Skip to main content

Advertisement

Log in

Neurodegenerative Disorders of Alzheimer, Parkinsonism, Amyotrophic Lateral Sclerosis and Multiple Sclerosis: An Early Diagnostic Approach for Precision Treatment

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Neurodegenerative diseases (NDs) are characterised by progressive dysfunction of synapses, neurons, glial cells and their networks. Neurodegenerative diseases can be classified according to primary clinical features (e.g., dementia, parkinsonism, or motor neuron disease), anatomic distribution of neurodegeneration (e.g., frontotemporal degenerations, extrapyramidal disorders, or spinocerebellar degenerations), or principal molecular abnormalities. The most common neurodegenerative disorders are amyloidosis, tauopathies, a-synucleinopathy, and TAR DNA-binding protein 43 (TDP-43) proteopathy. The protein abnormalities in these disorders have abnormal conformational properties along with altered cellular mechanisms, and they exhibit motor deficit, mitochondrial malfunction, dysfunctions in autophagic–lysosomal pathways, synaptic toxicity, and more emerging mechanisms such as the roles of stress granule pathways and liquid-phase transitions. Finally, for each ND, microglial cells have been reported to be implicated in neurodegeneration, in particular, because the microglial responses can shift from neuroprotective to a deleterious role. Growing experimental evidence suggests that abnormal protein conformers act as seed material for oligomerization, spreading from cell to cell through anatomically connected neuronal pathways, which may in part explain the specific anatomical patterns observed in brain autopsy sample. In this review, we mention the human pathology of select neurodegenerative disorders, focusing on how neurodegenerative disorders (i.e., Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis) represent a great healthcare problem worldwide and are becoming prevalent because of the increasing aged population. Despite many studies have focused on their etiopathology, the exact cause of these diseases is still largely unknown and until now with the only available option of symptomatic treatments. In this review, we aim to report the systematic and clinically correlated potential biomarker candidates. Although future studies are necessary for their use in early detection and progression in humans affected by NDs, the promising results obtained by several groups leads us to this idea that biomarkers could be used to design a potential therapeutic approach and preclinical clinical trials for the treatments of NDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig.8

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid β

AAIC:

Alzheimer’s Association International Conference

AD:

Alzheimer’s disease

ADMC:

Alzheimer Disease Metabolomics Consortium

ALS:

Amyotrophic lateral sclerosis

APP:

Amyloid precursor protein

AUC:

AUC: Area under the curve

BA:

Bile acid

BACE1:

β-site APP-cleaving enzyme 1

CAA:

Cerebral amyloid angiopathy

CJD:

Creutzfeldt-Jakob disease

CNS:

Central nervous system

CSF:

Cerebrospinal fluid

CV:

Coefficient of variation

ECL:

Electrochemiluminescence

ELISA:

Enzyme-linked immunosorbent assay

GAP-43:

Growth-associated protein-43

HAD:

HIV-associated dementia

HD:

Huntington’s disease

HDL:

High density lipoprotein

IWG-2:

International Working Group 2

LBD:

Lewy body

LRP:

Lipo protein particle

MCI:

Mild cognitive impairment

MND:

Motor neuron disorder

MR:

Magnetic resonance

MRI:

Magnetic resonance imaging

MS:

Multiple sclerosis

MSA:

Multisystem atrophy

MSp:

Mass spectrometry

NDs:

Neurodegenerative diseases

NFL:

Neurofilament light

NFT:

Neurofibrillary tangles

Ng:

Neurogranin

NP:

Neuropathology

NIA-AA:

National Institute of Aging and Alzheimer’s Association

NICE:

The National Institute for Health and Care Excellence

NIH:

National Institutes of Health

NMDA receptor:

N-methyl-D-aspartate receptor

P-tau:

Phosphorylated tau

PD:

Parkinson’s disease

PDD:

Parkinson’s disease with dementia

PET:

Positron emission tomography

PNS:

Peripheral nervous system

PSP:

Progressive supranuclear palsy

RT-QuiC:

Real-time quaking-induced conversion assay

Simoa:

Single molecule array

SMA:

Spinal muscular atrophy

SNAP-25:

Synaptosomal-associated protein-25

SYT-1:

Synaptotagmin-1

TDP-43:

TAR DNA-binding protein 43

TREM2:

Triggering receptor expressed on myeloid cells 2

T-tau:

Total tau

VBI:

Vascular brain injury

YKL-40:

Chitinase-3-like protein 1

References

  • Abolhassani N, Leon J, ShengZ OS, HamasakiH IT, Nakabeppu Y (2017) Molecular pathophysiology of impaired glucose metabolism, mitochondrial dysfunction, and oxidative DNA damage in Alzheimer's disease brain. Mech Ageing Dev 161:95–104. https://doi.org/10.1016/j.mad.2016.05.005

    Article  CAS  PubMed  Google Scholar 

  • Abraham A, Drory VE (2014) Influence of serum uric acid levels on prognosis and survival in amyotrophic lateral sclerosis: A meta-analysis. J Neurol 261:1133–1138

    CAS  PubMed  Google Scholar 

  • Abu-Rumeileh S, Steinacker P, Polischi B, Mammana A, Bartoletti-Stella A, Oeckl P, Baiardi S, Zenesini C, Huss A, Cortelli P, Capellari S (2020) CSF biomarkers of neuroinflammation in distinct forms and subtypes of neurodegenerative dementia. Alzheimer’s research & therapy 12(1):1–15

    Google Scholar 

  • Agarwal S, Ghanty P, Pal NR (2015) Identification of a small set of plasma signalling proteins using neural network for prediction of Alzheimer's disease. Bionformatics 31(15):2505–2513

    CAS  Google Scholar 

  • Agdeppa ED, Kepe V, Liu J, Small GW, Huang SC, Petrič A, Satyamurthy N, Barrio JR (2003) 2-Dialkylamino-6-acylmalononitrile substituted naphthalenes (DDNP analogs): novel diagnostic and therapeutic tools in Alzheimer's disease. Molecular Imaging & Biology 5(6):404–417

    Google Scholar 

  • Ahmed SSSJ, Santosh W, Kumar S, Christlet HTT (2009) Metabolic profiling of Parkinson’s disease: Evidence of bio- marker from gene expression analysis and rapid neural network detection. J Biomed Sci 16:1–12

    Google Scholar 

  • Akhtar A, Andleeb A, Waris TS, Bazzar M, Moradi AR, Awan NR, Yar M (2020) Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. J Controlled Release.

  • Albert MS, Moss MB, Tanzi R, Jones K (2001) Preclinical prediction of AD using neuropsychological tests. J Intl Neuropsychol Soc: JINS 7(5):631

    CAS  Google Scholar 

  • Am M, Manthiannem E, Chethan N, Tousif AH, Ray B, Bhat A, Babu CS (2019) Biomarkers in Neurodegenerative Diseases. EC Pharmacol Toxicol 7(4):224–230

    Google Scholar 

  • Andreasen N, Minthon L, Davidsson P, Vanmechelen E, Vanderstichele H, Winblad B, Blennow K (2001) Evaluation of CSF-tau and CSF-Aβ42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol 58(3):373–379

    CAS  PubMed  Google Scholar 

  • Andreasen N, Sjögren M, Blennow K (2003) CSF markers for Alzheimer's disease: total tau, phospho-tau and Aβ42. World J Biol Psych 4(4):147–155

    Google Scholar 

  • Andreasson U, Portelius E, Andersson ME, Blennow K, Zetterberg H, (2007) Aspects of β-amyloid as a biomarker for Alzheimer’s disease. 59-78

  • Andersen PM, AlChalabi A (2011) Clinical genetics of amyotrophic lateral sclerosis: what do we really know? Nature Rev Neurol 7(11):603–615

    CAS  Google Scholar 

  • Andreasson U, Blennow K, Zetterberg H (2016) Update on ultrasensitive technologies to facilitate research on blood biomarkers for central nervous system disorders. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring 3:98–102

    Google Scholar 

  • Annanmaki T, Muuronen A, Murros K (2007) Low plasma uric acid level in Parkinson’s disease. Mov Disord. https://doi.org/10.1002/mds.21502

  • Auinger P, Kieburtz K, Mcdermott MP (2010) The relationship between uric acid levels and Huntington's disease progression. Movement Disorders 25(2):224–228

    PubMed  PubMed Central  Google Scholar 

  • Ayano G, (2016) Dopamine: Receptors, Functions, Synthesis, Pathways, Locations and Mental Disorders: Review of Literatures. J Ment Disord Treat. https://doi.org/10.4172/2471-271x.1000120

  • Baird AL, Westwood S, Lovestone S (2015) Blood-based proteomic biomarkers of Alzheimer's disease pathology. Front Neurol 6:236

    PubMed  PubMed Central  Google Scholar 

  • Baldacci F, Lista S, Vergallo A, Palermo G, Giorgi FS, Hampel H (2019) A frontline defense against neurodegenerative diseases: the development of early disease detection methods. Expert Rev Mol Diag 19(7):559–563

    CAS  Google Scholar 

  • Barthélemy NR, Li Y, Joseph-Mathurin N, Gordon BA, Hassenstab J, Benzinger TL, Buckles V, Fagan AM, Perrin RJ, Goate AM, Morris JC (2020) A soluble phosphorylated tau signature links tau, amyloid and the evolution of stages of dominantly inherited Alzheimer’s disease. Nature Med 26(3):398–407

    PubMed  Google Scholar 

  • Bertram L, Tanzi RE (2004) The current status of Alzheimer’s disease genetics: what do we tell the patients? Pharmacol Res 50(4):385–396

    CAS  PubMed  Google Scholar 

  • Berezovska O, Ramdya P, Skoch J, Wolfe MS, Bacskai BJ, Hyman BT (2003) Amyloid precursor protein associates with a nicastrin-dependent docking site on the presenilin 1–γ-secretase complex in cells demonstrated by fluorescence lifetime imaging. J Neurosci 23(11):4560–4566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya S, Kim K, Teizer W (2017a) Remodelling Tau and Prion Proteins Using Nanochaperon. Adv Biosyst 1(10):1700108

    Google Scholar 

  • Bhattacharyya S, Kim K, Teizer W (2017b) Restoring the Processivity of Kinesin Nanomotors. Adv Biosyst 1(3):1600034

    Google Scholar 

  • Bhattacharyya S, Kim K, Nakazawa H, Umetsu M, Teizer W (2016) Modulating the microtubule–tau interactions in bio-motility systems by altering the chemical environment. Integrative Biol 8(12):1296–1300

    CAS  Google Scholar 

  • Bielekova B, Martin R (2004) Development of biomarkers in multiple sclerosis. Brain 127(7):1463–1478

    PubMed  Google Scholar 

  • Binetti G, Signorini S, Squitti R, Alberici A, Benussi L, Cassetta E, Battista Frisoni G, Barbiero L, Feudatari E, Nicosia F, Testa C (2003) Atypical dementia associated with a novel presenilin-2 mutation. Annals Neurol Official J Am Neurol Assoc Child Neurol Soc 54(6):832–836

    CAS  Google Scholar 

  • Bittner S, Afzali AM, Wiendl H, Meuth SG (2014) Myelin oligodendrocyte glycoprotein (MOG35-55) induced experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. J Visual Exp JoVE 86

  • Bjerke M, Zetterberg H, Edman Å, Blennow K, Wallin A, Andreasson U (2011) Cerebrospinal fluid matrix metalloproteinases and tissue inhibitor of metalloproteinases in combination with subcortical and cortical biomarkers in vascular dementia and Alzheimer's disease. J Alzheimer’s Disease 27(3):665–676

    CAS  Google Scholar 

  • Björkqvist M, Petersén Å, Bacos K, Isaacs J, Norlen P, Gil J, Popovic N, Sundler F, Bates GP, Tabrizi SJ, Brundin P (2006) Progressive alterations in the hypothalamic-pituitary-adrenal axis in the R6/2 transgenic mouse model of Huntington's disease. Human Mol Gen 15(10):1713–1721

    Google Scholar 

  • Bjorkqvist M, Ohlsson M, Minthon L, Hansson O (2012) Evaluation of a previously suggested plasma biomarker panel to identify Alzheimer's disease. PLoS One. 7(1):e29868

    PubMed  PubMed Central  Google Scholar 

  • Blasco H, Nadal-Desbarats L, Pradat PF, Gordon PH, Madji Hounoum B, Patin F, Veyrat-Durebex C, Mavel S, Beltran S, Emond P, Andres CR (2015) Bio- markers in amyotrophic lateral sclerosis: Combining meta- bolomic and clinical parameters to define disease progression. Eur J Neurol 23:346–353

    PubMed  Google Scholar 

  • Blennow K, Wallin A, Fredman P, Karlsson I, Gottfries CG, Svennerholm L (1990) Blood-brain barrier disturbance in patients with Alzheimer's disease is related to vascular factors. Acta Neurologica Scandinavica 81(4):323–326

    CAS  PubMed  Google Scholar 

  • Blennow K, Davidsson P, Wallin A, Ekman R (1995a) Chromogranin A in cerebrospinal fluid: a biochemical marker for synaptic degeneration in Alzheimer’s disease? Dementia and Geriatric Cognitive Disorders 6(6):306–311

    CAS  Google Scholar 

  • Blennow K, Wallin A, Ågren H, Spenger C, Siegfried J, Vanmechelen E (1995b) Tau protein in cerebrospinal fluid. Mol Chem Neuropathol 26(3):231–245

    CAS  PubMed  Google Scholar 

  • Blennow K, Hampel H (2003) CSF markers for incipient Alzheimer's disease. Lancet Neurol 2(10):605–613

    CAS  PubMed  Google Scholar 

  • Blennow K, Vanmechelen E (2003) CSF markers for pathogenic processes in Alzheimer’s disease: diagnostic implications and use in clinical neurochemistry. Brain Res Bull 61(3):235–242

    CAS  PubMed  Google Scholar 

  • Blennow K, Zetterberg H (2018) Biomarkers for Alzheimer's disease: current status and prospects for the future. J Internal Med 284(6):643–663

    CAS  PubMed  Google Scholar 

  • Blom ES, Giedraitis V, Zetterberg H, Fukumoto H, Blennow K, Hyman BT, Irizarry MC, Wahlund LO, Lannfelt L, Ingelsson M (2009) Rapid progression from mild cognitive impairment to Alzheimer’s disease in subjects with elevated levels of tau in cerebrospinal fluid and the APOE ε4/ε4 genotype. Dementia and Geriatric Cognitive Disorders 27(5):458–464

    CAS  PubMed  Google Scholar 

  • Bloom GS. (2014). Amyloid-b and tau the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol 71,505–508.

