
REVIEWARTICLE

The putative role of environmental aluminium in the development
of chronic neuropathology in adults and children.
How strong is the evidence and what could be the mechanisms
involved?
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Abstract The conceptualisation of autistic spectrum disorder
and Alzheimer’s disease has undergone something of a para-
digm shift in recent years and rather than being viewed as
single illnesses with a unitary pathogenesis and pathophysiol-
ogy they are increasingly considered to be heterogeneous syn-
dromes with a complex multifactorial aetiopathogenesis, in-
volving a highly complex and diverse combination of genetic,
epigenetic and environmental factors. One such environmen-
tal factor implicated as a potential cause in both syndromes is
aluminium, as an element or as part of a salt, received, for
example, in oral form or as an adjuvant. Such administration
has the potential to induce pathology via several routes such as
provoking dysfunction and/or activation of glial cells which
play an indispensable role in the regulation of central nervous
system homeostasis and neurodevelopment. Other routes in-
clude the generation of oxidative stress, depletion of reduced
glutathione, direct and indirect reductions in mitochondrial
performance and integrity, and increasing the production of
proinflammatory cytokines in both the brain and peripherally.
The mechanisms whereby environmental aluminium could
contribute to the development of the highly specific pattern
of neuropathology seen in Alzheimer’s disease are described.
Also detailed are several mechanisms whereby significant
quantities of aluminium introduced via immunisation could

produce chronic neuropathology in genetically susceptible
children. Accordingly, it is recommended that the use of alu-
minium salts in immunisations should be discontinued and
that adults should take steps to minimise their exposure to
environmental aluminium.
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Introduction

Autism spectrum disorder (ASD) refers to an increasingly
common group of heterogeneous disorders identified by the
presence of impairments in social interactions and communi-
cation together with a restrictive range of repetitive and ste-
reotypical behaviours (Zhubi et al. 2014; Ladd-Acosta et al.
2014). Recent analyses have consistently shown that the prev-
alence of ASD is increasing. Estimates vary between one in 68
(CDC) and one in 46 (Pelly et al. 2015) to one in 38 (Kim et al.
2011) during similar time periods. There is some debate as to
the reasons for the precipitous increase in prevalence of ASD
over the past two decades, with some concluding that this is
essentially an artefact stemming from the development of
broader diagnostic categories and increased medical aware-
ness (Rutter 2005; King and Bearman 2009). However, anal-
yses conducted by other research teams have suggested that
other factors aside from diagnostic shift may contribute to this
increase in prevalence (Grether et al. 2009; Hertz-Picciotto
2009). Although early heritability estimates for ASD were
high (approximately 97%), multiple comprehensive genetic
studies have failed to reveal reproducible candidate genes,
and thus far no single gene can account for more than 1% of
ASD cases, although there is a great deal of evidence that
genetic abnormalities play a major role in the development
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of the disorders which is unsurprising given that this is the
case with most if not all illnesses (Siniscalco et al. 2013). It is
also worth noting that only a minority of children with an
ASD diagnosis have an identifiable genetic syndrome
(Siniscalco et al. 2013) and recent studies suggest that the
yield of genetic testing is low even when chromosomal mi-
croarray analysis is combined with whole exome sequencing,
particularly in non-dysmorphic ASD children (Tammimies
et al. 2015). Moreover, some genetic abnormalities which in-
crease the risk of developing ASD are also risk factors for
other neurodevelopmental or neuroimmune conditions, and
are polymorphisms rather than deleterious mutations, being
also present in unaffected individuals (Betancur 2011; Sahoo
et al. 2011). It would appear that these genes appear to confer
vulnerability to a variety of neurodevelopmental disorders
(Betancur 2011; Sahoo et al. 2011; Rapoport et al. 2012).
Furthermore, a recent heritability estimate stemming from
the largest twin study to date yielded a figure as low as 37%
(Hallmayer et al. 2011), although another recent study calcu-
lated an estimate of heritability between 40 and 60% (Klei
et al. 2012).

