflammation, apoptosis, and oxidative stress (OS). However, SIRT3 may sometimes have 
the opposite effect. SIRT3 can promote the transfer of microglia. Microglia in some cases promote ischemic brain injury, and 
in some cases inhibit ischemic brain injury. Moreover, SIRT3 can promote the accumulation of ceramide, which can worsen 
the damage caused by cerebral ischemia–reperfusion (I/R). This review comprehensively summarizes the different roles and 
related mechanisms of SIRT3 in neurological diseases. Moreover, to provide more ideas for the prognosis of neurological 
diseases, we summarize several SIRT3-mediated rehabilitation training methods.
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Introduction

The Sirtuins family contains seven members, which are 
marked as SIRT1 to SIRT7 (Chang and Guarente 2014; Imai 
and Guarente 2014; Kane and Sinclair 2018). The members 
of this family participate in a variety of physiological activi-
ties and pathological reactions by causing different types of 
post-translational modifications of various substrate proteins 
(Kida and Goligorsky 2016; Morigi et al. 2018). The location 
of each type of sirtuin in the cell is not the same. SIRT2 is 
mainly located in the cytoplasm; SIRT1, SIRT6, and SIRT7 
are mainly located in the nucleus; and SIRT3, SIRT4, and 
SIRT5 are mainly located in mitochondria (Chen et al. 2021a, 
b). As a deacetylase located in mitochondria, SIRT3 must 

have a relationship with mitochondrial function. According 
to the available literature, SIRT3 can directly regulate about 
100 downstream proteins, and most of the substrate proteins 
are activated by SIRT3 deacetylation (Yang et al. 2016). The 
related physiological functions include regulation of material 
metabolism, maintenance of mitochondrial stability, apopto-
sis, and autophagy (Zhang et al. 2020a, b, c, d).

At present, neurological diseases are increasingly affect-
ing the quality of life of the elderly, and mitochondrial func-
tion is closely related to neurological diseases (Carrì et al. 
2018; Chan 2020; Todorova and Blokland 2017). The cur-
rent research mainly concentrates on SIRT1 and SIRT2, and 
there are relatively few studies on SIRT3. Therefore, in this 
review, we summarize the different roles and related mech-
anisms of SIRT3 in neurological diseases and summarize 
several rehabilitation training methods related to SIRT3 that 
can improve the prognosis of neurological diseases.

Deacetylation activity and function of SIRT3

SIRT3 and substance metabolism

The main function of SIRT3 is to participate in the regu-
lation of substance metabolism (Sidorova-Darmos et al. 

 * Yanhui He 
 hyhui1971@163.com

1 Department of Rehabilitation, Jinzhou Central Hospital, 
51 Shanghai Road, Guta District, Jinzhou 121000, 
Liaoning Province, People’s Republic of China

2 Department of Neurology, Jinzhou Central Hospital, 
51 Shanghai Road, Guta District, Jinzhou 121000, 
Liaoning Province, People’s Republic of China

3 Department of Radiology, Jinzhou Central Hospital, 
51 Shanghai Road, Guta District, Jinzhou 121000, 
Liaoning Province, People’s Republic of China

/ Published online: 14 November 2022

Metabolic Brain Disease (2023) 38:69–89

http://orcid.org/0000-0002-3665-1118
http://crossmark.crossref.org/dialog/?doi=10.1007/s11011-022-01111-4&domain=pdf


1 3

2018) (Table 1). Normal material metabolism maintains 
the stability of the body, and its main function is to provide 
energy for life activities and generate metabolic wastes 
that are easy to eliminate through biotransformation.

Glucose metabolism, lipid metabolism, and oxidative 
phosphorylation (OXPHOS) provide most of the energy 
required for life activities. During anaerobic oxidation of 
sugars, SIRT3 deacetylates cyclophilin D (CypD) (Wei 
et al. 2013a, b) and lactate dehydrogenase A (LDHA) (Cui 
et al. 2015), which in turn inhibit glycolysis and promote 
lactate production, respectively. During aerobic oxidation 
of sugars, SIRT3 can deacetylate and activate mitochon-
drial pyruvate carrier 1 (MPC1) (Liang et al. 2015) and 
pyruvate dehydrogenase (PDH) (Jing et al. 2013), which 
promote the entry of pyruvate into mitochondria and the 
production of acetyl-CoA, respectively. The activation of 
pyruvate dehydrogenase phosphatase 1 (PDP1) by SIRT3 
can also activate PDH (Fan et al. 2014). SIRT3 promotes 
aerobic oxidation by activating multiple key enzymes in 
the tricarboxylic acid cycle (TCA) cycle, such as citrate 
synthase (CS) (Cui et al. 2017), isocitrate dehydrogenase 2 
(IDH2) (Smolková et al. 2020), and succinate dehydroge-
nase (SDH) (Li et al. 2016a, b); in contrast, deacetylation 
of aconitase (Aco) by SIRT3 inhibits its activity and thus 
inhibits aerobic oxidation (Fernandes et al. 2015).

When the body is in a state of starvation, energy gener-
ated by fatty acid metabolism compensates for the lack of 
energy caused by insufficient sugar supply and maintains 
the body's homeostasis. First, acyl-CoA synthase family 
member 3 (ACSF3) is involved in the activation of fatty 
acids to produce acyl-CoA (Sloan et al. 2011), which is 
transported to mitochondria under the action of carnitine/
acylcarnitine transporter (CACT). The deacetylation acti-
vation of ACSF3 and CACT by SIRT3 promotes this pro-
cess (Giangregorio et al. 2017; Sun et al. 2020). Acyl-CoA 
in mitochondria undergoes β-oxidation to generate acetyl-
CoA, which in turn participates in the TCA cycle. SIRT3 
deacetylates and activates long-chain acyl-CoA dehydro-
genase (LCAD) (Hirschey et al. 2010), very long-chain 
acyl-CoA dehydrogenase (VLCAD) (Zhang et al. 2015), 
β-hydroxyacyl-CoA dehydrogenase (β-HAD) (Alrob et al. 
2014), and enoyl-CoA hydratase-1 (ECHS1) (Zhang et al. 
2017) during β-oxidation. In addition, SIRT3 can activate 
acetyl-CoA carboxylase (ACC1) to promote fatty acid syn-
thesis (Xu et al. 2020), which is a beneficial way of energy 
storage when nutrients are plentiful.