  • Botosoa EP, Zhu M, Marbeuf-Gueye C, Triba MN, Dutheil F, Duyckäerts C, Beaune P, Loriot MA, Le Moyec L (2012) NMR metabolomic of frontal cortex extracts: first study comparing two neurodegenerative diseases, Alzheimer disease and amyotrophic lateral sclerosis. IRBM 33:281–286

    Google Scholar 

  • Bousset L, Pieri L, Ruiz-Arlandis G, Gath J, Jensen PH, Habenstein B, Madiona K, Olieric V, Böckmann A, Meier BH, Melki R (2013) Structural and functional characterization of two alpha-synuclein strains. Nat Commun 4. https://doi.org/10.1038/ncomms3575

  • Brenowitz WD, Hubbard RA, Keene CD, Hawes SE, Longstreth WT Jr, Woltjer RL, Kukull WA (2017) Mixed neuropathologies and estimated rates of clinical progression in a large autopsy sample. Alzheimer's & Dementia 13(6):654–662. https://doi.org/10.1016/j.jalz.2016.09.015

    Article  Google Scholar 

  • Bridel C, Van Wieringen WN, Zetterberg H, Tijms BM, Teunissen CE, and the NFL Group; Cermeño JCA, Andreasson U, Axelsson M , Bäckström DC , Bartos A , Bjerke M, Blennow K, Boxer A, Brundin L, Burman J , Christensen T , Fialová L , Forsgren L, Frederiksen JL, Gisslén M, Gray E , Gunnarsson M, H Sara, Hansson O, Herbert MK, Jakobsson J , Krut JJ , Janelidze S , Johannsson G , Jonsson M , Kappos L, Khademi M , Khalil M , Kuhle J , Landén M , Leinonen V , Logroscino G , Lu CH , Lycke J , Magdalinou NK , Malaspina A , Mattsson N , Meeter LH , Mehta SR , Modvig S , Olsson T , Paterson RW , Santiago JP , Piehl FY, Pijnenburg YAL, Pyykkö OT, Ragnarsson O, Rojas JC, Christensen JR, Sandberg L, Scherling CS, Schott JM, Sellebjerg FT, Simone IL, Skillbäck T, Stilund M, Sundström P, Svenningsson A, Tortelli R, Tortorella C, Trentini A, Troiano M, Turner MR, Swieten JCV, Vågberg M, Verbeek MM, Villar LM, Visser PJ, Wallin A, Weiss A, Wikkelsø C, Wild EJ (2019) Diagnostic Value of Cerebrospinal Fluid Neurofilament Light Protein in Neurology: A Systematic Review and Meta-analysis. JAMA Neurol. https://doi.org/10.1001/jamaneurol.2019.1534

  • Britschgi M, Rufibach K, Huang SL, Clark CM, Kaye JA, Li G, Peskind ER, Quinn JF, Galasko DR, Wyss-Coray T, (2011) Modeling of pathological traits in Alzheimer's disease based on systemic extracellular signaling proteome. Mol Cell Proteomics, 10(10):M111 008862

  • Browndyke JN, Giovanello K, Petrella J, Hayden K, Chiba-Falek O, Tucker KA, Burke JR, Welsh-Bohmer KA (2013) Phenotypic regional functional imaging patterns during memory encoding in mild cognitive impairment and Alzheimer's disease. Alzheimer’s & Dementia 9(3):284–294

    Google Scholar 

  • Buerger K, Zinkowski R, Teipel SJ, Tapiola T, Arai H, Blennow K, Andreasen N, Hofmann-Kiefer K, DeBernardis J, Kerkman D, McCulloch C (2002) Differential diagnosis of Alzheimer disease with cerebrospinal fluid levels of tau protein phosphorylated at threonine 231. Arch Neurol 59(8):1267–1272

    PubMed  Google Scholar 

  • Buerger K, Ewers M, Pirttilä T, Zinkowski R, Alafuzoff I, Teipel SJ, DeBernardis J, Kerkman D, McCulloch C, Soininen H, Hampel H (2006) CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease. Brain 129(11):3035–3041

    PubMed  Google Scholar 

  • BURGOYNE RD, WEISS JL (2001) The neuronal calcium sensor family of Ca2+-binding proteins. Biochemical Journal 353(1):1–12

    CAS  PubMed Central  Google Scholar 

  • Burre J, Sharma M, Tsetsenis T, Buchman V, Mark Etherton M, and Thomas C. Südhof TC, (2010) α -Synuclein Promotes SNARE-Complex Assembly in Vivo and in Vitro. Science (80) 329:1663–1667. https://doi.org/10.1126/science.1195227

  • Busatto GF, Garrido GE, Almeida OP, Castro CC, Camargo CH, Cid CG, Buchpiguel CA, Furuie S, Bottino CM (2003) A voxel-based morphometry study of temporal lobe gray matter reductions in Alzheimer’s disease. Neurobiol Aging 24(2):221–231

    PubMed  Google Scholar 

  • Calderon-Garcidueñas, A.L.; Duyckaerts, C. Chapter 23-Alzheimer disease. In Handbook of Clinical Neurology; Kovacs, G.G., Alafuzoff, I., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 145, pp. 325–337.

  • Canto E, Tintore M, Villar LM, Costa C, Nurtdinov R, Alvarez-Cermeno JC, Arrambide G, Reverter F, Deisenhammer F, Hegen H, Khademi M (2015) Chitinase 3-like 1: prognostic biomarker in clinically isolated syndromes. Brain 138(4):918–931

    PubMed  Google Scholar 

  • Caramins M, Halliday G, McCusker E, Trent RJ (2003) Genetically confirmed clinical Huntington’s disease with no observable cell loss. J Neurol Neurosurg Psych 74(7):968–970

    CAS  Google Scholar 

  • Casanova R, Varma S, Simpson B, Kim M, An Y, Saldana S, Riveros C, Moscato P, Griswold M, Sonntag D, Wahrheit J (2016) Blood metabolite markers of preclinical Alzheimer's disease in two longitudinally followed cohorts of older individuals. Alzheimer’s & Dementia 12(7):815–822

    Google Scholar 

  • Castillo J, Loza MI, Mirelman D, Brea J, Blanco M, Sobrino T, Campos F (2016) A novel mechanism of neuroprotection: Blood glutamate grabber. J Cereb Blood Flow Metab 36:292–301

    CAS  PubMed  Google Scholar 

  • Cedazo-Minguez A, Winblad B (2010) Biomarkers for Alzheimer’s disease and other forms of dementia: clinical needs, limitations and future aspects. Exp Gerontol 45(1):5–14

    CAS  PubMed  Google Scholar 

  • Chandra S, Fornai F, Kwon H-B, Yazdani U, Atasoy D, Liu X, Hammer RE, Battaglia G, German DC, Castillo PE, Sudhof TC (2004) Double-knockout mice for α - and ß -synucleins: Effect on synaptic functions. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.0406283101

  • Chang XL, Tan MS, Tan L, Yu JT (2016) The role of TDP-43 in Alzheimer’s disease. Mol Neurobiol 53(5):3349–3359

    CAS  PubMed  Google Scholar 

  • Chatterjee P, Lim WL, Shui G, Gupta VB, James I, Fagan AM, Xiong C, Sohrabi HR, Taddei K, Brown BM, Benzinger T (2016) Plasma phospholipid and sphingolipid alterations in presenilin1 mutation carriers: A pilot study. J Alzheimer’s disease 50(3):887–894

    CAS  Google Scholar 

  • Chen S, Sayana P, Zhang X, LeW (2013) Genetics of amyotrophic lateral sclerosis: an update. Mol Neurodegen 8(1):1–15

    CAS  Google Scholar 

  • Cheng L, Doecke JD, Sharples RA, Villemagne VL, Fowler CJ, Rembach A, Martins RN, Rowe CC, Macaulay SL, Masters CL, Hill AF (2015) Prognostic serum miRNA biomarkers associated with Alzheimer's disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry. 20(10):1188–1196

    CAS  PubMed  Google Scholar 

  • Chiò A, Logroscino G, Traynor BJ, Collins J, Simeone JC, Goldstein LA, White LA (2013) Global epidemiology of amyotrophic lateral sclerosis: a systematic review of the published literature. Neuroepidemiology 41(2):118–130

    PubMed  Google Scholar 

  • Chhor V, Le Charpentier T, Lebon S, Oré MV, Celador ID, Josserand J, Degos V, Etienne Jacotot E, Hagberg H, Sävman K, Mallard C, Gressens P, Fleiss B (2013) Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia In vitro. Brain Behav Immun. https://doi.org/10.1016/j.bbi.2013.02.005

  • Citron M, Oltersdorf T, Haass C, McConlogue L, Hung AY, Seubert P, Vigo-Pelfrey C, Lieberburg I, Selkoe DJ (1992) Mutation of the β-amyloid precursor protein in familial Alzheimer's disease increases β-protein production. Nature 360(6405):672–674

    CAS  PubMed  Google Scholar 

  • Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A, Kholodenko D (1997) Mutant presenilins of Alzheimer's disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nature Medicine 3(1):67–72

    CAS  PubMed  Google Scholar 

  • Cohen SR, Herndon RM, McKhann GM (1976) Radioimmunoassay of myelin basic protein in spinal fluid: an index of active demyelination. New England J Med 295(26):1455–1457

    CAS  Google Scholar 

  • Cohen AD, Landau SM, Snitz BE, Klunk WE, Blennow K, Zetterberg H. Fluid and PET biomarkers for amyloid pathology in Alzheimer’s disease. Mol Cell Neurosci. 2019;97:3–17.

  • Constantinides VC, Paraskevas GP, Boufidou F, Bourbouli M, Paraskevas PG, Stefanis L, Kapaki E (2020) Cerebrospinal fluid amyloid beta and tau proteins in atypical Parkinsonism: a review. Neuroimmunol Neuroinflamm 7(2):120–131

    CAS  Google Scholar 

  • Costa AC, Joaquim HP, Forlenza O, Talib LL, Gattaz WF (2019) Plasma lipids metabolism in mild cognitive impairment and Alzheimer’s disease. World J Biol Psych 20(3):190–196

    Google Scholar 

  • Cui Y, Liu X, Wang M, Liu L, Sun X, Ma L, Xie W, Wang C, Tang S, Wang D, Wu Q (2014) Lysophosphatidylcholine and amide as metabolites for detecting alzheimer disease using ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry-based metabonomics. J Neuropathol Exp Neurol 73:954–963

    CAS  PubMed  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    CAS  PubMed  Google Scholar 

  • Davis J, Maes M, Andreazza A, McGrath JJ, Tye SJ, Berk M (2015) Towards a classification of biomarkers of neuropsychiatric disease: from encompass to compass. Mol. Psychiatry 20(2):152–153. https://doi.org/10.1038/mp.2014.139

    Article  CAS  PubMed  Google Scholar 

  • Davis BH, Zarev PV (2005) Human monocyte CD163 expression inversely correlates with soluble CD163 plasma levels. Cytom Part B: Clin Cytom J Intl Soc Anal Cytol 63(1):16–22

    Google Scholar 

  • Davidsson P, Jahn R, Bergquist J, Ekman R, Blennow K (1996) Synaptotagmin, a synaptic vesicle protein, is present in human cerebrospinal fluid. Mol Chem Neuropathol 27(2):195–210

    CAS  PubMed  Google Scholar 

  • Davidsson P, Puchades M, Blennow K (1999) Identification of synaptic vesicle, pre-and postsynaptic proteins in human cerebrospinal fluid using liquid-phase isoelectric focusing. Electrophoresis: Intl J 20(3):431–437

    CAS  Google Scholar 

  • de Leon MJ, George AE, Ferris SH, Rosenbloom S, Christman DR, Gentes CI, Reisberg B, Kricheff II, Wolf AP (1983) Regional correlation of PET and CT in senile dementia of the Alzheimer type. Am J Neuroradiol 4(3):553–556

    PubMed  PubMed Central  Google Scholar 

  • Del Prete E, Beatino MF, Campese N, Giampietri L, Siciliano G, Ceravolo R, Baldacci F (2020) Fluid candidate biomarkers for Alzheimer’s Disease: A precision medicine approach. J Personal Med 10(4):221

    Google Scholar 

  • Desikan RS, Cabral HJ, Hess CP, Dillon WP, Glastonbury C.M, Weiner MW, Schmansky NJ, Greve DN, Salat DH, Buckner RL, Fischl B, (2009) Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer's disease. Brain, 132(8):2048-2057.