The concept of ASD as an illness of purely genetic origin
has given way to the view that, at the very least, the
aetiopathogenesis of ASD involves a highly complex interac-
tion between numerous genes and environmental risk factors
(Bushnell 2013; LaSalle 2013). Moreover, it is becoming
increasingly apparent that alterations in the epigenetic land-
scape and dysregulation of epigenetic mechanisms responsi-
ble for gene expression also play a major role in the
aetiopathogenesis of these disorders (Rangasamy et al. 2013;
Flashner et al. 2013; Siniscalco et al. 2013). In a landmark
post-mortem microarray study, Voineagu and fellow workers
identified 444 genes which were differentially expressed in
the cerebral cortex, and two genes which were differentially
expressed in the cerebellum, of children with ASD compared
with neurotypical age- and sex-matched controls. They report-
ed that the dysregulated patterns of expression of immune and
glial gene markers were not associated with any known ASD
risk genes, so that immune changes are likely to be either
secondary phenomena or the result of environmental factors
(Voineagu et al. 2011). In another study, Melnyk and others
examined 68 ASD subjects, 40 unaffected siblings and 54
age- and sex-matched controls, and reported oxidative dam-
age to DNA (indexed by the oxidised DNA adduct 8-oxo-
deoxyguanosine) and proteins in leukocytes combined with
global DNA hypomethylation that was specific to ASD chil-
dren (Melnyk et al. 2012). The phenomenon of global DNA
hypomethylation in the brain as a driver of altered gene ex-
pression in ASD children has also been reported (Ladd-Acosta
et al. 2014; Nardone et al. 2014). It is also of interest that the
latter team reported hypomethylation and consequent upregu-
lation of complement and tumour necrosis factor-alpha
(TNF-α) genes, which are involved in the regulation of the

neurodevelopmental roles of microglia and synaptic scaling
respectively (Nardone et al. 2014).

Further evidence emphasising the importance of epigenetic
abnormalities in the pathogenesis of ASD was published by
Wong and fellow workers (2014). These authors reported differ-
entlymethylatedDNA regionswithin 50monozygotic twin pairs
(i.e. 100 individuals) discordant for ASD that correlated with the
severity of autistic trait scores, emphasising the importance of
epigenetic rather than genetic factors in the pathophysiology
and pathogenesis of ASD (Wong et al. 2014). The role of epige-
netic dysregulation as an important factor in the pathogenesis of
ASD is further supported by evidence of dysregulated
microRNA (miRNA) expression in ASD children (Mundalil
Vasu et al. 2014; Mellios and Sur 2012). A recent post-mortem
study cited evidence of hypomethylated and upregulated miR-
142 in the frontal cortex (Brodmann area 10) in children with
ASD, which is of interest as this miRNA plays a major role in
regulating the neurodevelopmental activities of microglia and
maintaining them in a quiescent state (Mor et al. 2015;
Vaishnavi et al. 2013; Marrale et al. 2014).

When viewed as a whole, it appears that the aetiology of
ASD is multifactorial, involving a highly complex and diverse
combination of genetic, epigenetic, environmental and immu-
nological factors (Flashner et al. 2013; Herbert 2010; Roberts
et al. 2013). Overall, the conceptualisation of ASD has under-
gone a paradigm shift, and rather than being viewed as a single
illness with a unitary pathogenesis and pathophysiology, it is a
clinically heterogeneous syndrome with a complex multifac-
torial aetiopathogenesis (Zhubi et al. 2014; Voineagu et al.
2011; Betancur 2011; Tordjman et al. 2014; Ruggeri et al.
2014; Georgiades et al. 2013). Ultimately, the pathology in
any given child likely has its origins in a dynamic interplay
between a broad range of different environmental agents, pre-
disposing genetic factors and complex epigenetic mechanisms
as discussed above (Zhubi et al. 2014; Voineagu et al. 2011;
Betancur 2011; Tordjman et al. 2014; Ruggeri et al. 2014;
Georgiades et al. 2013).