OXPHOS is the process by which electron transfer chain 
(ETC) converts the metabolites NADH and FADH2 to 
ATP (Nolfi-Donegan et al. 2020). There are five complexes 
involved in this process, which are labeled as complexes I to 
V. SIRT3 can deacetylate and activate the NADH dehydro-
genase (ubiquinone) 1 alpha subcomplex 9 (NDUFA9) subu-
nit on complex I (Ahn et al. 2008), succinate dehydrogenase 

flavoprotein (SDHA) subunit on complex II (Cimen et al. 
2010), ubiquinol cytochrome c reductase core protein 
1 (UQCRQ) subunit on complex III (Sun et  al. 2019), 
cytochrome c oxidase-1 (COX-1) subunit on complex IV 
(Tu et al. 2019), and ATP synthase β subunit on complex V 
(Rahman et al. 2014), hereby promoting the generation of 
ATP. Furthermore, deacetylation of p53 by SIRT3 inhibits 
the expression-repressive effect of p53 on ND2 and ND4 
genes, which encode key subunits of complex I (Lee et al. 
2018). SIRT3 also activates leucine-containing protein 130 
(LRP130), which promotes the process of OXPHOS (Liu 
et al. 2014). However, it has been reported that deacetyla-
tion of ceramide synthases 1 (CerS1), CerS2, and CerS6 by 
SIRT3 promotes ceramide accumulation and inhibits com-
plex III activity (Novgorodov et al. 2016).

Amino acid metabolism can also generate small amounts 
of energy, and SIRT3 can deacetylate and activate glutamate 
dehydrogenase (GDH) (Choi et al. 2016). This enzyme facil-
itates the conversion of glutamate to alpha-ketoglutarate, 
which enters the TCA cycle for energy production. This pro-
cess produces the toxic metabolite ammonia  (NH3), and the 
urea cycle is the main metabolic route of intracellular  NH3. 
Activation of ornithine transcarbamoylase (OTC) (Hallows 
et al. 2011) and carbamoyl phosphate synthase 1 (CPS1) (Li 
et al. 2016a, b) by SIRT3 in the urea cycle can promote urea 
synthesis and inhibit the toxic effects of  NH3 on the body.

SIRT3 also has a partial effect on the metabolism of 
nonnutrients. SIRT3 can deacetylate and inhibit aldehyde 
dehydrogenase 2 (ALDH2) activity and thereby inhibit the 
conversion of acetaldehyde to acetate (Wei et al. 2013a, b), 
which may cause acetaldehyde toxicity. SIRT3 can also dea-
cetylate acetyl-CoA synthase 2 (AceCS2) to convert acetate 
to acetyl-CoA (Hallows et al. 2006), and then participate in 
the TCA cycle.

SIRT3 and mitochondrial dynamics

Mitochondrial dynamics include two groups of events: mito-
chondrial fusion and mitochondrial fission, and mitochon-
drial biogenesis and mitochondrial degradation, including 
mitophagy (Meyer et al. 2017). Together, these four pro-
cesses maintain the stability of mitochondrial number, 
shape, and function in cells (Forte et al. 2021). SIRT3 regu-
lates the activity of key enzymes in mitochondrial dynamics 
through deacetylation, thereby regulating the stabilization of 
mitochondrial function in cells.

Optic atrophy 1 (Opa1) and mitofusin (Mfn) are major 
proteins involved in mitochondrial fusion, namely in 
promoting fusion of the inner and outer mitochondrial 
membranes, respectively. There are two isoforms of Mfn, 
namely Mfn1 and Mfn2 (van der Bliek et al. 2013). SIRT3 
can directly deacetylate Opa1 at lysine 926 and 931 and 
promote its activity (Samant et al. 2014). However, SIRT3 
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Table 1  Known targets of 
SIRT3 and function

Function Downstream protein References

Substance Metabolism
  Glucose metabolism CypD (Wei et al. 2013a, b)

LDHA (Cui et al. 2015)
MPC1 (Liang et al. 2015)
PDH (Jing et al. 2013)
PDP1 (Fan et al. 2014)
CS (Cui et al. 2017)
IDH2 (Smolková et al. 2020)
SDH (Li et al. 2016a, b)

  Fatty acid metabolism Aco (Fernandes et al. 2015)
ACSF3 (Sun et al. 2020)
CACT (Giangregorio et al. 2017)
LCAD (Hirschey et al. 2010)
VLCAD (Zhang et al. 2015)
β-HAD (Alrob et al. 2014)
ECHS1 (Zhang et al. 2017)
ACC1 (Xu et al. 2020)

  OXPHOS NDUFA9 (Ahn et al. 2008)
SDHA (Cimen et al. 2010)
UQCRQ (Sun et al. 2019)
COX-1 (Tu et al. 2019)
ATP synthase β (Rahman et al. 2014)
p53 (Lee et al. 2018)
LRP130 (Liu et al. 2014)
CerS1, CerS 2, CerS 6 (Novgorodov et al. 2016)

  Amino acid metabolism GDH (Choi et al. 2016)
OTC (Hallows et al. 2011)
CPS1 (Li et al. 2016a, b)

  Non-nutrients metabolism ALDH2 (Wei et al. 2013a, b)
AceCS2 (Hallows et al. 2006)

Mitochondrial dynamics
  Mitochondrial fusion Opa1 (Samant et al. 2014)

LKB1 (Pillai et al. 2010)
  Mitochondrial fusion FOXO3a (Tseng et al. 2013)

LKB1 (Mao et al. 2022; Xue et al. 2019)
  Mitochondrial biogenesis LKB1 (Fu et al. 2012; Li et al. 2017)

TFAM (Liu et al. 2018a, b, c)
  Mitophagy FOXO3a (Ma et al. 2018; Yu et al. 2017)
  OS NDUFA9 (Ahn et al. 2008)

SDHA (Cimen et al. 2010)
UQCRQ (Sun et al. 2019)
COX-1 (Tu et al. 2019)
ATP synthase β (Rahman et al. 2014)
p53 (Lee et al. 2018)
CerS1, CerS2, CerS6 (Novgorodov et al. 2016)
MnSOD (Qiu et al. 2010)
CAT (Wang et al. 2014)
PRDX3 (Wang et al. 2020a, b)
FOXO3a (Tseng et al. 2014; Zhang et al. 2018a, b)
FOXO1 (Zhang et al. 2013)
Gpx (Yoon and Kim 2016)
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does not directly deacetylate Mfn, but it can deacetylate 
and activate liver kinase B1 (LKB1) (Pillai et al. 2010), 
thereby promoting mitochondrial fusion through the 
LKB1–AMP activated protein kinase (AMPK)–Mfn path-
way (Dong et al. 2019; Fan et al. 2019; Wu et al. 2020a, 
b, c). The proteins involved in mitochondrial fission are 
mainly dynamin related protein 1 (DRP1) and mitochon-
drial fission protein 1 (Fis1). There is no direct deacetyla-
tion of these two proteins by SIRT3, and deacetylation of 
forkhead box O3a (FOXO3a) by SIRT3 can upregulate the 
expression levels of DRP1 and Fis1, which are involved 
in the regulation of mitochondrial dynamics (Tseng et al. 
2013). However, one experiment has shown that reduced 
levels of SIRT3 in brain tissue do not affect DRP1 expres-
sion, but promote DRP1 phosphorylation and transloca-
tion from the cytoplasm to mitochondria, thereby promot-
ing mitochondrial fission (Park et al. 2020). This is most 
likely mediated by the LKB1–AMPK pathway (Mao et al. 
2022; Xue et al. 2019).