  • Desrosiers RR, Bertrand Y, Nguyen QT, Demeule M, Gabathuler R, Kennard ML, Gauthier S, Béliveau R (2003) Expression of melanotransferrin isoforms in human serum: relevance to Alzheimer's disease. Biochem J 374(2):463–471

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Maio R, Hoffman EK, Rocha EM, Keeney MT, Sanders LH, Briana R, De Miranda BRD, Zharikov A, Laar AV, Stepan AF, Lanz TA, Kofler JK, Burton EA, Alessi DR, Hastings TG, Greenamyre JT (2018) LRRK2 activation in idiopathic Parkinson’s disease. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aar5429

  • Dias V, Junn E, Mouradian MM (2013) The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 3:461–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dib M (2003) Amyotrophic Lateral Sclerosis. Drugs 63(3):289–310

    CAS  PubMed  Google Scholar 

  • Disanto G, Adiutori R, Dobson R, Martinelli V, Dalla Costa G, Runia T, Evdoshenko E, Thouvenot E, Trojano M, Norgren N, Teunissen C (2016) Serum neurofilament light chain levels are increased in patients with a clinically isolated syndrome. J Neurol Neurosurg Psych 87(2):126–129

    Google Scholar 

  • Doecke JD, Laws SM, Faux NG, Wilson W, Burnham SC, Lam CP, Mondal A, Bedo J, Bush AI, Brown B, De Ruyck K (2012) Blood-based protein biomarkers for diagnosis of Alzheimer disease. Arch Neurol 69(10):1318–1325

    PubMed  PubMed Central  Google Scholar 

  • Dolan H, Crain B, Troncoso J, Resnick SM, Zonderman AB, Obrien RJ (2010) Atherosclerosis, dementia, and Alzheimer disease in the Baltimore Longitudinal Study of Aging cohort. Ann Neurol 68(2):231–240

    PubMed  PubMed Central  Google Scholar 

  • Downing G (2001) Biomarkers definitions working group. Biomarkers and surrogate endpoints. Clin Pharmacol Ther 69:89–95. https://doi.org/10.1067/mcp.2001.113989

    Article  Google Scholar 

  • Dulewicz M, Kulczyńska-Przybik A, Mroczko B (2020) Neurogranin and VILIP-1 as Molecular Indicators of Neurodegeneration in Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Intl J Mol Sci 21(21):8335

    CAS  Google Scholar 

  • Eckman CB, Mehta ND, Crook R, Perez-tur J, Prihar G, Pfeiffer E, Graff-Radford N, Hinder P, Yager D, Zenk B, Refolo LM (1997) A new pathogenic mutation in the APP gene (I716V) increases the relative proportion of Aβ42 (43). Human Mol Gen 6(12):2087–2089

    CAS  Google Scholar 

  • El-Agnaf OMA, Salem SA, Paleologou KE (2006) Detection of oligomeric forms of α-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J. https://doi.org/10.1096/fj.03-1449com

  • Emard JF, Thouez JP, Gauvreau D (1995) Neurodegenerative diseases and risk factors: a literature review. Social Sci Med 40(6):847–858

    CAS  Google Scholar 

  • Ewers M, Biechele G, Suárez-Calvet M, Sacher C, Blume T, Morenas-Rodriguez E, Deming Y, Piccio L, Cruchaga C, Kleinberger G, Shaw L (2020) Higher CSF sTREM2 and microglia activation are associated with slower rates of beta-amyloid accumulation. EMBO Mol Med 12(9):e12308

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ewers M, Zhong Z, Bürger K, Wallin A, Blennow K, Teipel SJ, Shen Y, Hampel H (2008) Increased CSF-BACE 1 activity is associated with ApoE-ε4 genotype in subjects with mild cognitive impairment and Alzheimer's disease. Brain 131(5):1252–1258

    PubMed  Google Scholar 

  • Fabriek BO, Møller HJ, Vloet RP, van Winsen LM, Hanemaaijer R, Teunissen CE, Uitdehaag BM, van den Berg TK, Dijkstra CD (2007) Proteolytic shedding of the macrophage scavenger receptor CD163 in multiple sclerosis. J Neuroimmun 187(1-2):179–186

    CAS  Google Scholar 

  • Fagan AM, Mintun MA, Mach RH, Lee SY, Dence CS, Shah AR, LaRossa GN, Spinner ML, Klunk WE, Mathis CA, DeKosky ST (2006) Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann Neurol 59(3):512–519

    CAS  PubMed  Google Scholar 

  • Fernández-Matarrubia M, Matías-Guiu JA, Cabrera-Martín MN, Moreno-Ramos T, Valles-Salgado M, Carreras JL, Matías-Guiu J (2018) Different apathy clinical profile and neural correlates in behavioral variant frontotemporal dementia and Alzheimer's disease. Intl J Geriatr Psych 33(1):141–150

    Google Scholar 

  • Ferri CP, Prince M, Brayne C, et al. (2006). Global prevalence of dementia: A Delphi consensus study. Lancet 366,2112– 2117.

  • Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, Abner EL, Petersen RC, Federoff HJ, Miller BL, Goetzl EJ (2015a) Identification of preclinical Alzheimer's disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement 11(6):600–607 e601

    PubMed  Google Scholar 

  • Fiandaca MS, Zhong X, Cheema AK, Orquiza MH, Chidambaram S, Tan MT, Gresenz CR, FitzGerald KT, Nalls MA, Singleton AB, Mapstone M (2015b) Plasma 24-metabolite panel predicts preclinical transition to clinical stages of Alzheimer’s disease. Front Neurol 6:237

    PubMed  PubMed Central  Google Scholar 

  • Fichorova RN, Richardson-Harman N, Alfano M, Belec L, Carbonneil C, Chen S, Cosentino L, Curtis K, Dezzutti CS, Donoval B, Doncel GF (2008) Biological and technical variables affecting immunoassay recovery of cytokines from human serum and simulated vaginal fluid: a multicenter study. Anal Chem 80(12):4741–4751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg A, Engler H, Almkvist O, Blomquist G, Hagman G, Wall A, Ringheim A, Långström B, Nordberg A (2008) PET imaging of amyloid deposition in patients with mild cognitive impairment. Neurobiol Aging 29(10):1456–1465

    CAS  PubMed  Google Scholar 

  • Fortea J, Vilaplana E, Carmona-Iragui M, Benejam B, Videla L, Barroeta I, Fernández S, Altuna M, Pegueroles J, Montal V, Valldeneu S (2020) Clinical and biomarker changes of Alzheimer's disease in adults with Down syndrome: a cross-sectional study. The Lancet 395(10242):1988–1997

    CAS  Google Scholar 

  • Fouquet M, Desgranges B, Landeau B, Duchesnay E, Mézenge F, De La Sayette V, Viader F, Baron JC, Eustache F, Chételat G (2009) Longitudinal brain metabolic changes from amnestic mild cognitive impairment to Alzheimer's disease. Brain 132(8):2058–2067. https://doi.org/10.1016/S0140-6736(20)30689-9

    Article  PubMed  Google Scholar 

  • Franc R, Fernández-Suárez D (2015) Alternatively activated microglia and macrophages in the central nervous system. Prog. Neurobiol.

  • Farrer LA, Cupples LA, Haines JL, Hyman B, Kukull WA, Mayeux R, Myers RH, Pericak-Vance MA, Risch N, Van Duijn CM (1997) Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. Jama 278(16):1349–1356

    CAS  PubMed  Google Scholar 

  • Frölich L, Kornhuber J, Ihl R, Fritze J, Maurer K, Riederer P (1991) Integrity of the blood-CSF barrier in dementia of Alzheimer type: CSF/serum ratios of albumin and IgG. Eur Arch Psych Clin Neurosci 240(6):363–366

    Google Scholar 

  • Gainotti G, Marra C, Villa G, Parlato V, Chiarotti F (1998) Sensitivity and specificity of some neuropsychological markers of Alzheimer disease. Alzheimer Disease and Associated Disorders.

  • Gmitterova K, Heinemann U, Gawinecka J, Varges D, Ciesielczyk B, Valkovic P, Benetin J, Zerr I (2009) 8-OHdG in cerebrospinal fluid as a marker of oxidative stress in various neurodegenerative diseases. Neurodegener Dis. https://doi.org/10.1159/000237221

  • Goetzl EJ, Boxer A, Schwartz JB, Abner EL, Petersen RC, Miller BL, Kapogiannis D (2015) Altered lysosomal proteins in neural-derived plasma exosomes in preclinical Alzheimer disease. Neurology 85(1):40–47

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez-Domınguez R, Garcıa A, Garcıa-Barrera T, Barbas C, Gomez-Ariza JL (2014a) Metabolomic profiling of se- rum in the progression of Alzheimer’s disease by capillary electrophoresis-mass spectrometry. Electrophoresis 35:3321–3330

    PubMed  Google Scholar 

  • Gonzalez-Domınguez R, Garcıa-Barrera T, Gomez-Ariza JL (2014b) Using direct infusion mass spectrometry for serum metabolomics in Alzheimer’s disease. Anal Bioanal Chem 406:7137–7148

    PubMed  Google Scholar 

  • Greenberg N, Grassano A, Thambisetty M, Lovestone S, Legido-Quigley C, (2009) A proposed metabolic strategy for monitoring disease progression in Alzheimer's disease. Electrophoresis, 30(7)1:235-1239

  • Groblewska M, Muszyński P, Wojtulewska-Supron A, Kulczyńska-Przybik A, Mroczko B (2015) The role of visinin-like protein-1 in the pathophysiology of Alzheimer’s disease. J Alzheimer's Disease 47(1):17–32

    CAS  Google Scholar 

  • Gröger A, Kolb R, Schaöfer R, Klose U (2014) Dopamine reduction in the substantia nigra of Parkinson’s disease patients confirmed by in vivo magnetic resonance spectroscopic imaging. PLoS One 9:e84081

    PubMed  PubMed Central  Google Scholar 

  • Groveman BR, Orrù CD, Hughson AG, Raymond LD, Zanusso G, Ghetti B, Campbell KJ, Safar J, Galasko D, Caughey B (2018) Rapid and ultra-sensitive quantitation of disease-associated α-synuclein seeds in brain and cerebrospinal fluid by αSyn RT-QuIC. Acta Neuropathol Commun 6(1):1–10

    Google Scholar 

  • Guo LH, Alexopoulos P, Wagenpfeil S, Kurz A, Perneczky R (2013) Alzheimer's disease neuroimaging I: plasma proteomics for the identification of Alzheimer disease. Alzheimer Dis Assoc Disord 27(4):337–342

    CAS  PubMed  Google Scholar 

  • Guo X, Wang Z, Li K, Li Z, Qi Z, Jin Z, Yao L, Chen K (2010) Voxel-based assessment of gray and white matter volumes in Alzheimer's disease. Neurosci Lett 468(2):146–150

    CAS  PubMed  Google Scholar 

  • Hampel H, Bürger K, Pruessner JC, Zinkowski R, DeBernardis J, Kerkman D, Leinsinger G, Evans AC, Davies P, Möller HJ, Teipel SJ (2005) Correlation of cerebrospinal fluid levels of tau protein phosphorylated at threonine 231 with rates of hippocampal atrophy in Alzheimer disease. Archives of neurology 62(5):770–773

    PubMed  Google Scholar 

  • Hampel H, O’Bryant SE, Molinuevo JL, Zetterberg H, Masters CL, Lista S, Kiddle SJ, Batrla R, Blennow K (2018) Blood-based biomarkers for Alzheimer disease: mapping the road to the clinic. Nature Rev Neurol 14(11):639–652

    Google Scholar 

  • Hand CK, Devon RS, Gros-Louis F, Rochefort D, Khoris J, Meininger V, Bouchard JP, Camu W, Hayden MR, Rouleau GA (2003) Mutation screening of the ALS2 gene in sporadic and familial amyotrophic lateral sclerosis. Arch Neurol 60(12):1768–1771

    PubMed  Google Scholar 

  • Hand CK, Khoris J, Salachas F, Gros-Louis F, Lopes AAS, Mayeux-Portas V, Brown RH Jr, Meininger V, Camu W, Rouleau GA (2002) A novel locus for familial amyotrophic lateral sclerosis, on chromosome 18q. Am J Human Gen 70(1):251–256

    CAS  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    CAS  PubMed  Google Scholar 

  • Hardy JA, Higgins GA (1992) Alzheimer's disease: the amyloid cascade hypothesis. Science 256(5054):184–186

    CAS  PubMed  Google Scholar 

  • Heath PR, Shaw PJ (2002) Update on the glutamatergic neurotransmitter system and the role of excitotoxicity in amyotrophic lateral sclerosis. Muscle & Nerve: Official J Am Assoc Electrodiag Med 26(4):438–458

    CAS  Google Scholar 

  • Henriksen K, O’Bryant SE, Hampel H, Trojanowski JQ, Montine TJ, Jeromin A, Blennow K, Lönneborg A, Wyss-Coray T, Soares H, Bazenet C (2014) The future of blood-based biomarkers for Alzheimer's disease. Alzheimer’s & Dementia 10(1):115–131

    Google Scholar 

  • Hesse C, Rosengren L, Andreasen N, Davidsson P, Vanderstichele H, Vanmechelen E, Blennow K (2001) Transient increase in total tau but not phospho-tau in human cerebrospinal fluid after acute stroke. Neurosci Lett 297(3):187–190

    CAS  PubMed  Google Scholar 

  • Höglund K, Salter H (2013) Molecular biomarkers of neurodegeneration. Exp Rev Mol Diag 13(8):845–861

    Google Scholar 

  • Holland D, Brewer JB, Hagler DJ, Fennema-Notestine C, Dale AM (2009) Alzheimer's Disease Neuroimaging Initiative. Subregional neuroanatomical change as a biomarker for Alzheimer's disease. Proc Natl Acad Sci 106(49):20954–20959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horie K, Barthélemy NR, Sato C, Bateman RJ (2021) CSF tau microtubule binding region identifies tau tangle and clinical stages of Alzheimer’s disease. Brain 144(2):515–527

    PubMed  Google Scholar 

  • Horie K, Barthelemy NR, Sato C, Bateman RJ (2020) Tau microtubule binding region in cerebrospinal fluid as a biomarker to differentiate tau pathology in Alzheimer’s disease: Biomarkers (non-neuroimaging)/Differential diagnosis. Alzheimer's & Dementia 16:e041644

    Google Scholar 

  • Hsia AY, Masliah E, McConlogue YGQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci 96(6):3228–3233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Housley, W. J., Pitt, D., & Hafler, D. A. (2015). Biomarkers in multiple sclerosis. Clinical immunology, 161(1), 51-58.