The view of ASD as an illness or illnesses exclusively
affecting the brain is also changing. While many ASD chil-
dren display evidence of activated microglia and astrocytes,
which are characteristic of many neuroimmune and neurode-
generative diseases (Morgan et al. 2012; Suzuki et al. 2013;
Morgan et al. 2010; Morris and Berk 2015; Morris et al.
2015a), there is also copious evidence of abnormalities in
the peripheral immune system. Such evidence includes data
demonstrating excessive pro-inflammatory cytokine (PIC) ex-
pression, reduced anti-inflammatory cytokine expression,
modulated or increased T-cell responses, altered natural killer
T-cell responses, activated complement responses, major his-
tocompatibility complex (MHC) class I abnormalities and in-
creased autoantibodies in the periphery as well as in the brain
(reviewed in Noriega and Savelkoul 2014; Careaga and
Ashwood 2012; Estes and McAllister 2015; Gottfried et al.
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2015). The pattern of single nucleotide polymorphisms
(SNPs) in immune genes is similar to those seen in several
autoimmune diseases such as multiple sclerosis (MS) (Ramos
et al. 2012). There is also evidence of abnormally robust pat-
tern recognition receptor activity linked to the presence of
SNPs in encoding genes leading to exaggerated immune re-
sponses (Enstrom et al. 2010; Mead and Ashwood 2015). It is
also noteworthy that genes governing immune and inflamma-
tory responses are upregulated in some children with an ASD
diagnosis (Koufaris and Sismani 2015) and that the presence
of such abnormally expressed genes can predict the develop-
ment of ASD in male children with some 83% accuracy
(Pramparo et al. 2015). It is also of interest that polymor-
phisms in cytokine and HLA genes are associated with unusu-
al responses to vaccines (Castiblanco and Anaya 2015). The
evidence of immune abnormalities in many, but by no means
all, children afforded an ASD diagnosis has led to the proposal
of a neuroimmune subtype of ASD (McDougle et al. 2015).
Furthermore, several researchers have reported an association
between initial inflammatory insults and the subsequent de-
velopment of chronic immune disturbances in ASD children
(McDougle et al. 2015; Gottfried et al. 2015; Siniscalco et al.
2013). One possible explanation for this phenomenon is that
an unusually potent and/or prolonged immune response al-
lows for the development of macromolecular or tissue damage
leading to the formation of damage-associated molecular pat-
terns (DAMPs) (Lucas et al. 2015). The formation of such
DAMPs and the resultant chronic stimulation of pattern rec-
ognition receptors (PRRs), leading to the development of an
Bautotoxic loop^ of increasing inflammation and oxidative
stress, is considered to play a major role in the maintenance
and exacerbation of systemic inflammation, neuro-
inflammation and neurodegeneration in a range of autoim-
mune and neurodegenerative diseases such as systemic lupus
erythematosus (SLE), MS and Alzheimer’s disease (AD)
(Venegas and Heneka 2017; Land 2015). Frequent or
prolonged postnatal infections are an obvious source of in-
flammatory insults and such events appear to be associated
with a significantly increased risk of developing ASD
(Abdallah et al. 2012; Hadjkacem et al. 2016). However, other
environmental agents putatively associated with an increased
risk of developing the ASD phenotype, such as organophos-
phates, mercury and aluminium, also have the capacity to
provoke a prolonged and or exaggerated immune response
(Eisenkraft et al. 2013; Kern et al. 2016; Shaw and
Tomljenovic 2013). Aluminium salts in adjuvant form func-
tioning as DAMPs activate PRRs and exert profound stimu-
latory effects on innate immune responses (Powell et al. 2015)
and thus could be candidates for the generation of tissue dam-
age and DAMP formation in children with an underlying ten-
dency to produce an exaggerated immune response. There is
also evidence of increased aluminium levels in the hair and
urine of ASD children compared with unaffected controls

(Yasuda and Tsutsui 2013; Mohamed Fel et al. 2015;
Blaurock-Busch et al. 2012; Blaurock-Busch et al. 2011), al-
though this not an invariant finding (Fido and Al-Saad 2005;
Al-Ayadhi 2005). It should also be noted that aluminium ad-
juvants are becoming a recognised trigger of autoimmune pa-
thology in genetically susceptible individuals (Morris et al.
2015b).