Peroxisome proliferator-activated receptor gamma coac-
tivator-1alpha (PGC-1α) is a core protein that causes mito-
chondrial biogenesis, which can be positively regulated by 
the LKB1–AMPK–PGC-1α pathway, and participates in 
mitochondrial biogenesis through the PGC-1α– nuclear res-
piratory factor (NRF)–transcription factor A (TFAM) path-
way; thus, deacetylation modification of LKB1 by SIRT3 
also promotes mitochondrial biogenesis (Fu et al. 2012; Li 
et al. 2017). TFAM can activate RNA polymerase in mito-
chondria and directly promote transcription of the genome 
in mitochondria. In kidney tumor cells, SIRT3 deacetylates 
and activates TFAM, which in turn promotes mitochondrial 
biogenesis (Liu et al. 2018a, b, c). E3 ubiquitin ligase Parkin-
mediated mitophagy is important for the maintenance of mito-
chondrial homeostasis and is an important clearance mecha-
nism for mitochondria. This process is regulated by FOXO3a, 
and SIRT3 is one of the important regulatory enzymes of 
FOXO3a. FOXO3a is activated upon deacetylation and pro-
motes Parkin expression (Ma et al. 2018; Yu et al. 2017).

SIRT3 and oxidative stress

OS is an intracellular damage state, which is closely related 
to the occurrence and development of many diseases. 
Excessive intracellular production of reactive oxygen spe-
cies (ROS) is an important cause of OS. The abnormal 
working state of the oxidative respiratory chain causes 
a large amount of electron leakage, which is one of the 
important reasons for the excess of ROS. The effects of 
SIRT3 on the five complexes in the oxidative respira-
tory chain can affect the production of ROS (Ahn et al. 
2008; Cimen et al. 2010; Lee et al. 2018; Novgorodov 
et al. 2016; Sun et al. 2019; Tu et al. 2019). Impaired 
ROS scavenging is another cause of OS, and endogenous 
antioxidant enzymes can scavenge superoxide in cells to 
inhibit OS. SIRT3 directly regulates the activities of anti-
oxidant enzymes such as manganese superoxide dismutase 
(MnSOD) (Qiu et al. 2010), catalase (CAT) (Wang et al. 
2014), and peroxiredoxin3 (PRDX3) (Wang et al. 2020a, b) 
through deacetylation, thereby inhibiting OS. SIRT3 also 
indirectly activates MnSOD by mediating the deacetyla-
tion of FOXO3a and forkhead box O1 (FOXO1), promoting 
ROS scavenging (Tseng et al. 2014; Zhang et al. 2013). In 
addition, deacetylated FOXO3a also promotes CAT activ-
ity (Zhang et al. 2018a, b). ROS scavenging by glutathione 
peroxidase (Gpx) can also be enhanced by its deacetylation 
by SIRT3 (Yoon and Kim 2016). Glutathione (GSH) acts 
as a cofactor for Gpx to scavenge ROS, while nicotinamide 
adenine dinucleotide phosphate (NADPH) is a necessary 
factor to generate GSH. Deacetylation activation of IDH2 
(Someya et al. 2010) and mitochondrial methylenetetrahy-
drofolate dehydrogenase/cyclohydrolase (MTHFD2) (Wan 
et al. 2020) by SIRT3 can promote NADPH production, 
thereby inhibiting OS. However, one study came to the 
opposite conclusion; i.e., that deacetylation of glutamate 
oxaloacetate transaminases2 (GOT2) by SIRT3 inhibits 
NADPH production, which in turn leads to tumor cell 
death under conditions of OS (Yang et al. 2015a, b).

Table 1  (continued) Function Downstream protein References

IDH2 (Someya et al. 2010)
MTHFD2 (Wan et al. 2020)
GOT2 (Yang et al. 2015a, b)

  Apoptosis GSK-3β (Song et al. 2016)
OGG1 (Cheng et al. 2013)
Ku70 (Sundaresan et al. 2008)
HSD17B10 (Liu et al. 2020a, b, c)
CypD (Liu et al. 2018a, b, c)

  Autophagy LKB1 (Zhang et al. 2018a, b)
ATG5 (Liu et al. 2018a, b, c)
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SIRT3 and apoptosis

The relationship between SIRT3 and apoptosis has only 
been explored in a few experiments. In general, inhibition 
of OS by SIRT3 can inhibit the occurrence of apoptosis. 
In addition, SIRT3 can regulate apoptosis by regulating 
the deacetylation of the following proteins. First, activa-
tion of glycogen synthase kinase 3β (GSK-3β) by SIRT3 
can promote the expression of BCL2-associated protein X 
(Bax), which in turn promotes apoptosis (Song et al. 2016). 
he inhibitory effect of SIRT3 on apoptosis can be achieved 
by activating 8-oxoguanine DNA glycosylase 1 (OGG1) 
(Cheng et al. 2013), Ku70 (Sundaresan et al. 2008), and 
17-β-hydroxysteroid dehydrogenase 10 (HSD17B10) (Liu 
et al. 2020a, b, c), and inhibiting the activity of CypD (Liu 
et al. 2018a, b, c). OGG1 can repair DNA damage caused 
by OS; Ku70 can inhibit Bax-induced apoptosis; both the 
increased activity of HSD17B10 and the decreased activity 
of CypD inhibit mitochondrial dysfunction.