  • Hu WT, Holtzman DM, Fagan AM, Shaw LM, Perrin R, Arnold SE, Grossman M, Xiong C, Craig-Schapiro R, Clark CM (2012) Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease. Neurology 79(9):897–905

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YC, Wu YR, Tseng MY, Chen YC, Hsieh SY, Chen CM (2011) Increased prothrombin, apolipoprotein A-IV, and haptoglobin in the cerebrospinal fluid of patients with Huntington's disease. PloS one 6(1):e15809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneide M, De Deyn PP, Bancher C, Cras P, Wiltfang J, Mehta PD, Iqbal K (1999) Improved discrimination of AD patients using β-amyloid (1-42) and tau levels in CSF. Neurology 52(8):1555–1555

    CAS  PubMed  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Trans Med 4(147):147ra111–147ra111

    Google Scholar 

  • Iguchi Y, Katsuno M, Niwa JI, Takagi S, Ishigaki S, Ikenaka K, Kawai K, Watanabe H, Yamanaka K, Takahashi R, Misawa H (2013) Loss of TDP-43 causes age-dependent progressive motor neuron degeneration. Brain 136(5):1371–1382

    PubMed  Google Scholar 

  • Ingelsson M (2016) Alpha-synuclein oligomers-neurotoxic molecules in Parkinson’s disease and other lewy body disorders. Front. Neurosci.

  • Irwin DJ, Xie SX, Coughlin D, Nevler N, Akhtar RS, McMillan CT, Lee EB, Wolk DA, Weintraub D, Chen-Plotkin A, Duda JE (2018) CSF tau and β-amyloid predict cerebral synucleinopathy in autopsied Lewy body disorders. Neurology 90(12):e1038–e1046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irizarry MC (2004) Biomarkers of Alzheimer disease in plasma. NeuroRx 1(2):226–234

    PubMed  PubMed Central  Google Scholar 

  • Jablonski M, Miller DS, Pasinelli P, Trotti D (2015) ABC transporter-driven pharmacoresistance in amyotrophic lateral sclerosis. Brain Res 14:1–14

    Google Scholar 

  • Jack CR Jr, Lowe VJ, Weigand SD, Wiste HJ, Senjem ML, Knopman DS, Shiung MM, Gunter JL, Boeve BF, Kemp BJ, Weiner M (2009) Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer's disease: implications for sequence of pathological events in Alzheimer's disease. Brain 132(5):1355–1365

    PubMed  PubMed Central  Google Scholar 

  • Jack CR, Bennett DA, Blennow K, Carrillo MC, Feldman HH, Frisoni GB, Hampel H, Jagust WJ, Johnson KA, Knopman DS, Petersen RC (2016) A/T/N: an unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology 87(5):539–547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, Liu E (2018) NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia 14(4):535–562

    Google Scholar 

  • Jammeh E, Zhao P, Carroll C, Pearson S, Ifeachor E (2016) Identification of blood biomarkers for use in point of care diagnosis tool for Alzheimer's disease. Conf Proc IEEE Eng Med Biol Soc 2016:2415–2418

    CAS  Google Scholar 

  • Janelidze S, Stomrud E, Palmqvist S, Zetterberg H, Van Westen D, Jeromin A, Song L, Hanlon D, Hehir CAT, Baker D, Blennow K (2016) Plasma β-amyloid in Alzheimer’s disease and vascular disease. Scientific Reports 6(1):1–11

    Google Scholar 

  • Janssen JC, Beck JA, Campbell TA, Dickinson A, Fox NC, Harvey RJ, Houlden H, Rossor MN, Collinge J (2003) Early onset familial Alzheimer’s disease: mutation frequency in 31 families. Neurology 60(2):235–239

    CAS  PubMed  Google Scholar 

  • Jellinger KA (2002) Alzheimer disease and cerebrovascular pathology: an update. J Neural Trans 109(5-6):813–836

    CAS  Google Scholar 

  • Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14(3):457–487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnstone D, Milward EA, Berretta R, Moscato P (2012) Alzheimer's disease neuroimaging I: multivariate protein signatures of pre-clinical Alzheimer's disease in the Alzheimer's disease neuroimaging initiative (ADNI) plasma proteome dataset. PLoS One 7(4):e34341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jukarainen NM, Korhone SP, Laakso MP et al (2008) Quantification of 1H NMR spectra of human cerebrospinal fluid: A protocol based on constrained total-line-shape anal- ysis. Metabolomics 4:150–160

    CAS  Google Scholar 

  • Kang JH, Vanderstichele H, Trojanowski JQ, Shaw LM (2012) Simultaneous analysis of cerebrospinal fluid biomarkers using microsphere-based xMAP multiplex technology for early detection of Alzheimer’s disease. Methods 56(4):484–493

    CAS  PubMed  Google Scholar 

  • Kang JH, Mollenhauer B, Coffey CS, Toledo JB, Weintraub D, Galasko DR, Irwin DJ, Van Deerlin V, Chen-Plotkin AS, Caspell-Garcia C, Waligórska T (2016) CSF biomarkers associated with disease heterogeneity in early Parkinson’s disease: the Parkinson’s Progression Markers Initiative study. Acta neuropathologica 131(6):935–949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kalaria RN (2016) Neuropathological diagnosis of vascular cognitive impairment and vascular dementia with implications for Alzheimer’s disease. Acta neuropathologica 131(5):659–685

    PubMed  PubMed Central  Google Scholar 

  • Kantarci K, Jack CR Jr, Xu YC (2000) Regional metabolic patterns in mild cognitive impairment and Alzheimer’s disease a 1H MRS study. Neurology 55:210–217

    CAS  PubMed  Google Scholar 

  • Karitzky J, Ludolph AC (2001) Imaging and neurochemical markers for diagnosis and disease progression in ALS. J Neurol Sci 191(1-2):35–41

    CAS  PubMed  Google Scholar 

  • Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, Barro C, Kappos L, Comabella M, Fazekas F, Petzold A (2018) Neurofilaments as biomarkers in neurological disorders. Nature Rev Neurol 14(10):577–589

    CAS  Google Scholar 

  • Kim TS, Pae CU, Yoon SJ (2006) Decreased plasma antioxidants in patients with Alzheimer’s disease. Int J Geriatr Psych 21:344–348

    Google Scholar 

  • Kim DK, Seo MY, Lim SW, Kim S, Kim JW, Carroll BJ, Kwon T, Kang SS (2001) Serum melanotransferrin, p97 as a biochemical marker of Alzheimer's disease. Neuropsychopharmacol 25(1):84–90

    CAS  Google Scholar 

  • Kim K, Subramaniyam S, Galaleldeen A, Nakazawa H, Umetsu M, Teizer W, Bhattacharyya S (2019) Nanoparticle Assisted Remodelling of Proteotoxic SOD1 Mutants Alters the Biointerface of the Functional Interaction of Microtubules and Kinesin Motors. ACS Applied Bio Materials 2(10):4121–4128

    CAS  Google Scholar 

  • Kim J, Kim YK (2020) Inflammatory Biomarkers in AD: Implications for Diagnosis. Curr Alzheimer Res 17(11):962–971

    CAS  PubMed  Google Scholar 

  • Kivipelto M, Mangialasche F, Ngandu T (2018) Lifestyle interventions to prevent cognitive impairment, dementia and Alzheimer disease. Nature Rev Neurol 14(11):653–666

    Google Scholar 

  • Kopito RR, Ron D (2000) Conformational disease. Nature Cell Biol 2(11):E207–E209

    CAS  PubMed  Google Scholar 

  • Kori M, Aydın B, Unal S, Arga KY, Kazan D (2016) Metabolic biomarkers and neurodegeneration: a pathway enrichment analysis of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. Omics: J Integr Biol 20(11):645–661

    CAS  Google Scholar 

  • Kuhle J, Malmeström C, Axelsson M, Plattner K, Yaldizli Ö, Derfuss T, Giovannoni G, Kappos L, Lycke J (2013) Neurofilament light and heavy subunits compared as therapeutic biomarkers in multiple sclerosis. Acta Neurologica Scandinavica 128(6):e33–e36

    CAS  PubMed  Google Scholar 

  • Kumar A, Bala L, Kalita J (2010) Metabolomic analysis of serum by H NMR spectroscopy in amyotrophic lateral sclerosis. Clin Chim Acta 411:563–567

    CAS  PubMed  Google Scholar 

  • LaFerla FM, Oddo S (2005) Alzheimer's disease: Aβ, tau and synaptic dysfunction. Trends Mol Med 11(4):170–176

    CAS  PubMed  Google Scholar 

  • Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL, Weiner MW, Jagust WJ (2011) Alzheimer's Disease Neuroimaging Initiative, Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging 32(7):1207–1218

    PubMed  Google Scholar 

  • Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR, An International Huntington's Disease Collaborative Group (2004) A new model for prediction of the age of onset and penetrance for Huntington's disease based on CAG length. Clinical Genetics 65(4):267–277

    CAS  PubMed  Google Scholar 

  • Lambert JC, Coyle N, Lendon C (2004) The allelic modulation of apolipoprotein E expression by oestrogen: potential relevance for Alzheimer’s disease. J Med Gen 41(2):104–112

    CAS  Google Scholar 

  • Laske C, Leyhe T, Stransky E, Hoffmann N, Fallgatter AJ, Dietzsch J (2011) Identification of a blood-based biomarker panel for classification of Alzheimer's disease. Int J Neuropsychopharmacol 14(9):1147–1155

    CAS  PubMed  Google Scholar 

  • Laske C, Stransky E, Leyhe T, Eschweiler GW, Maetzler W, Wittorf A, Soekadar S, Richartz E, Koehler N, Bartels M, Buchkremer G (2007) BDNF serum and CSF concentrations in Alzheimer’s disease, normal pressure hydrocephalus and healthy controls. J Psych Res 41(5):387–394

    Google Scholar 

  • Law HY, Ng ISL, Yoon CS, Zhao Y, Wong MC (2001) Trinucleotide repeat analysis of Huntington's disease gene in Singapore. Ann Acad Med Singapore 30(2):122–127

    CAS  PubMed  Google Scholar 

  • Lawton KA, Cudkowicz ME, Brown MV (2012) Bio- chemical alterations associated with ALS. Amyotroph Lateral Scler 13:110–118

    CAS  PubMed  Google Scholar 

  • Lee Y, Lee S, Chang SC, Lee J (2019) Significant roles of neuroinflammation in Parkinson’s disease: therapeutic targets for PD prevention. Arch Pharm Res 42:416–425. https://doi.org/10.1007/s12272-019-01133-0

    Article  CAS  PubMed  Google Scholar 

  • Leidinger P, Backes C, Deutscher S, Schmitt K, Mueller SC, Frese K, Haas J, Ruprecht K, Paul F, Stahler C (2013) A blood based 12-miRNA signature of Alzheimer disease patients. Genome Biol 14(7):R78

    PubMed  PubMed Central  Google Scholar 

  • Leung K (2011) 2-(1-{6-[(2-[18F] Fluoroethyl)(methyl) amino]-2-naphthyl} ethylidene) malononitrile. ID: NBK23038PMID: 20641245

  • Leverenz JB, Hamilton R, Tsuang DW, Schantz A, Vavrek D, Larson EB, Kukull WA, Lopez O, Galasko D, Masliah E, Kaye J (2008) Empiric refinement of the pathologic assessment of Lewy-related pathology in the dementia patient. Brain Pathology 18(2):220–224

    PubMed  PubMed Central  Google Scholar 

  • Levy E, Sastre M, Kumar A, Gallo G, Piccardo P, Ghetti B, Tagliavini F (2001) Codeposition of cystatin C with amyloid-β protein in the brain of Alzheimer disease patients. J Neuropathol Exp Neurol 60(1):94–104

    CAS  PubMed  Google Scholar 

  • Lewitt P, Schultz L, Auinger P, Lu M (2011) CSF xanthine, homovanillic acid, and their ratio as biomarkers of Parkinson’s disease. Brain Res. https://doi.org/10.1016/j.brainres.2011.06.057

  • Li D, Mielke MM (2019) An update on blood-based markers of Alzheimer’s disease using the SiMoA platform. Neurol Ther 8(2):73–82

    PubMed  PubMed Central  Google Scholar 

  • Li, Q.X., Berndt, M.C., Bush, A.I., Rumble, B., Mackenzie, I., Friedhuber, A., Beyreuther, K. and Masters, C.L., 1994. Membrane-associated forms of the beta A4 amyloid protein precursor of Alzheimer's disease in human platelet and brain: surface expression on the activated human platelet. 133-142. https://doi.org/10.1182/blood.V84.1.133.133

  • Lifke V, Kollmorgen G, Manuilova E, Oelschlaegel T, Hillringhaus L, Widmann M, von Arnim CA, Otto M, Christenson RH, Powers JL, Shaw LM (2019) Elecsys® Total-Tau and Phospho-Tau (181P) CSF assays: analytical performance of the novel, fully automated immunoassays for quantification of tau proteins in human cerebrospinal fluid. Clinical Biochemistry 72:30–38

    CAS  PubMed  Google Scholar 

  • Lista S, Faltraco F, Prvulovic D, Hampel H (2013) Blood and plasma-based proteomic biomarker research in Alzheimer's disease. Prog Neurobiol 101-102:1–17

    CAS  PubMed  Google Scholar 

  • Lin X, Cook TJ, Zabetian CP, Leverenz JB, Peskind ER, Hu SC, Cain KC, Pan C, Edgar JS, Goodlett DR, Racette BA, Checkoway H, Montine TJ, Shi M & Zhang J(2012) DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease. Sci Rep. https://doi.org/10.1038/srep00954

  • Liu J, Liu W, Li R, Yang H (2019a) Mitophagy in Parkinson’s Disease: From Pathogenesis to Treatment. Cells 8:712. https://doi.org/10.3390/cells8070712

    Article  CAS  PubMed Central  Google Scholar 

  • Liu L, Ding L, Rovere M, Wolfe MS, Selkoe DJ (2019b) A cellular complex of BACE1 and γ-secretase sequentially generates Aβ from its full-length precursor. J Cell Biol 218(2):644–663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Yamada N, Maruyama W, Osawa T (2008) Formation of dopamine adducts derived from brain polyunsatu- rated fatty acids: Mechanism for Parkinson disease. J Biol Chem 283:34887–34895

    CAS  PubMed  PubMed Central  Google Scholar 

  • Llano DA, Devanarayan V, Simon AJ (2013) Alzheimer's disease neuroimaging I: evaluation of plasma proteomic data for Alzheimer disease state classification and for the prediction of progression from mild cognitive impairment to Alzheimer disease. Alzheimer Dis Assoc Disord 27(3):233–243

    CAS  PubMed  Google Scholar 

  • Iliff JJ, Wang M, Liao Y, Plogg BA, Peng W, Gundersen GA, Benveniste H, Vates GE, Deane R, Goldman SA, Nagelhus EA, (2012) A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Science translational medicine, 4(147):147ra111-147ra111.

