Skip to main content

Advertisement

Log in

Effects of Capparis Spinosa extract on the neuropathic pain induced by chronic constriction injury in rats

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Neuropathic pain, a chronic pain condition, puts a considerable burden on its patients. However, different pathophysiological characteristics of neuropathic pain make the current treatment medications insufficient in controlling pain. Identifying treatment effects with Capparis Spinosa hydro-alcoholic extract in an animal model of neuropathic pain. Liquid chromatography-mass spectrometry (LC-MS) was used to identify the components of C. Spinosa hydro-alcoholic extract. To establish a neuropathic pain model, adult male Wistar rats underwent chronic constriction injury (CCI) surgery in their left sciatic nerve. Male wistar rats were divided into four groups: CCI, Sham, CCI with C. Spinosa (100 mg/kg), and CCI with C. Spinosa (200 mg/kg). Rats were treated with a hydro-alcoholic extract from aerial parts of the C. Spinosa (orally, daily) starting from CCI induction until 14 days after. Behavioral tests (mechanical allodynia, cold allodynia, and thermal hyperalgesia) and biochemical tests (IL-1β, TNF-α, MDA, and total thiol) were taken from animals. The LC-MS analysis identified 22 compounds in C. Spinosa extract with the predominance of flavonoids. CCI produced a significant (P < 0.001) increase allodynia (mechanical and cold) and thermal hyperalgesia in comparison with sham group. Oral administration of C. Spinosa significantly (P < 0.05) ameliorated CCI-induced nociceptive pain compared with CCI group. Spinal cord specimens of CCI rats had significant (P < 0.05) elevated inflammation status (↑IL-1β, ↑TNF-α), and significant (P < 0.05) decreased antioxidative status (↑MDA, ↓total thiol) in comparison with the sham group. These changes were reversed following C. Spinosa treatment. C. Spinosa alleviates neuropathic pain by exhibiting antioxidative and anti-inflammatory effects. The responsible components for these effects are possibly the flavonoid compounds in C. Spinosa extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets of the current study are available from the corresponding author on request.

Code availability

Not applicable.

References

  • Afzal S, Afzal N, Awan MR, Khan TS, Khanum AG, Tariq S (2009) Ethno-botanical studies from Northern Pakistan. J Ayub Med Coll Abbottabad: JAMC 21:52–57

    PubMed  Google Scholar 

  • Al-Numair KS, Chandramohan G, Veeramani C, Alsaif MAJRR (2015) Ameliorative effect of kaempferol, a flavonoid, on oxidative stress in streptozotocin-induced. Diabet rats 20:198–209

    CAS  Google Scholar 

  • Ali DW, Salter MWJCoin, (2001) NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr Opin Neurobiol 11:336–342

    Article  CAS  PubMed  Google Scholar 

  • Andrade P, Hoogland G, Del Rosario JS, Steinbusch HW, Visser-Vandewalle V, Daemen MA (2014) Tumor necrosis factor‐α inhibitors alleviation of experimentally induced neuropathic pain is associated with modulation of TNF receptor expression. J Neurosci Res 92:1490–1498

    Article  CAS  PubMed  Google Scholar 

  • Attal N, Lanteri-Minet M, Laurent B, Fermanian J, Bouhassira D (2011) The specific disease burden of neuropathic pain: results of a French nationwide survey. Pain 152:2836–2843. https://doi.org/10.1016/j.pain.2011.09.014

    Article  PubMed  Google Scholar 

  • Basbaum AI, Bautista DM, Scherrer G, Julius DJC (2009) Cellular and molecular mechanisms of pain. Cell 139:267–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107. https://doi.org/10.1016/0304-3959(88)90209-6

    Article  PubMed  Google Scholar 

  • Bhatti JS, Bhatti GK, Reddy PH (2017) Mitochondrial dysfunction and oxidative stress in metabolic disorders — A step towards mitochondria based therapeutic strategies. Biochim Biophys Acta - Mol Basis Dis 1863:1066–1077. https://doi.org/10.1016/j.bbadis.2016.11.010

    Article  CAS  PubMed  Google Scholar 

  • Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 89:847–885

    Article  CAS  PubMed  Google Scholar 

  • Chaplan SR et al (2003) Neuronal hyperpolarization-activated pacemaker channels drive neuropathic pain. J Neurosci 23:1169–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi R et al (2011) Effects of ferulic acid on diabetic nephropathy in a rat model of type 2 diabetes Experimental & Mol Med 43:676–683. https://doi.org/10.3858/emm.2011.43.12.078