SIRT3 and autophagy

Autophagy is a highly conserved eukaryotic cell cycle pro-
cess. Subcellular structures such as organelles are degraded 
under the action of certain mechanisms to form decom-
position products that can be recycled. Autophagy thus 
plays an important role in maintaining cellular homeosta-
sis (Parzych and Klionsky 2014). In addition to regulating 
mitophagy by regulating the activity of FOXO3a, SIRT3 can 
also regulate autophagy through the LKB1–AMPK–mam-
malian/mechanistic target of the rapamycin (mTOR) axis. 
mTOR inhibits autophagy in general, and activated AMPK 
can inhibit mTOR activity, so deacetylation of LKB1 by 
SIRT3 can promote autophagy (Zhang et al. 2018a, b). The 
Atg12–Atg5–Atg16 complex is an important regulatory 
system during autophagy (Yang and Klionsky 2009), and 
deacetylation of ATG5 by SIRT3 ensures autophagosome 
maturation (Liu et al. 2018a, b, c).

Chronic neurodegenerative diseases

Chronic neurological diseases are closely related to age and 
mostly occur in the elderly. In this section, we mainly focus 
on Alzheimer's disease (AD), Parkinson's disease (PD), 
Huntington's disease (HD) and amyotrophic lateral sclero-
sis (ALS) (Fig. 1).

SIRT3 and Alzheimer's disease

AD is a very common chronic neurodegenerative dis-
ease characterized by memory impairment, executive 

dysfunction, and personality and behavior abnormalities, 
which seriously affect the quality of life of the elderly in the 
late stage. The etiology of AD is very complex and has not 
yet been fully elucidated. OS, neuronal apoptosis, inflamma-
tion, and cellular senescence can all promote the occurrence 
and development of AD.

It has been found that the level of SIRT3 in mitochondria 
of the cerebral cortex of AD mice is decreased (Yang et al. 
2015a, b) and that the level of SIRT3 mRNA in the brain 
tissue of AD patients is reduced (Song et al. 2020). These 
results indicate that the presence of SIRT3 may be very 
important to inhibit the occurrence and development of AD. 
In the early stage of AD, there is an excessive accumulation 
of Tau protein in the brain tissue (Li et al. 2019). However, 
SIRT3 can deacetylate Tau and reduce its protein content 
(Li et al. 2019; Yin et al. 2018), which may help inhibit the 
further development of AD (Villemagne et al. 2015). SIRT3 
can also inhibit the acetylation level of p53, thereby restor-
ing the normal expression levels of ND2 and ND4 genes in 
the brain tissue. This is vital for maintaining the normal pro-
gress of mitochondrial OXPHOS and inhibiting AD caused 
by neuronal damage (Lee et al. 2018). Reducing the content 
of ROS in the cell may be an effective method to treat AD. 
One of the most important substrates of SIRT3 is MnSOD, 
and the activity of MnSOD is enhanced after deacetylation. 
MnSOD can convert excessive ROS into hydrogen perox-
ide  (H2O2).  H2O2 is converted into harmless oxygen and 
water under the action of CAT. This function of SIRT3 has 
been confirmed in multiple experiments (Li et al. 2020; Liu 
et al. 2020a, b, c; Ramesh et al. 2018). SIRT3 can promote 
the deacetylation and activity of 17-β-hydroxysteroid dehy-
drogenase 10 (HSD17B10), thereby promoting the antia-
poptotic ability of cells (Liu et al. 2020a, b, c). Although 
there is currently no evidence that the effect of SIRT3 on 
HSD17B10 can inhibit AD, the inhibition of HSD17B10 
activity by amyloid-β (Aβ) can lead to neuronal dysfunc-
tion associated with AD (Oppermann et al. 1999; Yan et al. 
1997). Therefore, it is credible that HSD17B10 mediates the 
inhibitory effect of SIRT3 on AD. SIRT3 can also inhibit 
neuronal apoptosis by inhibiting the expression of CypD, 
and thus alleviates the symptoms of AD (Jiang et al. 2017). 
In addition, the inhibitory effect of SIRT3 on AD can be 
achieved by promoting the canonical autophagy pathway 
LKB1–AMPK–mTOR (Shu et al. 2020; Zhang et al. 2020a, 
b, c, d).

SIRT3 and Parkinson’s disease

Among neurodegenerative diseases, PD is the second by 
incidence (Risiglione et  al. 2021; Tysnes and Storstein 
2017). PD is characterized by progressive degeneration of 
dopaminergic neurons in the substantia nigra striatum (Liu 
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Fig. 1  SIRT3 and chronic neurodegenerative diseases. The occur-
rence and development of chronic neurodegenerative diseases are 
related to the accumulation of intracellular toxic substances, pro-
grammed cell death and mitochondrial homeostasis. SIRT3 activates 
a range of substrates by deacetylation to reduce intracellular Tau con-

tent, promote energy production, inhibit OS and apoptosis, and pro-
mote autophagy. In addition, SIRT3 also maintains stable mitochon-
drial dynamics. The green proteins represent the substrates of SIRT3. 
Brown circles represent acetyl group
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et al. 2015). The main clinical manifestations of the disease 
are motor dysfunction including tremors at rest, rigidity, 
postural instability, and bradykinesia (Huang et al. 2021; Li 
et al. 2021a, b; Tolosa et al. 2006).

In several chemical drug trials, it has been found that 
SIRT3 agonists such as theacrine (Duan et al. 2020) and 
trans-(-)-ε-viniferin (ε-viniferin) (Zhang et al. 2020a, b, 
c, d) can inhibit the occurrence and development of PD. 
When SIRT3 inhibitors such as dipeptidyl peptidase-4 
(DPP-4), P2X7 purinoceptors (P2X7R) (Jamali-Raeufy 
et al. 2020), and miR-494-3p (Geng et al. 2018) are inhib-
ited, PD and related clinical symptoms improve. Hence, 
SIRT3 has a positive effect on PD inhibition.

In current research, the inhibitory effect of SIRT3 on PD 
is mainly achieved by inhibiting the accumulation of ROS 
in cells and consequent inhibition of OS (Dai et al. 2014), 
which is similar to the effect of SIRT3 on AD. SIRT3 can 
promote the activity of MnSOD (Jiang et al. 2019; Zhang 
et al. 2016) as well as the expression level of MnSOD in 
cells by promoting the deacetylation level and activity 
of FOXO3a (Rangarajan et al. 2015). FOXO3a can also 
promote the expression of CAT (Rangarajan et al. 2015). 
Therefore, under this series of actions, SIRT3 strongly 
eliminates the content of ROS in neuronal cells. In addi-
tion, it has been shown that the promotion of autophagy by 
SIRT3 can inhibit the occurrence and development of PD 
(Zhang et al. 2018a, b). SIRT3 can increase the deacetyla-
tion level and activity of LKB1 (Woods et al. 2003), which 
in turn promotes the phosphorylation level and activity of 
AMP activated protein kinase (AMPK) (Pillai et al. 2010) 
and inhibits the activity of mTOR, thereby promoting 
autophagy (Jung et al. 2010). SIRT3 also promotes the 
activities of ATP synthase β (Zhang et al. 2016) and CS 
(Cui et al. 2017) to promote OXPHOS and the TCA cycle, 
respectively. The resulting large amount of energy inhib-
its neuronal damage caused by insufficient energy. Recent 
studies have shown that SIRT3's inhibition of DRP1 phos-
phorylation can maintain normal mitochondrial dynamics, 
which can positively regulate the treatment and prognosis 
of PD (Park et al. 2020).