  • Long J, Pan G, Ifeachor E, Belshaw R (2016) Li X, (2016) Discovery of novel biomarkers for Alzheimer’s disease from blood. Disease markers. https://doi.org/10.1155/2016/4250480

  • Lopez-Corcuera B, Geerlings A, Aragon C (2001) Glycine neurotransmitter transporters: An update. Mol Membr Biol 18:13–20

    CAS  PubMed  Google Scholar 

  • Luong KVQ, Nguyen LTH (2015) The role of caffeine in neurodegenerative diseases: possible genetic and cellular signal- ing mechanisms. In: Watson RR, Preedy VR (eds) Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease. Academic Press, Westminster, pp 261–279

    Google Scholar 

  • Mancuso M, Orsucci D, Siciliano G, Murri L (2008) Mitochondria, mitochondrial DNA and Alzheimer's disease. What comes first? Curr Alzheimer Res 5(5):457–468

    CAS  PubMed  Google Scholar 

  • Mansor NI, Ntimi CM, Abdul-Aziz NM, Ling KH, Adam A, Rosli R, Hassan Z, Nordin N (2021) Asymptomatic neurotoxicity of amyloid β-peptides (Aβ1-42 and Aβ25-35) on mouse embryonic stem cell-derived neural cells. Bosnian J Basic Med Sci 21(1):98–110

    CAS  Google Scholar 

  • Mapstone M, Cheema AK, Fiandaca MS, Zhong X, Mhyre TR, MacArthur LH, Hall WJ, Fisher SG, Peterson DR, Haley JM, Nazar MD (2014) Plasma phospholipids identify antecedent memory impairment in older adults. Nature Medicine 20(4):415–418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marksteiner J, Kemmler G, Weiss EM, Knaus G, Ullrich C, Mechtcheriakov S, Oberbauer H, Auffinger S, Hinterholzl J, Hinterhuber H et al (2011) Five out of 16 plasma signaling proteins are enhanced in plasma of patients with mild cognitive impairment and Alzheimer's disease. Neurobiol Aging. 32(3):539–540

    CAS  PubMed  Google Scholar 

  • Mattsson N, Andreasson U, Zetterberg H, Blennow K (2017) Association of plasma neurofilament light with neurodegeneration in patients with Alzheimer disease. JAMA Neurology 74(5):557–566

    PubMed  PubMed Central  Google Scholar 

  • Mattsson N, Zetterberg H, Janelidze S, Insel PS, Andreasson U, Stomrud E, Palmqvist S, Baker D, Hehir CAT, Jeromin A, Hanlon D (2016) Plasma tau in Alzheimer disease. Neurology 87(17):1827–1835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer's disease. Nature 430(7000):631–639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mayeux R (2004) Biomarkers: potential uses and limitations. NeuroRx 1(2):182–188. https://doi.org/10.1602/neurorx.1.2.182

    Article  PubMed  PubMed Central  Google Scholar 

  • Mayeux R, Saunders AM, Shea S, Mirra S, Evans D, Roses AD, Hyman BT, Crain B, Tang MX, Phelps CH (1998) Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer's disease. New England J Med 338(8):506–511

    CAS  Google Scholar 

  • Mayr FB, Yende S, Linde-Zwirble WT, Peck-Palmer OM, Barnato AE, Weissfeld LA, Angus DC (2010) Infection rate and acute organ dysfunction risk as explanations for racial differences in severe sepsis. Jama 303(24):2495–2503

    CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald KK, Aulas A, Destroismaisons L, Pickles S, Beleac E, Camu W, Rouleau GA, Vande Velde C (2011) TAR DNA-binding protein 43 (TDP-43) regulates stress granule dynamics via differential regulation of G3BP and TIA-1. Human Mol Gen 20(7):1400–1410

    CAS  Google Scholar 

  • Mehta PD, Pirttilä T, Mehta SP, Sersen EA, Aisen PS, Wisniewski HM (2000) Plasma and cerebrospinal fluid levels of amyloid β proteins 1-40 and 1-42 in Alzheimer disease. Arch Neurol 57(1):100–105

    CAS  PubMed  Google Scholar 

  • Mielke MM, Hagen CE, Xu J, Chai X, Vemuri P, Lowe VJ, Airey DC, Knopman DS, Roberts RO, Machulda MM, Jack CR Jr (2018) Plasma phospho-tau181 increases with Alzheimer's disease clinical severity and is associated with tau-and amyloid-positron emission tomography. Alzheimer’s & Dementia 14(8):989–997

    Google Scholar 

  • Mielke MM, Hagen CE, Wennberg AM, Airey DC, Savica R, Knopman DS, Machulda MM, Roberts RO, Jack CR, Petersen RC, Dage JL (2017) Association of plasma total tau level with cognitive decline and risk of mild cognitive impairment or dementia in the mayo clinic study on aging. JAMA Neurology 74(9):1073–1080

    PubMed  PubMed Central  Google Scholar 

  • Mitchell RM, Freeman WM, Randazzo WT, Stephens HE, Beard JL, Simmons Z, Connor JR (2009) A CSF biomarker panel for identification of patients with amyotrophic lateral sclerosis. Neurology 72(1):14–19

    CAS  PubMed  Google Scholar 

  • Modi G, Pillay V, Choonara YE, Ndesendo VM, du Toit LC, Naidoo D (2009) Nanotechnological applications for the treatment of neurodegenerative disorders. Progress Neurobiol 88(4):272–285

    CAS  Google Scholar 

  • Mollenhauer B, Dakna M, Kruse N, Galasko D, Foroud T, Zetterberg H, Schade S, Gera RG, Wang W, Gao F, Frasier M, Chahine LM, Coffey CS, Singleton AB, Simuni T, Weintraub D, Seibyl J, Toga AW, Tanner CM et al (2020) Validation of Serum Neurofilament Light Chain as a Biomarker of Parkinson’s Disease Progression. Mov Disord. https://doi.org/10.1002/mds.28206

  • Mollenhauer B, Locascio JJ, Schulz-Schaeffer W, Sixel-Döring F, Trenkwalder C, Schlossmacher MG (2011) α-Synuclein and tau concentrations in cerebrospinal fluid of patients presenting with parkinsonism: a cohort study. The Lancet Neurol 10(3):230–240

    CAS  PubMed  Google Scholar 

  • Möller C, Hafkemeijer A, Pijnenburg YA, Rombouts SA, van der Grond J, Dopper E, van Swieten J, Versteeg A, Pouwels PJ, Barkhof F, Scheltens P (2015) Joint assessment of white matter integrity, cortical and subcortical atrophy to distinguish AD from behavioral variant FTD: A two-center study. NeuroImage: Clinical 9:418–429

    Google Scholar 

  • Montine TJ, Markesbery WR, Morrow JD, Roberts LJ III (1998) Cerebrospinal fluid F2-isoprostane levels are increased in Alzheimer's disease. Annals Neurology 44(3):410–413

    CAS  Google Scholar 

  • Mormino EC, Kluth JT, Madison CM, Rabinovici GD, Baker SL, Miller BL, Koeppe RA, Mathis CA, Weiner MW, Jagust WJ, (2009) Alzheimer's Disease Neuroimaging Initiative*, Episodic memory loss is related to hippocampal-mediated β-amyloid deposition in elderly subjects. Brain, 132(5:1310-1323.

  • Mosconi L, Tsui WH, Herholz K, Pupi A, Drzezga A, Lucignani G, Reiman EM, Holthoff V, Kalbe E, Sorbi S, Diehl-Schmid J (2008) Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer's disease, and other dementias. J Nuclear Med 49(3):390–398

    Google Scholar 

  • Motoi Y, Hanger DP, Hasegawa M (2020) Tau Propagation Mechanisms: Cell Models, Animal Models, and Beyond. Front Neurosci, 14.

  • Motter N, Vigo-Pelfrey C, Kholodenko D, Barbour R, Johnson-Wood K, Galasko D, Chang L, Miller B, Clark C, Green R, Olson D (1995) Reduction of β-amyloid peptide42 in the cerebrospinal fluid of patients with Alzheimer's disease. Annals Neurol Official J Am Neurol Assoc Child Neurol Soc 38(4):643–648

    CAS  Google Scholar 

  • Multhaup G, Huber O, Buée L, and Galas MC. (2015). Amyloid precursor protein (APP) metabolites APP intracellular frag- ment (AICD), Ab42, and Tau in nuclear roles. J Biol Chem 290, 23515–23522.l

  • Münch C, Ebstein M, Seefried U, Zhu B, Stamm S, Landwehrmeyer GB, Ludolph AC, Schwalenstöcker B, Meyer T (2002) Alternative splicing of the 5′-sequences of the mouse EAAT2 glutamate transporter and expression in a transgenic model for amyotrophic lateral sclerosis. J Neurochem 82(3):594–603

    PubMed  Google Scholar 

  • Mussap M, Noto A, Cibecchini F, Fanos V (2013) The importance of biomarkers in neonatology. Semin Fetal Neonat M:56–64. https://doi.org/10.1016/j.siny.2012.10.006

  • Myers RH (2004) Huntington’s disease genetics. NeuroRx 1(2):255–262

    PubMed  PubMed Central  Google Scholar 

  • Nakamura A, Kaneko N, Villemagne VL, Kato T, Doecke J, Doré V, Fowler C, Li QX, Martins R, Rowe C, Tomita T (2018) High performance plasma amyloid-β biomarkers for Alzheimer’s disease. Nature 554(7691):249–254

    CAS  PubMed  Google Scholar 

  • Nabizadeh F, Rostami MR, Ahmadi N (2020) CSF total tau, plasma and CSF p tau 181 associated with structural changes in the early stage of Alzheimer's disease.

  • Naganska E, Matyja E (2011) Amyotrophic lateral sclerosis–looking for pathogenesis and effective therapy. Folia Neuropathologica 49(1):1–13

    PubMed  Google Scholar 

  • Nagaraj S, Laskowska-Kaszub K, Debski KJ, Wojsiat J, Dabrowski M, Gabryelewicz T, Kuznicki J, Wojda U (2017) Profile of 6 microRNA in blood plasma distinguish early stage Alzheimer's disease patients from non-demented subjects. Oncotarget 8(10):16122–16143

    PubMed  PubMed Central  Google Scholar 

  • Nagaraj S, Zoltowska KM, Laskowska-Kaszub K, Wojda U (2019) microRNA diagnostic panel for Alzheimer's disease and epigenetic trade-off between neurodegeneration and cancer. Ageing Res Rev 49:125–143

    CAS  PubMed  Google Scholar 

  • Nagesh Babu G, Gupta M, Paliwal VK, Singh S, Chatterji T, Roy R (2018) Serum metabolomics study in a group of Parkinson’s disease patients from northern India. Clin Chim Acta. https://doi.org/10.1016/j.cca.2018.02.022

  • Nelson PT, Dickson DW, Trojanowski JQ, Jack CR, Boyle PA, Arfanakis K, Rademakers R, Alafuzoff I, Attems J, Brayne C, Coyle-Gilchrist IT (2019) Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142(6):1503–1527

    PubMed  PubMed Central  Google Scholar 

  • Ng S, Villemagne VL, Berlangieri S, Lee ST, Cherk M, Gong SJ, Ackermann U, Saunder T, Tochon-Danguy H, Jones G, Smith C (2007) Visual assessment versus quantitative assessment of 11C-PIB PET and 18F-FDG PET for detection of Alzheimer's disease. J Nuclear Med 48(4):547–552

    CAS  Google Scholar 

  • Nordberg A (2011) Molecular imaging in Alzheimer's disease: new perspectives on biomarkers for early diagnosis and drug development. Alzheimer’s Res Ther 3(6):1–9

    Google Scholar 

  • O'brien JT (2007) Role of imaging techniques in the diagnosis of dementia. The British journal of radiology, 80(special_issue_2):S71-S77.