    Article  CAS  Google Scholar 

  • Colloca L et al (2017) Neuropathic pain. Nat Rev Dis Primers 3:17002–17002. https://doi.org/10.1038/nrdp.2017.2

    Article  PubMed  PubMed Central  Google Scholar 

  • Dekanski D, Ristić S, Radonjić NV, Petronijević ND, Dekanski A, Mitrović DM (2011) Olive leaf extract modulates cold restraint stress-induced oxidative changes in rat liver. J Serbian Chem Soc 76:1207–1218

    Article  CAS  Google Scholar 

  • Dib-Hajj SD, Cummins TR, Black JA, Waxman SGJAron (2010) Sodium channels in normal and pathological pain 33:325–347

    CAS  Google Scholar 

  • Eddouks M, Lemhadri A, Michel JB (2005) Hypolipidemic activity of aqueous extract of Capparis spinosa L. in normal and diabetic rats. J Ethnopharmacol 98:345–350. https://doi.org/10.1016/j.jep.2005.01.053

    Article  CAS  PubMed  Google Scholar 

  • El Azhary K et al (2017) Anti-inflammatory potential of Capparis spinosa L. in vivo in mice through inhibition of cell infiltration and cytokine gene expression. BMC Complement Altern Med 17:81. https://doi.org/10.1186/s12906-017-1569-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnerup NB et al (2016) Neuropathic pain: an updated grading system for research and clinical practice. Pain 157:1599–1606. https://doi.org/10.1097/j.pain.0000000000000492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finnerup NB, Kuner R, Jensen TS (2021) Neuropathic pain: from mechanisms to treatment. Physiol Rev 101(1):259–301

  • Forouzanfar F, Hosseinzadeh H, Khorrami MB, Asgharzade S, Rakhshandeh HJC, Targets ND-D (2019) Attenuating effect of Portulaca oleracea extract on chronic constriction injury induced neuropathic pain in rats: an evidence of anti-oxidative and anti-inflammatory effects. CNS Neurol Disord Drug Targets 18:342–349

    Article  CAS  PubMed  Google Scholar 

  • Gull T, Sultana B, Bhatti IA, Jamil A (2015) Antibacterial potential of Capparis spinosa and Capparis decidua extracts. Int J Agric Biol 17(4)

  • Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8:2003–2014. https://doi.org/10.3969/j.issn.1673-5374.2013.21.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamuti A, Li J, Zhou F, Aipire A, Ma J, Yang J, Li J (2017) Capparis spinosa fruit ethanol extracts exert different effects on the maturation of dendritic cells. Molecules 22:97

    Article  PubMed Central  Google Scholar 

  • Hossain MB, Rai DK, Brunton NP, Martin-Diana AB, Barry-Ryan C (2010) Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. J Agric Food Chem 58:10576–10581

    Article  CAS  PubMed  Google Scholar 

  • Inocencio C, Rivera D, Alcaraz F, Tomás-Barberán FA (2000) Flavonoid content of commercial capers (Capparis spinosa, C. sicula and C. orientalis) produced in mediterranean countries. Eur Food Res Technol 212:70–74. https://doi.org/10.1007/s002170000220

    Article  CAS  Google Scholar 

  • Jalali MT, Mohammadtaghvaei N, Larky DA (2016) Investigating the effects of Capparis Spinosa on hepatic gluconeogenesis and lipid content in streptozotocin-induced diabetic rats. Biomed Pharmacother 84:1243–1248. https://doi.org/10.1016/j.biopha.2016.10.061

    Article  CAS  PubMed  Google Scholar 

  • Jung UJ, Lee M-K, Park YB, Jeon S-M, Choi M-S (2006) Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J Pharmacol Exp Ther 318:476–483

    Article  CAS  PubMed  Google Scholar 

  • Kamalakkannan N, Prince P (2006) Rutin improves the antioxidant status in streptozotocin-induced diabetic rat tissues. Mol Cell Biochem 293:211–219. https://doi.org/10.1007/s11010-006-9244-1

    Article  CAS  PubMed  Google Scholar 

  • Karthikesan K, Pari L, Menon VP (2010) Protective effect of tetrahydrocurcumin and chlorogenic acid against streptozotocin–nicotinamide generated oxidative stress induced diabetes. J Funct Foods 2:134–142. https://doi.org/10.1016/j.jff.2010.04.001