SIRT3 and Huntington's disease

Unlike AD and PD, the incidence of HD is low and the 
pathogenesis is clearer. The disease is an autosomal 
dominant genetic disease (Wild and Tabrizi 2017). The 
mutated chromosomes can cause the neurotoxic mutant 
huntingtin (mHTT) to accumulate in the body (Ross and 
Tabrizi 2011). The most common clinical sign of the dis-
ease is dyskinesia, and patients often show weird dance-
like movements (Jimenez-Sanchez et al. 2017). In addi-
tion, many patients have different levels of psychiatric 
symptoms, such as depression and obsessive–compulsive 

disorder (Rosenblatt 2007). This may be caused by the 
strange behavior, or it may be caused by the organic dis-
ease directly caused by mHTT.

At present, treatments for HD related to SIRT3 mostly 
focus on how to maintain the normal mitochondrial bio-
genesis because abnormal mitochondrial biogenesis is 
one of the important factors in the development of HD. 
After SIRT3 is activated, the LKB1–AMPK pathway is 
also activated and enhances mitochondrial biogenesis 
(Fu et al. 2012). Moreover, AMPK can also promote the 
activity of SIRT3 by increasing the  NAD+/NADH ratio, 
thereby forming a positive feedback pathway (Duan et al. 
2016). In addition, the inhibitory effect of SIRT3 on ROS 
can inhibit the damage of mHTT to neurons (Fu et al. 
2012). It has also been shown that the ability of SIRT3 
to inhibit the accumulation of DRP1 in mitochondria and 
thus inhibit mitochondrial fission contributes to mito-
chondrial elongation, which in turn promotes cell viabil-
ity (Naia et al. 2021; Oliver and Reddy 2019). Although 
there are few related studies, the agonist of SIRT3 used 
in the above two studies is viniferin, and viniferin has a 
good inhibitory effect on HD.

SIRT3 and amyotrophic lateral sclerosis

ALS is a neurodegenerative disease for which the cause has 
not yet been identified. The disease is characterized by the 
degeneration of motor neurons (MN) in the brain and spi-
nal cord, and the resulting muscle dysfunction such as limb 
weakness and difficulty swallowing (Taylor et al. 2016). 
Most patients eventually die from respiratory failure caused 
by respiratory muscle dysfunction (Brown and Al-Chalabi 
2017). Although the incidence of the disease is relatively 
low, patients endure great pain during the illness. Therefore, 
it is necessary to improve the clinical symptoms and cure 
the disease.

At present, the relationship between SIRT3 and ALS 
has been relatively poorly studied. However, since mito-
chondrial morphology is altered in ALS disease models 
(Magrané et al. 2009; Sasaki and Iwata 2007), inhibition 
of mitochondrial fission by SIRT3 may inhibit the devel-
opment of ALS (Song et al. 2013). CypD inhibition by 
SIRT3 prevents the transition of mitochondrial perme-
ability and thus inhibits apoptosis, which also plays an 
important role in the inhibition of ALS (Song et al. 2013). 
MN of ALS patients has specific metabolic characteristics 
such as reduced mitochondrial respiration and elevated 
glycolysis. Therefore, the reversal of the clinical pheno-
type of ALS by SIRT3 agonists is inseparable from the 
function of SIRT3 to promote OXPHOS (Hor et al. 2021). 
This is one of the reasons why SIRT3 agonists are the 
preferred treatment strategy for ALS in some treatment 
regimens (Harlan et al. 2020).
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Acute neurodegenerative diseases

Acute neurological diseases are mostly related to abnor-
mal discharge of cerebral nerves and cerebral vascular 
lesions, and are often accompanied by serious seque-
lae. In this section, we will mainly discuss how SIRT3 
regulates its substrates to regulate the occurrence and 
development of acute neurological diseases (Fig. 2).

SIRT3 and epilepsy (EP)

Simply put, EP is a disease caused by excessive discharge 
of central nervous system neurons (Marchi et al. 2014). 
The etiology of the disease is very complex, and EP is 
generally divided into the following four categories: idio-
pathic, symptomatic, provoked, and cryptogenic (Shorvon 
2011). Effective treatment measures depend on the cause 
of EP.

The expression of SIRT3 is reduced in a chronic EP 
disease model (Gano et al. 2018), which suggests that 
SIRT3 may become a target protein for the treatment 
of EP. SIRT3 can promote the activity of FOXO3a, 
MnSOD, and IDH2, and can also increase the expres-
sion of uncoupling protein 2 (UCP2) in neurons, which 
all contribute to the inhibition of neuronal OS damage 
(Cho et al. 2019; Gano et al. 2018; Hasan-Olive et al. 
2019). CypD is deacetylated by SIRT3 and its activ-
ity is inhibited, which limits the opening of mitochon-
drial membrane permeability transition pore (mPTP) 
and inhibits neuronal apoptosis, thereby protecting 
neurons from excitotoxicity (Cheng et al. 2016). The 
promotion of autophagy by SIRT3 during seizures 
also reduces brain damage, but it has not been deter-
mined whether the relevant mechanism involves the 
LKB1–AMPK–mTOR pathway, which is closely linked 
to autophagy (Wang et al. 2018; Wu et al. 2020a, b, c). 
The deacetylation of NDUFA9 by SIRT3 can promote 
the activity of complex I, thereby inhibiting mitochon-
drial dysfunction and promoting ATP production (Ahn 
et al. 2008; Gano et al. 2018). OS damage and abnor-
mal energy metabolism are important mechanisms lead-
ing to the occurrence and deterioration of EP (Pauletti 
et al. 2019; Pearson-Smith and Patel 2017). Therefore, 
SIRT3 agonists may become effective drugs for the 
treatment of EP. In addition, inf lammation seriously 
affects the occurrence and development of EP (Vezzani 
et al. 2011), and SIRT3 can also effectively inhibit the 
inflammatory response in a variety of ways (Almalki 
et al. 2021; Dikalova et al. 2020; Huang et al. 2019; 
Palomer et al. 2020; Song et al. 2019). However, the 
relationship between the three and related mechanisms 
has not yet been fully clarified.