  • O'Bryant SE, Xiao G, Barber R, Reisch J, Doody R, Fairchild T, Adams P, Waring S, Diaz-Arrastia R (2010) Texas Alzheimer's research C: a serum protein- based algorithm for the detection of Alzheimer disease. Arch Neurol 67(9):1077–1081

    PubMed  PubMed Central  Google Scholar 

  • O'Bryant SE, Xiao G, Barber R, Huebinger R, Wilhelmsen K, Edwards M, Graff-Radford N, Doody R, Diaz-Arrastia R, Texas Alzheimer’s R (2011) A blood- based screening tool for Alzheimer's disease that spans serum and plasma: findings from TARC and ADNI. PLoS One 6(12):e28092

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Bryant SE, Xiao G, Zhang F, Edwards M, German DC, Yin X, Como T, Reisch J, Huebinger RM, Graff-Radford N (2014) Validation of a serum screen for Alzheimer's disease across assay platforms, species, and tissues. J Alzheimers Dis 42(4):1325–1335

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Bryant SE, Gupta V, Henriksen K, Edwards M, Jeromin A, Lista S, Bazenet C, Soares H, Lovestone S, Hampel H (2017a) Guidelines for the standardization of preanalytic variables for blood-based biomarker studies in Alzheimer's disease research. Alzheimers Dement 11(5):549–560

    Google Scholar 

  • O'Bryant SE, Mielke MM, Rissman RA, Lista S, Vanderstichele H, Zetterberg H, Lewczuk P, Posner H, Hall J, Johnson L (2017b) Blood-based biomarkers in Alzheimer disease: current state of the science and a novel collaborative paradigm for advancing from discovery to clinic. Alzheimers Dement 13(1):45–58

    PubMed  Google Scholar 

  • Olazaran J, Gil-de-Gomez L, Rodriguez-Martin A, Valenti-Soler M, Frades-Payo B, Marin-Munoz J, Antunez C, Frank-Garcia A, Acedo-Jimenez C, Morlan-Gracia L (2015) A blood-based, 7-metabolite signature for the early diagnosis of Alzheimer's disease. J Alzheimers Dis 45(4):1157–1173

    CAS  PubMed  Google Scholar 

  • Olsson B, Lautner R, Andreasson U, Öhrfelt A, Portelius E, Bjerke M, Hölttä M, Rosén C, Olsson C, Strobel G, Wu E (2016) CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis. Lancet Neurol 15(7):673–684

    CAS  PubMed  Google Scholar 

  • Olsson A, Höglund K, Sjögren M, Andreasen N, Minthon L, Lannfelt L, Buerger K, Möller HJ, Hampel H, Davidsson P, Blennow K (2003) Measurement of α-and β-secretase cleaved amyloid precursor protein in cerebrospinal fluid from Alzheimer patients. Exp Neurol 183(1):74–80

    CAS  PubMed  Google Scholar 

  • Ovod V, Ramsey KN, Mawuenyega KG, Bollinger JG, Hicks T, Schneider T, Sullivan M, Paumier K, Holtzman DM, Morris JC, Benzinger T (2017) Amyloid β concentrations and stable isotope labeling kinetics of human plasma specific to central nervous system amyloidosis. Alzheimer’s & Dementia 13(8):841–849

    Google Scholar 

  • Orešič M, Hyötyläinen T, Herukka SK, Sysi-Aho M, Mattila I, Seppänan-Laakso T, Julkunen V, Gopalacharyulu PV, Hallikainen M, Koikkalainen J, Kivipelto M (2011) Metabolome in progression to Alzheimer's disease. Trans Psych 1(12):e57–e57

    Google Scholar 

  • Ortiz GG, Pacheco-Moisés FP, González-Renovato ED, Figuera L, Macías-Islas MA, Mireles-Ramírez M, Flores-Alvarado LJ, Sánchez-López A, Nuño-Penilla DG, Velázquez-Brizuela IE, Sánchez-Luna JP, (2015) Genetic, biochemical and histopathological aspects of familiar Alzheimer's disease. In Alzheimer's Disease-Challenges for the Future. IntechOpen.

  • Öst M, Nylen K, Csajbok L, Öhrfelt AO, Tullberg M, Wikkelsö C, Nellgård P, Rosengren L, Blennow K, Nellgård B (2006) Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology 67(9):1600–1604

    PubMed  Google Scholar 

  • O'Suilleabhain PE, Sung V, Hernandez C, Lacritz L, Dewey RB Jr, Bottiglieri T, Diaz-Arrastia R (2004) Elevated plasma homocysteine level in patients with Parkinson disease: motor, affective, and cognitive associations. Arch Neurol 61(6):865–868

    PubMed  Google Scholar 

  • Otto M, Wiltfang J, Tumani H, Zerr I, Lantsch M, Kornhuber J, Weber T, Kretzschmar HA, Poser S (1997) Elevated levels of tau-protein in cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. Neurosci Lett 225(3):210–212

    CAS  PubMed  Google Scholar 

  • Ottoy J, Niemantsverdriet E, Verhaeghe J, De Roeck E, Struyfs H, Somers C, Ceyssens S, Van Mossevelde S, Van den Bossche T, Van Broeckhoven C, Ribbens A (2019) Association of short-term cognitive decline and MCI-to-AD dementia conversion with CSF, MRI, amyloid-and 18F-FDG-PET imaging. NeuroImage: Clinical 22:101771

    Google Scholar 

  • Paciotti S, Bellomo G, Gatticchi L, Parnetti L (2018) Are we ready for detecting α-synuclein prone to aggregation in patients? The case of “protein-misfolding cyclic amplification” and “real-time quaking-induced conversion” as diagnostic tools. Front Neurol 9:415

    PubMed  PubMed Central  Google Scholar 

  • Paglia G, Stocchero M, Cacciatore S, et al. (2016). Unbiased metabolomic investigation of Alzheimer’s disease brain points to dysregulation of mitochondrial aspartate metabo- lism. J Proteome Res 15, 608–618.

  • Palmqvist S, Insel PS, Stomrud E, Janelidze S, Zetterberg H, Brix B, Eichenlaub U, Dage JL, Chai X, Blennow K, Mattsson N (2019) Cerebrospinal fluid and plasma biomarker trajec- tories with increasing amyloid deposition in Alzheimer’s disease. EMBO Mol. Med 11:e11170

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pahnke J, Langer O, Krohn M (2014) Alzheimer’s and ABC transporters—new opportunities for diagnostics and treatment. Neurobiol Disease 72:54–60

    CAS  Google Scholar 

  • Parton MJ, Broom W, Andersen PM, Al-Chalabi A, Nigel Leigh P, Powell JF, Shaw CE (2002) D90A SOD1 ALS Consortium, D90A-SOD1 mediated amyotrophic lateral sclerosis: a single founder for all cases with evidence for a Cis-acting disease modifier in the recessive haplotype. Human Mutation 20(6):473–473

    PubMed  Google Scholar 

  • Pawlitzki M, Schreiber S, Bittner D, Kreipe J, Leypoldt F, Rupprecht K, Carare RO, Meuth SG, Vielhaber S, Körtvélyessy P (2018) CSF neurofilament light chain levels in primary progressive MS: signs of axonal neurodegeneration. Front Neurol 9:1037

    PubMed  PubMed Central  Google Scholar 

  • Peng M, Jia J, Qin W (2015) Plasma gelsolin and matrix metalloproteinase 3 as potential biomarkers for Alzheimer disease. Neurosci Lett 595:116–121

    CAS  PubMed  Google Scholar 

  • Petersén Å, Björkqvist M (2006) Hypothalamic–endocrine aspects in Huntington's disease. Eur J Neurosci 24(4):961–967

    PubMed  Google Scholar 

  • Pike KE, Savage G, Villemagne VL, Ng S, Moss SA, Maruff P, Mathis CA, Klunk WE, Masters CL, Rowe CC (2007) β-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer's disease. Brain 130(11):2837–2844

    PubMed  Google Scholar 

  • Portelius E, Zetterberg H, Gobom J, Andreasson U, Blennow K (2008) Targeted proteomics in Alzheimer’s disease: focus on amyloid-β. Exp Rev Proteomics 5(2):225–237

    CAS  Google Scholar 

  • Poulin SP, Bergeron D, Dickerson BC (2017) Risk factors, neuroanatomical correlates, and outcome of neuropsychiatric symptoms in Alzheimer’s disease. J Alzheimer’s Disease 60(2):483–493

    CAS  Google Scholar 

  • Preece P, Virley DJ, Costandi M, Coombes R, Moss SJ, Mudge AW, Jazin E, Cairns NJ (2004) Amyloid precursor protein mRNA levels in Alzheimer's disease brain. Mol Brain Res 122(1):1–9

    CAS  PubMed  Google Scholar 

  • Prins ML (2008) Cerebral metabolic adaptation and ketone me- tabolism after brain injury. J Cereb Blood Flow Metab 28:1–16

    CAS  PubMed  Google Scholar 

  • Procaccini C, Santopaolo M, Faicchia D, Colamatteo A, Formisano L, De Candia P, Galgani M, De Rosa V, Matarese G (2016) Role of metabolism in neurodegenerative disorders. Metabolism 65:1376–1390

    CAS  PubMed  Google Scholar 

  • Przedborski S, Vila M, Jackson-Lewis V, (2003) Series Introduction: Neurodegeneration: What is it and where are we?. J Clin Invest, 111(1):3-10.

  • Pyatigorskaya N, Gallea C, Garcia-Lorenzo D, Vidailhet M, and Lehericy S, (2014) A review of the use of magnetic resonance imaging in Parkinson’s disease. Ther. Adv. Neurol. Disord.

  • Querbes O, Aubry F, Pariente J, Lotterie JA, Démonet JF, Duret V, Puel M, Berry I, Fort JC, Celsis P (2009) Alzheimer's Disease Neuroimaging Initiative, Early diagnosis of Alzheimer's disease using cortical thickness: impact of cognitive reserve. Brain 132(8):2036–2047

    PubMed  PubMed Central  Google Scholar 

  • Quinn JF, Montine KS, Moore M, Morrow JD, Kaye JA, Montine TJ (2004) Suppression of longitudinal increase in CSF F 2-isoprostanes in Alzheimer's disease. J Alzheimer’s Disease 6(1):93–97

    CAS  Google Scholar 

  • Rachakonda V, Pan TH, Le WD (2004) Biomarkers of neurodegenerative disorders: how good are they? Cell Research 14(5):349–358

    Google Scholar 

  • Ray S, Britschgi M, Herbert C, Takeda-Uchimura Y, Boxer A, Blennow K, Friedman LF, Galasko DR, Jutel M, Karydas A, Kaye JA (2007) Classification and prediction of clinical Alzheimer's diagnosis based on plasma signaling proteins. Nat Med. 13(11):1359–1362

    CAS  PubMed  Google Scholar 

  • Reich SG, Savitt JM (2019) Parkinson’s Disease. Med Clin North Am 103:337–350. https://doi.org/10.1016/j.mcna.2018.10.014

    Article  PubMed  Google Scholar 

  • Ren R, Sun Y, Zhao X, Pu X, (2015) Recent advances in biomarkers for Parkinson’s disease focusing on biochemicals, omics and neuroimaging. Clin. Chem. Lab. Med.

  • Repici M, Hassanjani M, Maddison DC, Garção P, Cimini S, Patel B, Szegö EM, Straatman KR, Lilley KS, Borsello T, Outeiro TF, Panman L, Giorgini F (2019) The Parkinson’s Disease-Linked Protein DJ-1 Associates with Cytoplasmic mRNP Granules During Stress and Neurodegeneration. Mol Neurobiol 56:61–77. https://doi.org/10.1007/s12035-018-1084-y

    Article  CAS  PubMed  Google Scholar 

  • Reynolds NC Jr, Hellman RS, Tikofsky RS, Prost RW, Mark LP, Elejalde BR, Lebel R, Hamsher KS, Swanson S, Benezra EE (2002) Single photon emission computerized tomography (SPECT) in detecting neurodegeneration in Huntington's disease. Nuclear Med Commun 23(1):13–18

    Google Scholar 

  • Riemenschneider M, Wagenpfeil S, Vanderstichele H, Otto M, Wiltfang J, Kretzschmar H, Vanmechelen E, Förstl H, Kurz A (2003) Phospho-tau/total tau ratio in cerebrospinal fluid discriminates Creutzfeldt–Jakob disease from other dementias. Mol Psych 8(3):343–347

    CAS  Google Scholar 

  • Robinson JL, Lee EB, Xie SX, Rennert L, Suh E, Bredenberg C, Caswell C, Van Deerlin VM, Yan N, Yousef A, Hurtig HI (2018) Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain 141(7):2181–2193

    PubMed  PubMed Central  Google Scholar 

  • Rogaev EI, Sherrington R, Rogaeva EA, Levesque G, Ikeda M, Liang Y, Chi H, Lin C, Holman K, Tsuda T, Mar L (1995) Familial Alzheimer's disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer's disease type 3 gene. Nature 376(6543):775–778

    CAS  PubMed  Google Scholar 

  • Roos RA (2010) Huntington's disease: a clinical review. Orphanet J rare diseas 5(1):1–8

    Google Scholar 

  • Ross CA, Shoulson I (2009) Huntington disease: pathogenesis, biomarkers, and approaches to experimental therapeutics. Parkinsonism & Related Disorders 15:S135–S138

    Google Scholar 

  • Rowland A, Ruanglertboon W, van Dyk M, Wijayakumara D, Wood LS, Meech R, Mackenzie PI, Rodrigues AD, Marshall JC, Sorich MJ (2019) Plasma extracellular nanovesicle (exosome)-derived biomarkers for drug metabolism pathways: a novel approach to characterize variability in drug exposure. British J Clin Pharmacol 85(1):216–226

    CAS  Google Scholar 

  • Sair HI, Doraiswamy PM, Petrella JR (2004) In vivo amyloid imaging in Alzheimer’s disease. Neuroradiology 46(2):93–104

    CAS  PubMed  Google Scholar 

  • Saft C, Zange J, Andrich J, Müller K, Lindenberg K, Landwehrmeye B, Vorgerd M, Kraus PH, Przuntek H, Schöls L (2005) Mitochondrial impairment in patients and asymptomatic mutation carriers of Huntington's disease. Movement Disorders: Official J Movement Disorder Soc 20(6):674–679

    Google Scholar 

  • Sako W, Murakami N, Izumi Y, Kaji R (2015) Neurofilament light chain level in cerebrospinal fluid can differentiate Parkinson’s disease from atypical parkinsonism: Evidence from a meta-analysis. J Neurol Sci. https://doi.org/10.1016/j.jns.2015.03.041

  • Sämgård, K., Zetterberg, H., Blennow, K., Hansson, O., Minthon, L., & Londos, E. (2010). Cerebrospinal fluid total tau as a marker of Alzheimer's disease intensity. International Journal of Geriatric Psychiatry: A journal of the psychiatry of late life and allied sciences, 25(4), 403-410.