    Article  CAS  Google Scholar 

  • Kazemian M, Abad M, Haeri MR, Ebrahimi M, Heidari R (2015) Anti-diabetic effect of Capparis spinosa L. root extract in diabetic rats. Avicenna J Phytomed 5:325–332

    PubMed  PubMed Central  Google Scholar 

  • Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung JM (2004) Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain 111:116–124. https://doi.org/10.1016/j.pain.2004.06.008

    Article  CAS  PubMed  Google Scholar 

  • Kukkar A, Singh N, Jaggi AS (2013) Neuropathic pain-attenuating potential of aliskiren in chronic constriction injury model in rats. J Renin-Angiotensin-Aldosterone Syst 14:116–123

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Sharma A (2010) Neutrophils: Cinderella of innate immune system. Int Immunopharmacol 10:1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Latremoliere A, Woolf CJ (2009) Central sensitization: a generator of pain hypersensitivity by central neural plasticity. J Pain 10:895–926

  • Lemhadri A, Eddouks M, Sulpice T, Burcelin R (2007) Anti-hyperglycaemic and anti-obesity effects of Capparis spinosa and Chamaemelum nobile Aqueous Extracts in HFD mice. Am J Pharmacol Toxicol 2:106–110

    Article  Google Scholar 

  • Li Q-Y, Xu H-Y, Yang H-J (2017) Effect of proinflammatory factors TNF-α, IL-1β, IL-6 on neuropathic pain. Zhongguo Zhong Yao Za Zhi 42:3709–3712

  • Ma C et al (2003) Similar electrophysiological changes in axotomized and neighboring intact dorsal root ganglion neurons ganglion neurons. J Neurophysiol 89:1588–1602

    Article  PubMed  Google Scholar 

  • Mahboubi M, Mahboubi A (2014) Antimicrobial activity of as its usages in traditional medicine. Herba Pol 60:39–48. https://doi.org/10.2478/hepo-2014-0004

    Article  Google Scholar 

  • Martucci MEP, De Vos RC, Carollo CA, Gobbo-Neto L (2014) Metabolomics as a potential chemotaxonomical tool: application in the genus Vernonia Schreb. PLoS One 9:e93149

    Article  PubMed  PubMed Central  Google Scholar 

  • Matthäus B, Özcan M (2002) Glucosinolate composition of young shoots and flower buds of capers (Capparis species) growing wild in Turkey. J Agric Food Chem 50:7323–7325

    Article  PubMed  Google Scholar 

  • Moalem G, Xu K, Yu L (2004) T lymphocytes play a role in neuropathic pain following peripheral nerve injury in rats. Neuroscience 129:767–777

    Article  CAS  PubMed  Google Scholar 

  • Nabavi SF, Maggi F, Daglia M, Habtemariam S, Rastrelli L, Nabavi SM (2016) Pharmacological effects of Capparis spinosa L. Phytother Res 30:1733–1744

    Article  PubMed  Google Scholar 

  • Nathan CF (1987) Secret Prod macrophages. J Clin Investig 79:319–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer MT, Weaver CT (2010) Autoimmunity: increasing suspects in the CD4 + T cell lineup. Nat Immunol 11:36–40

    Article  CAS  PubMed  Google Scholar 

  • Panico AM, Cardile V, Garufi F, Puglia C, Bonina F, Ronsisvalle G (2005) Protective effect of Capparis spinosa on chondrocytes. Life Sci 77:2479–2488. https://doi.org/10.1016/j.lfs.2004.12.051

    Article  CAS  PubMed  Google Scholar 

  • Patergnani S, Bouhamida E, Leo S, Pinton P, Rimessi A (2021) Mitochondrial oxidative stress and “Mito-Inflammation": Actors in the diseases. Biomedicines 9:216. https://doi.org/10.3390/biomedicines9020216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Picca A, Calvani R, Coelho-Junior HJ, Landi F, Bernabei R, Marzetti E (2020) Mitochondrial dysfunction, oxidative stress, and neuroinflammation: intertwined roads to neurodegeneration. Antioxidants (Basel) 9:647. https://doi.org/10.3390/antiox9080647