SIRT3 and ischemic stroke

When the cerebral blood vessels are ruptured or blocked, 
blood cannot flow into the brain in time, so the brain tissue 
is damaged to different degrees, which is known as a stroke. 
Depending on the cause, stroke is divided into ischemic 
stroke and hemorrhagic stroke (Broderick et al. 2017). The 
incidence of the former is greater than that of the latter. 
Regardless of the type of stroke, if patients are not treated 
in time, they often suffer from serious sequelae. At present, 
due to the rapid progression of the disease, the prevention of 
stroke occupies a more important position than the treatment 
of stroke. However, when patients are not treated in time, 
powerful and effective drugs can alleviate the brain damage 
caused by stroke, which provides great help to improve the 
patients' quality of life.

Several investigators have reported that SIRT3 expres-
sion in mouse hippocampal neurons is decreased after acute 
ischemic stroke and that acute ischemia-induced neuronal 
damage is attenuated under conditions of SIRT3 overex-
pression (Fan et al. 2021). This suggests that SIRT3 may 
contribute to the treatment of nerve damage caused by an 
ischemic stroke. As previously mentioned, SIRT3 promotes 
the phosphorylation level of AMPK and then inhibits the 
phosphorylation level of mTOR to promote autophagy. This 
mechanism also plays a protective role against ischemia-
induced brain injury (Dai et al. 2017; Li et al. 2021a, b). 
However, it remains unknown whether this effect involves 
the activation of LKB1 by SIRT3 in this disease condition. 
Activated AMPK can also activate SIRT3 by activating 
PGC-1α, which in turn forms a positive feedback path-
way (Gao et al. 2018). The function of SIRT3 to activate 
FOXO3a and MnSOD to inhibit OS can also alleviate the 
damage caused by cerebral ischemia (Wang et al. 2020a, 
b; Wang et al. 2015; Yin et al. 2015). Glial scars produced 
after a cerebral ischemic injury can inhibit neuronal repair 
(Bao et al. 2012; Barres 2008; Jeong et al. 2012; Ridet et al. 
1997). Inhibition of Notch1 expression by SIRT3 inhibits 
astrocyte activation, which in turn inhibits glial scar forma-
tion (Yang et al. 2017). However, excessive inhibition of 
the Notch signaling pathway may inhibit SIRT3 (Guo et al. 
2020). Therefore, it is very important to adjust the balance 
between SIRT3 and Notch1. One of the sequelae of cerebral 
ischemic injury is cognitive dysfunction (CD). SIRT3 can 
also promote the phosphorylation level of advanced protein 
kinase B (AKT) and extracellular signal-regulated kinases 
(ERK) and the expression of vascular endothelial growth 
factor (VEGF), thereby promoting neurogenesis and angio-
genesis in the injured area. In addition, phosphorylated 
AKT and ERK can also promote the expression of VEGF 
(Yang et al. 2018a, b). SIRT3 can also promote the transfer 
of microglia to cerebral ischemic areas by promoting the 
expression of fractalkine receptor (CX3CR1) (Cao et al. 
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2019). However, due to different disease conditions, micro-
glia can both relieve ischemic damage and promote ischemic 
damage (Block et al. 2007; Fu et al. 2014; Nakajima and 
Kohsaka 2004). Therefore, the role of SIRT3 in this aspect 
needs to be further explored.

From the perspective of prevention, SIRT3 has an inhibi-
tory effect on neutrophil extracellular traps (NETs) and 
plasma tissue factor (TF). This can inhibit the formation of 
thrombi, thereby reducing the incidence of ischemic brain 
injury (Gaul et al. 2018).

Fig. 2  SIRT3 and acute neuro-
degenerative diseases. In the 
vast majority of cases, SIRT3 
has a positive effect on the treat-
ment of acute neurodegenerative 
diseases. Inhibition of apoptosis 
and OS, as well as promotion of 
energy production, autophagy, 
and stabilization of mitochon-
drial dynamics by SIRT3 can 
also inhibit the progression 
of acute neurodegenerative 
diseases. SIRT3 can also allevi-
ate the clinical manifestations 
of the diseases by inhibiting 
neuroinflammation, glial Scars 
and thrombosis, promoting 
angiogenesis and nneurogen-
esis. However, it is worth noting 
that deacetylation of CerS1, 
CerS2, and CerS6 by SIRT3 
accelerates the accumulation of 
ceramides, which induces OS 
that further exacerbates cerebral 
I/R injury. The green proteins 
represent the substrates of 
SIRT3. Brown circles represent 
acetyl group
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SIRT3 and hemorrhagic stroke

Intracerebral hemorrhage (ICH) and subarachnoid hemor-
rhage (SAH) are the two most representative subtypes of 
hemorrhagic stroke (Luo et al. 2019; Zhao et al. 2018a, b). 
The former is characterized by the accumulation of blood 
in the brain tissue (Zhao et al. 2018a, b), which accounts 
for 10%–20% of all stroke events worldwide (Qureshi et al. 
2009; Sporns et al. 2021; van Asch et al. 2010); the latter is 
characterized by the accumulation of blood in the subarach-
noid space (Zhao et al. 2018a, b) and accounts for 5%–15% 
of all strokes (Liao et al. 2020).

Inhibition of ROS production by SIRT3 inhibits both OS 
injury and the expression of NOD-like receptor family pyrin 
domain containing 3 (NLRP3) inflammasome and interleu-
kin-1beta (IL-1β) and the resulting neuroinflammation (Ma 
et al. 2014; Zheng et al. 2018; Zhou et al. 2010). Inhibition 
of neuroinflammation by SIRT3 can also be achieved by 
activating NRF2. NRF2 promotes the expression of heme 
oxygenase-1 (HO-1), which in turn inhibits the production 
of inflammatory factors such as tumor necrosis factor-α 
(TNF-α) and IL-1β (Dai et al. 2022). Furthermore, acti-
vation of the NRF1–TFAM pathway by SIRT3 promotes 
mitochondrial biogenesis, which maintains stable mitochon-
drial dynamics (Zheng et al. 2018). The above effects can 
effectively improve secondary brain injury (SBI) caused by 
ICH (Zheng et al. 2018).