Intriguingly, chronic or cumulative exposure to aluminium
reflected by increased levels in cerebrospinal fluid (CSF) and
serum may be one environmental factor in the pathogenesis
and pathophysiology of MS, Parkinson’s disease (PD) and
AD (Fulgenzi et al. 2014; Exley et al. 2006; Ahmed and
Santosh 2010; Yasui et al. 1992; Exley and Vickers 2014;
Basun et al. 1991). There is a wealth of research examining
the potential association between increased exposure to envi-
ronmental aluminium and the development of the last of these
illnesses. Indeed, a recent meta-analysis involving eight
cohort- and case-controlled studies conducted prior to 2015
involving 10,567 participants concluded that increased alu-
minium exposure increased the risk of developing AD by
some 71% (Wang et al. 2016). This seems a noteworthy find-
ing in the light of evidence indicating that AD is also an
aetiologically heterogeneous syndrome (Lam et al. 2013;
Morris and Berk 2015) as indeed is the case for PD (Klein
and Lohmann 2009; Korczyn and Hassin-Baer 2015) and MS
(Paz Soldan and Rodriguez 2002). Hence establishing an as-
sociation between AD and a single environmental factor in a
cross-sectional study when a multiplicity of such factors may
be involved in different patients is a difficult enterprise. Much
of the in vivo evidence examining the mechanisms underpin-
ning the pathological effects of aluminium exposure has been
obtained in the area of human and animal research into the
pathogenesis of AD. Such evidence includes the induction of
oxidative stress, mitochondrial dysfunction, microglial activa-
tion and functional dysregulation of microglia (Morris and
Berk 2016). This may be highly relevant as many children
with ASD also manifest oxidative stress (reviewed in
Depino 2013; Rossignol and Frye 2014; Frustaci et al.
2012), mitochondrial dysfunction (reviewed by Goh et al.
2014; Chen et al. 2015; Guevara-Campos et al. 2013) and
abnormal microglial activity as discussed above.

In this paper we aim to review the available evidence
purporting to establish an association between increased alu-
minium exposure and an increased risk of developing AD and
the evidence aimed at illuminating the potential pathophysio-
logical mechanisms by which aluminium could be an element
in the development of the illness in at least some people. The
objective of this part of the paper is to inform readers with an
interest in the pathogenesis and pathophysiology of ASD who
might not be aware of concerns regarding aluminium in the
pathogenesis of conditions other than ASD. We also aim to
highlight accumulating evidence suggesting that aluminium
adjuvants can precipitate serious autoimmune or auto-
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inflammatory pathology in genetically susceptible people
which is a growing area of concern. We will then move on
to consider evidence suggesting an association between the
increased use of aluminium salt adjuvants and an increased
incidence of ASD before moving on to touch briefly on the
safety or otherwise of vaccines in people with a predisposition
to autoimmunity and a range of polymorphisms in immune
genes. This would appear to be appropriate in the light of
changes in the conceptualisation of ASD as a syndrome with
a multiplicity of potential causes and increasing knowledge
regarding the effects of genetic variation in the immune sys-
tem and the response to vaccines. The remainder of the paper
will focus on mechanisms by which increased exposure to
aluminium could be an environmental trigger of ASD in at
least some children with a range of abnormalities in the per-
formance of their immune systems.

Section 1. Evidence highlighting the neurotoxic
properties of aluminium

Evidence of an association between chronic aluminium
exposure and the development of AD

The p-block metal aluminium, which is the third most fre-
quently occurring element in the Earth’s crust, occurs natural-
ly in the ore bauxite, various clays and alumino-silicate min-
erals, and has a preferred oxidation state of +3. Several authors
have reported a strong positive correlation between the level of
aluminium in drinkingwater and the incidence ofAD throughout
the world including the United Kingdom, Canada, Norway and
France (Flaten 2001; Kawahara and Kato-Negishi 2011). The
most recently reported association was published by Rondeau
et al. (2009), who demonstrated that high daily consumption of
aluminium in drinking water was associated with a significantly
increased risk of developingmild cognitive impairment or AD in
a 15-year longitudinal French cohort study involving 1925 re-
cruits (Rondeau et al. 2009).