  • Sathya M, Premkumar P, Karthick C, Moorthi P, Jayachandran KS, Anusuyadevi M (2012) BACE1 in Alzheimer's disease. Clinica Chimica Acta 414:171–178

    CAS  Google Scholar 

  • Sato S, Kamino K, Miki T, Doi A, Ii K, St George-Hyslop PH, Ogihara T, Sakaki Y (1998) Splicing mutation of presenilin-1 gene for early-onset familial Alzheimer's disease. Human Mutation 11(S1):S91–S94

    Google Scholar 

  • Scheltens P, Fox N, Barkhof F, De Carli C (2002) Structural magnetic resonance imaging in the practical assessment of dementia: beyond exclusion. Lancet Neurol 1(1):13–21

    PubMed  Google Scholar 

  • Scholl M, Maass A, Mattsson N, Ashton NJ, Blennow K, Zet- terberg H, et al. Biomarkers for tau pathology. Mol Cell Neu- rosci. 2019;97:18–33.

  • Schuff N, Rooney WD, Miller R, Gelinas DF, Amend DL, Maudsley AA, Weiner MW (2001) Reanalysis of multislice 1H MRSI in amyotrophic lateral sclerosis. Magnetic Resonance Med Official J Intl Soc Magnet Resonance Med 45(3):513–516

    CAS  Google Scholar 

  • Sennvik K, Fastbom J, Blomberg M, Wahlund LO, Winblad B, Benedikz E (2000) Levels of α-and β-secretase cleaved amyloid precursor protein in the cerebrospinal fluid of Alzheimer's disease patients. Neurosci Lett 278(3):169–172

    CAS  PubMed  Google Scholar 

  • Selkoe DJ, Schenk D (2003) Alzheimer's disease: molecular understanding predicts amyloid-based therapeutics. Ann Rev Pharmacol Toxicol 43(1):545–584

    CAS  Google Scholar 

  • Shi L, Baird AL, Westwood S, Hye A, Dobson R, Thambisetty M, Lovestone S (2018a) A decade of blood biomarkers for Alzheimer's disease research: An evolving field, improving study designs, and the challenge of replication. J Alzheimers Dis 62(3):1181–1198

    PubMed  PubMed Central  Google Scholar 

  • Shi M, Tang L, Toledo JB, Ginghina C, Wang H, Aro P, Jensen PH, Weintraub D, Chen-Plotkin AS, Irwin DJ, Grossman M (2018b) Cerebrospinal fluid α-synuclein contributes to the differential diagnosis of Alzheimer's disease. Alzheimer’s & Dementia 14(8):1052–1062

    Google Scholar 

  • Shi M, Kovac A, Korff A, Cook TJ, Ginghina C, Bullock KM, Yang L, Stewart T, Zheng D, Aro P, Atik A, Kerr KF, Zabetian CP, Peskind ER, Hu SC, Quinn JF, Galasko DR, Montine TJ, Banks WA, Zhang J (2016) CNS tau efflux via exosomes is likely increased in Parkinson’s disease but not in Alzheimer’s disease. Alzheimer’s Dement. https://doi.org/10.1016/j.jalz.2016.04.003

  • Shi M, Caudle WM, Zhang J (2009) Biomarker discovery in neurodegenerative diseases: a proteomic approach. Neurobiol Disease 35(2):157–164

    CAS  Google Scholar 

  • Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, Read S, Satyamurthy N, Petric A, Huang SC, Barrio JR (2002) Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psych 10(1):24–35

    Google Scholar 

  • Simpson EP, Yen AA, Appel SH (2003) Oxidative stress: a common denominator in the pathogenesis of amyotrophic lateral sclerosis. Curr Opinion Rheumatol 15(6):730–736

    CAS  Google Scholar 

  • Sjögren M, Andreasen N, Blennow K (2003) Advances in the detection of Alzheimer's disease—use of cerebrospinal fluid biomarkers. Clinica Chimica Acta 332(1-2):1–10

    Google Scholar 

  • Small BJ, Fratiglioni L, Viitanen M, Winblad B, Bäckman L (2000) The course of cognitive impairment in preclinical Alzheimer disease: three-and 6-year follow-up of a population-based sample. Arch Neurol 57(6):839–844

    CAS  PubMed  Google Scholar 

  • Śmigielska-Kumzia J, Sobaniec W, (2007) Brain metabolic profile obtained by proton magnetic resonance spectroscopy HMRS in children with Down syndrome. Advances in Medical Sciences (De Gruyter Open), 52.

  • Smith MA, Brandt J, Shadmehr R (2000) Motor disorder in Huntington's disease begins as a dysfunction in error feedback control. Nature 403(6769):544–549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Soares HD, Chen Y, Sabbagh M, Roher A, Schrijvers E, Breteler M (2009) Identifying early markers of Alzheimer's disease using quantitative multiplex proteomic immunoassay panels. Ann N Y Acad Sci. 1180:56–67

    CAS  PubMed  Google Scholar 

  • Song F, Poljak A, Smythe GA, Sachdev P (2009) Plasma biomarkers for mild cognitive impairment and Alzheimer's disease. Brain Res Rev 61(2):69–80

    CAS  PubMed  Google Scholar 

  • St George-Hyslop PH, Tanzi RE, Polinsky RJ, Haines JL, Nee L, Watkins PC, Myers RH, Feldman RG, Pollen D, Drachman D (1987) The genetic defect causing familial Alzheimer's disease maps on chromosome 21. Science 235(4791):885–890

    CAS  PubMed  Google Scholar 

  • Staffaroni AM, Kramer AO, Casey M, Kang H, Rojas JC, Orrú CD, Caughey B, Allen IE, Kramer JH, Rosen HJ, Blennow K (2019) Association of blood and cerebrospinal fluid tau level and other biomarkers with survival time in sporadic Creutzfeldt-Jakob disease. JAMA Neurology 76(8):969–977

    PubMed  PubMed Central  Google Scholar 

  • Stefanis, L, (2012) α-Synuclein in Parkinson's disease. Cold Spring Harbor perspectives in medicine, 2(2):a009399.

  • Steinacker P, Barschke P, Otto M (2019) Biomarkers for diseases with TDP-43 pathology. Mol Cell Neurosci 97:43–59

    CAS  PubMed  Google Scholar 

  • Steinfeld B, Scott J, Vilander G, Marx L, Quirk M, Lindberg J, Koerner K (2015) The role of lean process improvement in implementation of evidence-based practices in behavioral health care. J Behav Health Services Res 42(4):504–518

    Google Scholar 

  • Stilund M, Gjelstrup MC, Petersen T, Møller HJ, Rasmussen PV, Christensen T (2015) Biomarkers of inflammation and axonal degeneration/damage in patients with newly diagnosed multiple sclerosis: contributions of the soluble CD163 CSF/serum ratio to a biomarker panel. PloS one 10(4):e0119681

    PubMed  PubMed Central  Google Scholar 

  • Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV Aids 5(6):463–466. https://doi.org/10.1097/COH.0b013e32833ed177

    Article  PubMed  PubMed Central  Google Scholar 

  • Strozyk D, Blennow K, White LR, Launer LJ (2003) CSF Aβ 42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology 60(4):652–656

    CAS  PubMed  Google Scholar 

  • Sunderland T, Linker G, Mirza N, Putnam KT, Friedman DL, Kimmel LH, Bergeson J, Manetti GJ, Zimmermann M, Tang B, Bartko JJ (2003) Decreased β-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with Alzheimer disease. Jama 289(16):2094–2103

    PubMed  Google Scholar 

  • Sweeney MD, Montagne A, Sagare AP, Nation DA, Schneider LS, Chui HC, Harrington MG, Pa J, Law M, Wang DJ, Jacobs RE (2019) Vascular dysfunction—the disregarded partner of Alzheimer's disease. Alzheimer’s & Dementia 15(1):158–167

    Google Scholar 

  • Szelechowski M, Amoedo N, Obre E, Léger C, Allard L, Bonneu M, Claverol S, Lacombe D, Oliet S, Chevallier S, Le Masson G (2018) Metabolic reprogramming in amyotrophic lateral sclerosis. Scientific Reports 8(1):1–14

    CAS  Google Scholar 

  • Takashima A (2013) Tauopathies and tau oligomers. J Alzheimer’s Disease 37(3):565–568

    Google Scholar 

  • Tang K, Hynan LS, Baskin F, Rosenberg RN (2006) Platelet amyloid precursor protein processing: a bio-marker for Alzheimer's disease. J Neurol Sci 240(1-2):53–58

    CAS  PubMed  Google Scholar 

  • Tanzi RE, Bertram L (2005) Twenty years of the Alzheimer’s disease amyloid hypothesis: a genetic perspective. Cell 120(4):545–555

    CAS  PubMed  Google Scholar 

  • Tapiola T, Alafuzoff I, Herukka SK, Parkkinen L, Hartikainen P, Soininen H, Pirttilä T (2009) Cerebrospinal fluid β-amyloid 42 and tau proteins as biomarkers of Alzheimer-type pathologic changes in the brain. Arch Neurol 66(3):382–389

    PubMed  Google Scholar 

  • Tatebe H, Kasai T, Ohmichi T, Kishi Y, Kakeya T, Waragai M, Kondo M, Allsop D, Tokuda T (2017) Quantification of plasma phosphorylated tau to use as a biomarker for brain Alzheimer pathology: pilot case-control studies including patients with Alzheimer’s disease and down syndrome. Mol Neurodegen 12(1):1–11

    Google Scholar 

  • Terry, R. L., Ifergan, I., & Miller, S. D. (2014). Experimental autoimmune encephalomyelitis in mice. In Multiple Sclerosis (pp. 145-160). Humana Press, New York, NY.

  • Thakur P, Breger LS, Lundblad M, Wan OW, Mattsson B, Luk KC, Lee VMY, Trojanowski JQ, Björklund A (2017) Modeling Parkinson’s disease pathology by combination of fibril seeds and α-synuclein overexpression in the rat brain. Proc Natl Acad Sci 114:E8284–E8293. https://doi.org/10.1073/pnas.1710442114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thal, L.J., Kantarci, K., Reiman, E.M., Klunk, W.E., Weiner, M.W., Zetterberg, H., Galasko, D., Praticò, D., Griffin, S., Schenk, D. and Siemers, E., 2006. The role of biomarkers in clinical trials for Alzheimer disease. Alzheimer disease and associated disorders, 20(1), p.6.

  • Thurfjell L, Lötjönen J, Lundqvist R, Koikkalainen J, Soininen H, Waldemar G, Brooks DJ, Vandenberghe R (2012) Combination of biomarkers: PET [18F] flutemetamol imaging and structural MRI in dementia and mild cognitive impairment. Neurodegen Diseases 10(1-4):246–249

    CAS  Google Scholar 

  • Tian C, Liu G, Gao L, Soltys D, Pan C, Stewart T, Shi M, Xie Z, Liu N, Feng T, Zhang J (2019) Erythrocytic α-Synuclein as a potential biomarker for Parkinson’s disease. Transl Neurodegener. https://doi.org/10.1186/s40035-019-0155-y

  • Toczylowska B, Jamrozik Z, Liebert A, Kwiecinski H (2013) NMR-based metabonomics of cerebrospinal fluid applied to amyotrophic lateral sclerosis. Biocybern Biomed Eng 33:21–32

    Google Scholar 

  • Tolboom N, van der Flier WM, Yaqub M, Boellaard R, Verwey NA, Blankenstein MA, Windhorst AD, Scheltens P, Lammertsma AA, van Berckel BN (2009) Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding. J Nuclear Med 50(9):1464–1470

    CAS  Google Scholar 

  • Toledo JB, Arnold SE, Raible K, Brettschneider J, Xie SX, Grossman M, Monsell SE, Kukull WA, Trojanowski JQ (2013) Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain 136(9):2697–2706

    PubMed  PubMed Central  Google Scholar 

  • Toledo JB, Toledo E, Weiner MW, Jack CR Jr, Jagust W, Lee VMY, Shaw LM, Trojanowski JQ, Initiative A's DN (2012) Cardiovascular risk factors, cortisol, and amyloid-β deposition in Alzheimer's Disease Neuroimaging Initiative. Alzheimer’s & Dementia 8(6):483–489

    CAS  Google Scholar 

  • Trupp M, Jonsson P, Ohrfelt A, Zetterberg H, Obudulu O, Malm L, Wuolikainen A, Linder J, Moritz T, Blennow K, Antti H (2014) Metabolite and peptide levels in plasma and CSF differentiating healthy controls from patients with newly diagnosed Parkinson’s disease. J Parkinsons Dis 4:549–560

    CAS  PubMed  Google Scholar 

  • Trushina E, Mielke MM (2014) Recent advances in the application of metabolomics to Alzheimer's Disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease 1842(8):1232–1239