    Article  CAS  Google Scholar 

  • Qu C et al (2013) Differential accumulation of phenolic compounds and expression of related genes in black-and yellow-seeded Brassica napus. J Exp Bot 64:2885–2898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghavendra V, Tanga F, Rutkowski MD, De Leo JA (2003) Anti-hyperalgesic and morphine-sparing actions of propentofylline following peripheral nerve injury in rats: mechanistic implications of spinal glia and proinflammatory cytokines. Pain 104:655–664

    Article  CAS  PubMed  Google Scholar 

  • Rajarajeswari N, Pari L (2011) Antioxidant role of coumarin on streptozotocin–nicotinamide-induced type 2 diabetic rats. J Biochem Mol Toxicol 25:355–361. https://doi.org/10.1002/jbt.20395

    Article  CAS  PubMed  Google Scholar 

  • Rakhshandeh H, Asgharzade S, Khorrami MB, Forouzanfar F (2021a) Protective effect of Capparis spinosa extract against focal cerebral ischemia-reperfusion injury in rats. Cent Nerv Syst Agents Med Chem 21:148–153

    Article  CAS  PubMed  Google Scholar 

  • Rakhshandeh H, Ghorbanzadeh A, Negah SS, Akaberi M, Rashidi R, Forouzanfar F (2021b) Pain-relieving effects of Lawsonia inermis on neuropathic pain induced by chronic constriction injury. Metab Brain Dis 36:1709–1716

    Article  CAS  PubMed  Google Scholar 

  • Rakhshandeh H, Rashidi R, Vahedi MM, Khorrami MB, Abbassian H, Forouzanfar F (2021c) Hypnotic activity of Capparis spinosa hydro-alcoholic extract in mice Recent patents on food. Nutr Agric 12:58–62

    CAS  Google Scholar 

  • Rodrigo M, Lazaro M, Alvarruiz A, Giner V (1992) Composition of capers (Capparis spinosa): influence of cultivar size and harvest date. J Food Sci 57:1152–1154

    Article  CAS  Google Scholar 

  • Rossato MF, Velloso NA, de Oliveira Ferreira AP, de Mello CF, Ferreira J (2010) Spinal levels of nonprotein thiols are related to nociception in mice. J Pain 11:545–554

    Article  CAS  PubMed  Google Scholar 

  • Sandkuhler J (2009) Models and mechanisms of hyperalgesia and allodynia. Physiol Rev 89:707–758

    Article  PubMed  Google Scholar 

  • Schroeter H, Boyd C, Spencer JP, Williams RJ, Cadenas E, Rice-Evans C (2002) MAPK Signal neurodegeneration: influences flavonoids nitric oxide. Neurobiol Aging 23:861–880

    Article  CAS  PubMed  Google Scholar 

  • Sharaf M, El-Ansari M, Saleh NAM (2000) Quercetin triglycoside from Capparis spinosa. Fitoterapia 71:46–49

    Article  CAS  PubMed  Google Scholar 

  • Sharaf M, El-Ansari MA, Saleh NA (1997) Flavonoids of four Cleome and three Capparis species. Biochem Syst Ecol 25:161–166

    Article  CAS  Google Scholar 

  • Siau C, Bennett GJ (2006) Dysregulation of cellular calcium homeostasis in chemotherapy-evoked painful peripheral neuropathy. Anesth Analg 102:1485–1490. https://doi.org/10.1213/01.ane.0000204318.35194.ed

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sojka M, Guyot S, Kołodziejczyk K, Król B, Baron A (2009) Composition and properties of purified phenolics preparations obtained from an extract of industrial blackcurrant (Ribes nigrum L.) pomace. J Hortic Sci Biotechnol 84:100–106

    Article  Google Scholar 

  • Tlili N, Elfalleh W, Saadaoui E, Khaldi A, Triki S, Nasri N (2011) The caper (Capparis L.): ethnopharmacology, phytochemical and pharmacological properties. Fitoterapia 82:93–101. https://doi.org/10.1016/j.fitote.2010.09.006

    Article  CAS  PubMed  Google Scholar 

  • Tlili N, Feriani A, Saadoui E, Nasri N, Khaldi A (2017) Capparis spinosa leaves extract: source of bioantioxidants with nephroprotective and hepatoprotective effects. Biomed Pharmacother 87:171–179

    Article  CAS  PubMed  Google Scholar 

  • Tlili N, Khaldi A, Triki S, Munné-Bosch S (2010) Phenolic compounds and vitamin antioxidants of caper (Capparis spinosa)   Plant Foods Hum Nutr 65:260–265. https://doi.org/10.1007/s11130-010-0180-6