Similar to the impact of SIRT3 on ICH, SIRT3 also has 
a protective effect on SAH-induced brain damage (Huang 
et al. 2016). Some researchers have found that SIRT3 in 
SAH model mice is inhibited, and the ability of neurons 
to resist OS is reduced (Zhang et al. 2020a, b, c, d). After 
SIRT3 is activated, it can be found that the degree of neu-
ronal OS damage and the level of neuronal apoptosis are 
reduced (Wu et al. 2020a, b, c; Yang et al. 2018a, b; Zhang 
et al. 2019). SIRT3 can also promote the expression of 
Mfn1 and Mfn2 by activating AMPK, thereby promoting 
mitochondrial fusion and maintaining the normal mito-
chondrial morphology (Wu et al. 2020a, b, c). This plays 
an important role in maintaining the normal function of 
mitochondria.

SIRT3 and cerebral ischemia–reperfusion injury

As mentioned above, cerebral ischemia can cause serious 
damage, and the degree of damage is closely related to the 
time of ischemia (Carden and Granger 2000; Kloner et al. 
1974; Raedschelders et al. 2012). Therefore, timely blood 
perfusion to the ischemic site can ensure the survival of the 
ischemic tissue (Wu et al. 2021). However, the damage to 
ischemic tissues undergoing reperfusion therapy in some 
experiments was abnormally enhanced (Hearse et al. 1973; 
Reimer et al. 1977). This is a kind of OS damage caused by 

the entry of active oxygen into the dredged parts (Granger 
and Kvietys 2015). Therefore, the elimination of active oxy-
gen has become an effective means of treating this kind of 
disease.

Increasing the content and activity of SIRT3 can inhibit 
cerebral I/R injury (Gao et al. 2020; Liu et al. 2020a, b, c; 
Su et al. 2017). The activation of MnSOD by SIRT3 can 
also alleviate the OS damage of the brain tissue caused by 
I/R (Liu et al. 2021a, b). SIRT3 can inhibit the phospho-
rylation level and activity of β-catenin, thereby inhibiting 
excessive mitochondrial fission and maintaining the sta-
bility of mitochondrial dynamics (Zhao et al. 2018a, b). 
SIRT3 can also promote the deacetylation level of COX-1, 
which can improve OS after I/R (Tu et al. 2019). In addi-
tion, the promotion of autophagy by SIRT3 mediated by 
the AMPK–mTOR pathway can also inhibit I/R injury, 
but this function is achieved by removing damaged nerve 
cells rather than by inhibiting OS (Chen et al. 2021a, b). 
However, an experiment conducted in 2016 showed that 
SIRT3 is activated by a currently unknown mechanism 
and increases the deacetylation level and activity of CerS1, 
CerS2, and CerS6 after cerebral ischemia–reperfusion. 
This leads to the accumulation of ceramides. High levels 
of ceramides can lead to OS damage (Novgorodov et al. 
2016). This is completely contrary to the previous conclu-
sion, which suggests that the protective effect of SIRT3 
on the nervous system may depend on a state of balance. 
Once this balance is broken, SIRT3 exerts a negative effect. 
The specific reasons are expected to be verified in future 
experiments.

SIRT3 and CD caused 
by non‑neurodegenerative diseases

Almost all neurodegenerative diseases can cause CD, espe-
cially PD and AD. However, some nonneurological diseases 
and clinical operations can also cause CD. There are some 
differences between the two. Therefore, it is necessary to 
explain this part separately.

Postoperative delirium and cognitive dysfunction 
(POCD) is a common complication that occurs in 
elderly patients after surgery (Deiner and Silverstein 
2009), which can lead to an increase in postopera-
tive mortality. This phenomenon is related to the OS 
response of mitochondria (Netto et al. 2018). SIRT3 
promotes the inhibition of OS by activating MnSOD, 
and the consequent inhibition of neuroinflammation can 
alleviate POCD (Bajwa et al. 2019; Liu et al. 2021a, 
b; Ye et al. 2019). In addition, the inhibitory effect of 
SIRT3 on neuroinflammation plays an important role in 
alleviating sleep-disordered breathing (SDB)-induced 
CD (Lin et  al. 2020). Through acetylome analysis, 
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SIRT3's deacetylation of brain mitochondrial proteins 
can also alleviate CD induced by metabolic syndrome 
(MetS) (Tyagi et  al. 2018). Infection can also cause 
CD. Deacetylation of CypD by SIRT3 attenuates sepsis-
associated encephalopathy (SAE)–induced CD through 
the inhibition of apoptosis and neuroinf lammation 
(Sun et al. 2017). SIRT3 can inhibit the decrease in the 
expression of antioxidant enzymes MnSOD, CAT, and 
Gpx caused by human immunodeficiency virus (HIV) 
transactivator of transcription (TAT), thereby inhibiting 
OS-induced microglia senescence, and improving HIV-
associated neurocognitive disorders (HAND) (Thanga-
raj et al. 2021). Thus, SIRT3 improves CD caused by 
different reasons (Fig. 3). The modulation of SIRT3 will 
help to improve the quality of life of related patients.

SIRT3 and rehabilitation training

Neurological diseases are often incurable and irreversible. 
Therefore, it is critical to alleviate the progression of related 
diseases and complications through some treatment. This 
can greatly improve the patient's quality of life. Several types 
of rehabilitation training mediated by SIRT3 are briefly 
introduced here.

Effects of physical activity on SIRT3 and related 
diseases

A sedentary lifestyle is an important risk factor for various 
diseases, such as cardiovascular disease, diabetes, and neu-
rological diseases (Korta et al. 2019). Reasonable exercise 
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Fig. 3  SIRT3 and CD caused by non-neurodegenerative diseases. 
SIRT3 can alleviate CD caused by non-neurodegenerative diseases. 
This is achieved through inhibition of neuroinflammation, OS and 
apoptosis. SIRT3 can inhibit the activation of microglia and thus 

inhibit neuroinflammation. However, the mechanism of this activa-
tion has not yet been elucidated. The green proteins represent the sub-
strates of SIRT3. Brown circles represent acetyl group
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can improve the prognosis of most diseases and promote 
human health (Koltai et al. 2018; Vargas-Ortiz et al. 2015). 
A comparative study conducted in 2015 compared the cogni-
tive function of athletes who exercised regularly with that of 
nonathletes who were sedentary and found that athletes had 
better memory and reaction times (Zhao et al. 2016). The 
results of another similar study were also reported in 2019. 
The results of the experiment showed that the average cog-
nitive ability of rugby players is stronger than that of low-
intensity groups of the same age. After comparing the blood 
samples of the above two groups of people, the expression 
levels of SIRT3, CAT, and SOD1 in the low-activity group 
were shown to be significantly lower than those in the rugby 
players. This suggests that the beneficial effects of exercise 
on neurological diseases may be related to the anti-OS effect 
of SIRT3 (Corpas et al. 2019).