    CAS  Google Scholar 

  • Twamley EW, Ropacki SAL, Bondi MW (2006) Neuropsychological and neuroimaging changes in preclinical Alzheimer's disease. J Intl Neuropsychol Soc: JINS 12(5):707

    Google Scholar 

  • Tysoe C, Whittaker J, Xuereb J, Cairns NJ, Cruts M, Van Broeckhoven C, Wilcock G, Rubinsztein DC (1998) A presenilin-1 truncating mutation is present in two cases with autopsy-confirmed early-onset Alzheimer disease. Am J Human Gen 62(1):70–76

    CAS  Google Scholar 

  • Uchida K, Shan L, Suzuki H, Tabuse Y, Nishimura Y, Hirokawa Y, Mizukami K, Akatsu H, Meno K, Asada T (2015) Amyloid-beta sequester proteins as blood-based biomarkers of cognitive decline. Alzheimers Dement (Amst) 1(2):270–280

    Google Scholar 

  • Underwood BR, Broadhurst D, Dunn WB, Ellis DI, Michell AW, Vacher C, Mosedale DE, Kell DB, Barker RA, Grainger DJ, Rubinsztein DC (2006) Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles. Brain 129(4):877–886

    PubMed  Google Scholar 

  • Ujiie M, Dickstein DL, Jefferies WA (2002) p97 as a biomarker for Alzheimer disease. Front Biosci J Virtual Library 7:e42–e47

    CAS  Google Scholar 

  • Vanderstichele H, De Vreese K, Blennow K, Andreasen N, Sindic C, Ivanoiu A, Hampel H, Bürger K, Parnetti L, Lanari A, Padovani A (2006) Analytical performance and clinical utility of the INNOTEST® PHOSPHO-TAU (181P) assay for discrimination between Alzheimer's disease and dementia with Lewy bodies. Clin Chem Lab Med(CCLM) 44(12):1472–1480

    CAS  Google Scholar 

  • Verberk IM, Slot RE, Verfaillie SC, Heijst H, Prins ND, van Berckel, B.N., Scheltens, P, Teunissen CE, van der Flier WM, (2018) Plasma Amyloid as Prescreener for the Earliest A lzheimer Pathological Changes. Annals Neurol, 84(5):.648-658.

  • Vigo-Pelfrey C, Seubert PP, Barbour R, Blomquist C, Lee M, Lee D, Coria F, Chang L, Miller B, Lieberburg I, Schenk D (1995) Elevation of microtubule-associated protein tau in the cerebrospinal fluid of patients with Alzheimer's disease. Neurology 45(4):788–793

    CAS  PubMed  Google Scholar 

  • Villa C, Lavitrano M, Salvatore E, Combi R (2020) Molecular and Imaging Biomarkers in Alzheimer’s Disease: A Focus on Recent Insights. J Personal Med 10(3):61

    Google Scholar 

  • Vimal SK, Zuo H, Wang Z, Wang H, Long Z, Bhattacharyya S (2020) Self-Therapeutic Nanoparticle That Alters Tau Protein and Ameliorates Tauopathy Toward a Functional Nanomedicine to tackle Alzheimer’s. Small 16(16):1906861

    CAS  Google Scholar 

  • Vos K, Steenbakkers P, Miltenburg AMM, Bos E, van Den Heuvel MW, Van Hogezand RA, De Vries RRP, Breedveld FC, Boots AMH (2000) Raised human cartilage glycoprotein-39 plasma levels in patients with rheumatoid arthritis and other inflammatory conditions. Annals Rheumatic Diseases 59(7):544–548

    CAS  Google Scholar 

  • Vozza A, Parisi G, De Leonardis F, Lasorsa FM, Castegna A, Amorese D, Marmo R, Calcagnile VM, Palmieri L, Ricquier D, Paradies E (2014) UCP2 transports C4 metabolites out of mitochondria, regulating glucose and glutamine oxidation. Proc Natl Acad Sci 111(3):960–965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wallin A, Blennow K, Fredman P, Gottfries CG, Karlsson I, Svennerholm L (1990) Blood brain barrier function in vascular dementia. Acta Neurologica Scandinavica 81(4):318–322

    CAS  PubMed  Google Scholar 

  • Wallin A, Blennow K, Rosengren L, (1999) Cerebrospinal fluid markers of pathogenetic processes in vascular dementia, with special reference to the subcortical subtype. Alzheimer disease and associated disorders, 13, S102-5.

  • Wang G, Zhou Y, Huang FJ, Tang HD, Xu XH, Liu JJ, Wang Y, Deng YL, Ren RJ, Xu W, Ma JF (2014) Plasma metabolite profiles of Alzheimer's disease and mild cognitive impairment. J Proteome Res 13(5):2649–2658

    CAS  PubMed  Google Scholar 

  • Wattamwar PR, Mathuranath PS (2010) An overview of biomarkers in Alzheimer’s disease. Annals Indian Acad Neurol 13(Suppl2):S116

    Google Scholar 

  • Weintraub S, Wicklund AH, Salmon DP (2012) The neuropsychological profile of Alzheimer disease. Cold Spring Harbor Perspectives Med 2(4):a006171

    Google Scholar 

  • Wesenhagen KE, Teunissen CE, Visser PJ, Tijms BM (2020) Cerebrospinal fluid proteomics and biological heterogeneity in Alzheimer’s disease: a literature review. Critical Rev in Clin Lab Sci 57(2):86–98

    CAS  Google Scholar 

  • Wen M, Zhou B, Chen YH, Ma ZL, Gou Y, Zhang CL, Yu WF, Jiao L (2017) Serum uric acid levels in patients with Parkinson’s disease: A meta-analysis. PLoS One. https://doi.org/10.1371/journal.pone.0173731

  • Weston PS, Poole T, Ryan NS, Nair A, Liang Y, Macpherson K, Druyeh R, Malone IB, Ahsan RL, Pemberton H, Klimova J (2017) Serum neurofilament light in familial Alzheimer disease: a marker of early neurodegeneration. Neurology 89(21):2167–2175

    PubMed  PubMed Central  Google Scholar 

  • Whitwell JL, Petersen RC, Negash S, Weigand SD, Kantarci K, Ivnik R.J, Knopman DS, Boeve BF, Smith GE, Jack CR, (2007) Patterns of atrophy differ among specific subtypes of mild cognitive impairment. Arch Neurol, 64(8):1130-1138.

  • Wisniewski T, Ghiso J, Frangione B (1991) Peptides homologous to the amyloid protein of Alzheimer's disease containing a glutamine for glutamic acid substitution have accelerated amyloid fibril formation. BBRC 179(3):1247–1254

    CAS  PubMed  Google Scholar 

  • Wuolikainen A, Moritz T, Marklund SL, Antti H, Andersen PM (2011) Disease-related changes in the cerebrospinal fluid metabolome in amyotrophic lateral sclerosis detected by GC/TOFMS. PLoS One 6:e17947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagishi Y, Saigoh K, Saito Y, Ogawa I, Mitsui Y, Hamada Y, Samukawa M, Suzuki H, Kuwahara M, Hirano M, Noguchi N, Kusunoki S (2018) Diagnosis of Parkinson’s disease and the level of oxidized DJ-1 protein. Neurosci Res. https://doi.org/10.1016/j.neures.2017.06.008

  • Yang CC, ChiuMJ CTF, Chang HL, Liu BH, Yang SY (2018) Assay of plasma phosphorylated tau protein (threonine 181) and total tau protein in early-stage Alzheimer’s disease. J Alzheimer's Disease 61(4):1323–1332

    CAS  Google Scholar 

  • Yilmaz A, Blennow K, Hagberg L, Nilsson S, Price RW, Schouten J, Spudich S, Underwood J, Zetterberg H, Gisslén M (2017) Neurofilament light chain protein as a marker of neuronal injury: review of its use in HIV-1 infection and reference values for HIV-negative controls. Exp Rev Mol Diag 17(8):761–770

    CAS  Google Scholar 

  • Yuan A, Sasaki T, Kumar A, Peterhoff CM, Rao MV, Liem RK, Julien JP, Nixon RA (2012) Peripherin is a subunit of peripheral nerve neurofilaments: implications for differential vulnerability of CNS and peripheral nervous system axons. J Neurosci 32(25):8501–8508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuste JE, Tarragon E, Campuzano CM, Ros-Bernal F (2015) Implications of glial nitric oxide in neurodegenerative diseases. Front Cell Neurosci 9:322

    PubMed  PubMed Central  Google Scholar 

  • Zendjabil M (2018) Circulating microRNAs as novel biomarkers of Alzheimer's disease. Clin Chim Acta 484:99–104

    CAS  PubMed  Google Scholar 

  • Zetterberg H, Andreasson U, Hansson O, Wu G, Sankaranarayanan S, Andersson ME, Buchhave P, Londos E, Umek RM, Minthon L, Simon AJ (2008) Elevated cerebrospinal fluid BACE1 activity in incipient Alzheimer disease. Arch Neurol 65(8):1102–1107

    PubMed  Google Scholar 

  • Zetterberg H, Mörtberg E, Song L, Chang L, Provuncher GK, Patel PP, Ferrell E, Fournier DR, Kan CW, Campbell TG, Meyer R (2011) Hypoxia due to cardiac arrest induces a time-dependent increase in serum amyloid β levels in humans. PloS one 6(12):e28263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zetterberg H, Wilson D, Andreasson U, Minthon L, Blennow K, Randall J, Hansson O (2013) Plasma tau levels in Alzheimer's disease. Alzheimer’s Res Ther 5(2):1–3

    Google Scholar 

  • Zetterberg, H., & Burnham, S. C. (2019). Blood-based molecular biomarkers for Alzheimer’s disease. Molecular brain, 12(1), 1-7.

  • Zetterberg H, Bendlin BB, (2020) Biomarkers for Alzheimer’s disease—preparing for a new era of disease-modifying therapies. Mol Psych, 1-13.

  • Zlotnik A, Sinelnikov I, Gruenbaum BF, Gruenbaum SE, Dubilet M, Dubilet E, Leibowitz A, Ohayon S, Regev A, Boyko M, Shapira Y (2012) Effect of glutamate and blood glutamate scavengers oxaloacetate and pyruvate on neurological outcome and pathohistology of the hippocampus after traumatic brain injury in rats. Anesthesiology 116:73–83

    CAS  PubMed  Google Scholar 

  • Zhao X, Lejnine S, Spond J, Zhang C, Ramaraj TC, Holder DJ, Dai H, Weiner R, Laterza OF (2013) A candidate plasma protein classifier to identify Alzheimer's disease. J Alzheimers Dis 43(2):549–563

    Google Scholar 

  • Zhang J, Jia J, Qin W, Wang S (2013) Combination of plasma tumor necrosis factor receptors signaling proteins, beta-amyloid and apolipoprotein E for the detection of Alzheimer's disease. Neurosci Lett 541:99–104

    CAS  PubMed  Google Scholar 

  • Zhong Z, Ewers M, Teipel S, Bürger K, Wallin A, Blennow K, He P, McAllister C, Hampel H, Shen Y (2007) Levels of β-secretase (BACE1) in cerebrospinal fluid as a predictor of risk in mild cognitive impairment. Arch Gen Psych 64(6):718–726

    CAS  Google Scholar 

  • Zhu H, Bogdanov MB, Boyle SH, Matson W, Sharma S, Matson S, Churchill E, Fiehn O, Rush JA, Krishnan RR, Pickering E (2013) Pharmacometabolomics of response to sertraline and to placebo in major depressive disorder–possible role for methoxyindole pathway. PloS one 8(7):e68283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zurbig P, Jahn H (2012) Use of proteomic methods in the analysis of human body fluids in Alzheimer research. Electrophoresis. 33(24):3617–3630

    PubMed  Google Scholar 

  • Author (1995) Cerebrospinal fluid homovanillic acid in the datatop study on parkinson’s disease. Arch Neurol. https://doi.org/10.1001/archneur.1995.00540270025015

Download references

Funding Supports and Acknowledgements

This was partly supported by Southwest University, Chongqing China to Prof. Sanjib Bhattacharyya (SWU Grant 5330500183). Lokesh Agarwal would like to acknowledge Prof. Shiga Takashi (University of Tsukuba) for his support for the visit to Bhattacharya lab (College of Pharmacy, Southwest University, China) and financial support from the self-inspired study travel grant (201730285, 2018) provided by the University of Tsukuba, Japan.

Data Availability Statement

Manuscript don’t contain any specific data since this is a review article, not an original research article. All the relevant figures are used with appropriate copyright permissions.

Author information

Authors and Affiliations

Authors

Contributions

NP wrote the substantial part of the manuscript whereas Parkinsonism part is written by IT. SKB and LA worked on making figure and chart for the manuscript. CH also have written a small part of the draft. SB has outlined the details, literature collection and conceptualized the total manuscript including editing and writing the introduction and conclusion. SB has also corresponded the manuscript.

Corresponding author

Correspondence to Sanjib Bhattacharyya.

Ethics declarations

Manuscript complies with ethical standard

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. (Not Applicable)

Consent to Participate

Not Applicable

Consent to Publish

Not Applicable

Informed consent

Not Applicable

Research involving human participants and/or animals

There were no human participants or animals used in this study. (Not Applicable)

Disclosure of potential conflicts of interest

Authors declare no conflict of interest for this review article

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nishit Pathak Co-corresponding author

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, N., Vimal, S.K., Tandon, I. et al. Neurodegenerative Disorders of Alzheimer, Parkinsonism, Amyotrophic Lateral Sclerosis and Multiple Sclerosis: An Early Diagnostic Approach for Precision Treatment . Metab Brain Dis 37, 67–104 (2022). https://doi.org/10.1007/s11011-021-00800-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-021-00800-w

Key words

Navigation