    Article  CAS  PubMed  Google Scholar 

  • Tlili N, Khaldi A, Triki S, Munné-Bosch S (2010) Phenolic compounds and vitamin antioxidants of caper (Capparis spinosa). Plant Foods Hum Nutr 65:260–265

    Article  CAS  PubMed  Google Scholar 

  • Vanderwall AG, Milligan ED (2019) Cytokines in pain: harnessing endogenous anti-inflammatory signaling for improved pain management. Front Immunol 10:3009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Hehn CA, Baron R, Woolf CJ (2012) Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 73:638–652

    Article  Google Scholar 

  • Wang GG, Lu XH, Li W, Zhao X, Zhang C (2011) Protective effects of luteolin on diabetic nephropathy in STZ-induced diabetic rats. Evid Based Complement Altern Med 2011:323171. https://doi.org/10.1155/2011/323171

  • Williams RJ, Spencer JP, Rice-Evans C (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36:838–849

    Article  CAS  PubMed  Google Scholar 

  • Wu G et al (2002) Degeneration of myelinated efferent fibers induces spontaneous activity in uninjured C-fiber afferents. J Neurosci 22:7746–7753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang T, Wang C-h, Chou G-x, Wu T, Cheng X-m, Wang Z-t (2010) New alkaloids from Capparis spinosa: Structure and X-ray crystallographic analysis. Food Chem 123:705–710

    Article  CAS  Google Scholar 

  • Zeggwagh N, Michel J, Eddouks M (2007) Cardiovascular effect of Capparis spinosa aqueous extract part VI: in vitro vasorelaxant Effect. Am J Pharmacol Toxicol 2:135–139

    Article  Google Scholar 

  • Zhang H, Ma ZF (2018) Phytochemical and pharmacological properties of Capparis spinosa as a medicinal plant. Nutrients 10:116

    Article  PubMed Central  Google Scholar 

  • Zhang H, Morgan B, Potter BJ, Ma L, Dellsperger KC, Ungvari Z, Zhang C (2010) Resveratrol improves left ventricular diastolic relaxation in type 2 diabetes by inhibiting oxidative/nitrative stress: in vivo demonstration with magnetic resonance imaging. Am J Physiol-Heart Circ Physiol 299:H985–H994. https://doi.org/10.1152/ajpheart.00489.2010

  • Zhang X, Wu J, Fang L, Willis WD (2003) The effects of protein phosphatase inhibitors on nociceptive behavioral responses of rats following intradermal injection of capsaicin. Pain 106:443–451

    Article  CAS  PubMed  Google Scholar 

  • Zhao H-Y, Fan M-X, Wu X, Wang H-J, Yang J, Si N, Bian B-LJJocs (2013) Chemical profiling of the Chinese herb formula Xiao-Cheng-Qi decoction using liquid chromatography coupled with electrospray ionization mass spectrometry. J Chromatogr Sci 51:273–285

    Article  CAS  PubMed  Google Scholar 

  • Zhou H et al (2010) Anti-inflammatory effects of caper (Capparis spinosa L.) fruit aqueous extract and the isolation of main phytochemicals. J Agric Food Chem 58:12717–12721

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by a grant (961604) from the Vice-Chancellor for Research and Technology, Mashhad University of Medical Sciences (MUMS), Mashhad, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Hassan Rakhshandeh, and Fatemeh Forouzanfar designed the experiment. Hassan Rakhshandeh, Fatemeh Forouzanfar, and Ali Mohammad Pourbagher-Shahri done the experiments. Maede Hasanpour, and Mehrdad Iranshahi done Liquid chromatography-mass spectrometry apparatus experiment. Fatemeh Forouzanfar, and Ali Mohammad Pourbagher-Shahri wrote the paper. Fatemeh Forouzanfar prepared the final draft of the paper.

Corresponding author

Correspondence to Fatemeh Forouzanfar.

Ethics declarations

Conflict of interest

There is not any conflict of interest in present study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Hassan Rakhshandeh and Ali Mohammad Pourbagher-Shahri have equal contribution as first author.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhshandeh, H., Pourbagher-Shahri, A.M., Hasanpour, M. et al. Effects of Capparis Spinosa extract on the neuropathic pain induced by chronic constriction injury in rats. Metab Brain Dis 37, 2839–2852 (2022). https://doi.org/10.1007/s11011-022-01094-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-022-01094-2

Keywords

Navigation