Some researchers have used a treadmill to perform exer-
cise training experiments on AD model mice. The results 
showed that compared with the non-exercise group, the 
symptoms of the mice after 20 weeks of standard train-
ing were relieved; additionally, the content of SIRT3 was 
increased and the acetylation level of MnSOD and OGG1 
were decreased in the hippocampus. SIRT3 activates 
MnSOD and OGG1 to inhibit OS and repair DNA damage, 
which is an important mechanism by which physical exercise 
alleviates AD symptoms (Bo et al. 2014).

SIRT3 may also mediate the remission of physical exer-
cise in neurological disorders caused by severe metabolic 
diseases. After performing aerobic interval training (AIT) 
on mice, we found that appropriate activity can effectively 
improve CD caused by obesity (Shi et al. 2018). This is not 
only related to the inhibition of OS by SIRT3 but also the 
inhibition of obesity by SIRT3. Aerobic training (AT) pro-
motes the expression of SIRT3, which activates PGC-1α and 
key enzymes in the metabolism of substances. Therefore, the 
process of fatty acid oxidation and OXPHOS is accelerated, 
and the fat mass can be effectively reduced (Karvinen et al. 
2016; Vargas-Ortiz et al. 2018).

Effects of caloric restriction (CR) on SIRT3 
and related diseases

CR is a nutritional intervention that reduces energy intake 
by 25%–30% while maintaining normal energy require-
ments (Pignatti et al. 2020). Numerous studies have dem-
onstrated that CR can suppress the clinical manifestations 
of aging-related diseases and prolong lifespan (Barger et al. 
2015; Kobayashi et al. 2017; Qiu et al. 2010; Someya et al. 
2010; Wegman et al. 2015; Yu et al. 2018). During CR, the 
low energy intake favors a catabolic state; a large amount 
of acetyl-CoA is produced from the fatty acid metabolism 
process; mitochondrial proteins are in a hyperacetylation 
state. Therefore, to balance the levels of acetylation and 

deacetylation in cells, the activities and expression levels 
of various deacetylases, including SIRT3, are increased 
(Silaghi et al. 2021).

Although this is a compensatory change, the body does 
not suffer the damage caused by energy deficiency because 
the regulation of downstream proteins by the compensatory 
activation of deacetylases can fully compensate for this part 
of energy loss (Liu et al. 2014; North and Sinclair 2007; 
Shimazu et al. 2010). Conversely, the compensatory activa-
tion of deacetylases additionally gives the body a variety of 
protective measures. Intermittent fasting (IF)–induced ele-
vation of SIRT3 protects neurons from excitotoxic damage 
in animal models of EP and AD. The increased activity of 
MnSOD after being deacetylated by SIRT3 inhibits the accu-
mulation of ROS in cells. In this case, GABAergic tone is 
enhanced, thereby protecting neurons (Liu et al. 2019). The 
inhibition of neuroinflammation by IF also effectively pro-
tects the normal function of the brain tissue after ICH (Dai 
et al. 2022). In addition, studies on SIRT3 knockout mice 
have shown that they are more susceptible to excitotoxicity. 
At this time, mitochondria in brain tissue are more prone to 
mitochondrial permeability transition (MPT), and CypD is 
in a hyperacetylated state (Cheng et al. 2016). Therefore, 
deacetylation of CypD by the compensatory activation of 
SIRT3 under CR conditions inhibits mitochondrial perme-
ability, thereby promoting mitochondrial calcium reten-
tion, which in turn inhibits neurological diseases caused by 
excitotoxic substances and calcium overload (Amigo et al. 
2017). In addition to this, a high-fat–based and low-carbo-
hydrate–based ketogenic diet (KD) contributes to the treat-
ment and prognosis of refractory EP through compensatory 
mechanisms (Hasan-Olive et al. 2019).

In addition, although the subjects in some studies did not 
have neurological diseases, exercise and CR were shown to 
inhibit OS (Andrianova et al. 2020; Donniacuo et al. 2019; 
Jang et al. 2012; Jiang et al. 2014; Liang et al. 2013; Shi 
et al. 2005; Tsukiyama et al. 2017), inhibit inflammation 
(Traba et al. 2017, 2015), and promote autophagy (Li et al. 
2018) through SIRT3. This is expected to provide theoreti-
cal support for future research on the relationship between 
rehabilitation training, SIRT3, and neurological diseases. 
Moreover, the aforementioned exercise methods and diet 
management are more or less different in different studies. 
Therefore, determining an appropriate range and selecting 
appropriate rehabilitation methods for different neurological 
diseases may be the focus of future research.

Conclusion

To date, the morbidity and mortality of various neurological 
diseases are high, which is a global public health problem. 
However, because the pathogenesis of neurological diseases 
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has not been fully clarified, various treatment measures have 
not had good therapeutic effects. Hence, a comprehensive 
understanding of neurological disease pathogeneses is nec-
essary. In recent years, numerous experiments have shown 
that post-translational modifications are inseparable from 
the pathogenesis of neurological diseases. As a deacetylase, 
SIRT3 actively regulates the occurrence and development 
of neurological diseases through the regulation of down-
stream proteins. SIRT3 mainly inhibits various types of neu-
rological diseases. This is achieved through the regulation 
of physiological activities such as OS, apoptosis, mitochon-
drial dynamics, and material metabolism by SIRT3. How-
ever, only one report has pointed to the deleterious effects 
of SIRT3 in nonneoplastic neurological diseases (Novgoro-
dov et al. 2016). The accumulation of ceramides induced by 
SIRT3 is an important cause of cerebral ischemia–reperfu-
sion injury, which is achieved through the activation of dea-
cetylation of CerS1, CerS2, and CerS6 by SIRT3. In addi-
tion, the negative effects of SIRT3 on neurological diseases 
are mainly manifested in tumors because SIRT3 is ultimately 
responsible for the survival of nervous system cells through 
various forms of regulation. However, this kind of regulation 
acts on tumor cells to promote the proliferation and migra-
tion of cancer. For example, SIRT3 can promote the survival 
and invasion of glioma by inhibiting OS. Thus, for patients 
who have multiple diseases at the same time, establishing a 
clinical treatment method that correctly controls the dosage 
of SIRT3 activators and inhibitors to ensure an appropriate 
effect of SIRT3 remains challenging.
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