There is considerable in vitro and in vivo evidence demon-
strating that aluminium ions inhibit the dephosphorylation of
tau, potentiate the development of neurofibrillary tangles
(NFTs), cause the accumulation of amyloid beta protein and
accelerate the formation of amyloid plaques (Kawahara 2005;
Exley 2005). Despite such evidence, the enthusiasm for alu-
minium as a factor in the pathogenesis of AD waned largely
based on data suggesting that aluminium levels were no
higher in the brains of AD patients than in healthy controls,
and the failure to detect aluminium in NFTs and amyloid
plaques in post-mortem tissue at higher levels in AD than in
age- and sex-matched controls (Yumoto et al. 2009). In par-
ticular, no evidence of increased brain aluminium levels in AD
was found, using flameless atomic absorption spectrophotom-
etry, in the study of Jacobs et al. (1989). Furthermore, high

aluminium levels in the cores of amyloid or neuritic (senile)
plaques have not been reported in several studies variously
employing scanning proton microprobe analysis (Lovell
et al. 1993), energy-dispersive X-ray microprobe analysis
(Jacobs et al. 1989), electron microprobe analysis (Chafi
et al. 1991) or nuclear microscopy using particle-induced X-
ray emission, Rutherford backscattering spectrometry and
scanning transmission ion microscopy (Landsberg et al.
1992). In contrast, increased plaque core aluminium has been
reported in AD using an energy-dispersive X-ray microana-
lytical system (Edwardson et al. 1986) and a method based on
inductively coupled plasmamass spectrometry combinedwith
flow injection (Beauchemin and Kisilevsky 1998). Similarly,
the findings in relation to increased aluminium in NFTs are
inconsistent, with a positive finding using laser microprobe
mass analysis (Good et al. 1992), negative findings using
electron microprobe and ion microprobe analyses (Chafi
et al. 1991) and an intermediate finding (that is, slight in-
crease) again using laser microprobe mass analysis (Lovell
et al. 1993). A histochemical study of AD hippocampal
neurones reported evidence of aluminium in nucleoli and in
NFTs (Walton 2006).

Notwithstanding the above findings, some recent research
studies usingmore sensitive techniques have detected aluminium
in the brains of AD patients within plaques, NFTs and elsewhere
at significantly higher levels than in age- and sex-matched unaf-
fected controls (Yumoto et al. 2009; Bouras et al. 1997).
Furthermore, a number of studies reporting the effects of alumin-
ium exposure in animals have demonstrated the development of
AD and Alzheimer-like pathology in rodents (Al-Olayan et al.
2015; Abd-Elghaffar et al. 2005; Sumathi et al. 2015; Lu et al.
2014; Exley and Vickers 2014; Exley and Esiri 2006). Animal
studies have also revealed that aluminium administered orally or
via injection significantly decreased reduced glutathione levels
and the activities of catalase, superoxide dismutase, glutathione
peroxidase and glutathione reductase, and increased the levels of
nitric oxide (NO), PICs and lipid peroxidation (Sumathi et al.
2015; Al-Olayan et al. 2015). Moreover, histological examina-
tion has revealed apoptosis of hippocampal and cerebral cortical
neurones and the presence of NFTs, amyloid plaque deposition,
Schwann cell degeneration and nerve fibre demyelination (Abd-
Elghaffar et al. 2005).

Knowledge regarding the possible mechanisms by which
aluminium exposure could provoke some of the characteristic
features underpinning the pathophysiology of AD has also
evolved. In a recent paper, Zhao et al. (2014) reported on the
ability of physiologically realistic levels of aluminium to pro-
voke the aggregation of Aβ42 monomers into dimeric, oligo-
meric, and ultimately fibrillary structures. This team of au-
thors also cited decreased expression of triggering receptor
expressed in myeloid/microglial cells-2 (TREM2) in microg-
lia subsequent to the upregulation of miR-34a as the mecha-
nism underpinning impaired microglial-mediated clearance of
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Aβ42 peptides from the brain caused by prolonged exposure
to aluminium at nanomolar concentrations (Zhao et al. 2014).

Human in vivo studies have also reported specific aluminium-
related abnormalities in the brains of AD patients. The associa-
tion between prolonged exposure to environmental aluminium
and increased levels of phosphorylated tau subspecies in blood
lymphocytes has also been reported in a recent study involving
66 retired aluminium workers (Lu et al. 2014). Moreover, it has
been demonstrated that ferritin in plasma from AD patients, par-
ticularly those with mild AD, contains significantly higher con-
centrations of aluminium compared with plasma ferritin from
age- and sex-matched controls which, given the pivotal role of
this protein in the regulation of metal homeostasis, may be a
crucial finding; the finding of a higher level in mild AD com-
pared with severe AD may also point to a first phase in which
there is an aluminium overload of ferritin, followed by a phase in
which ferritin with reduced functional capacity releases alumin-
ium (De Sole et al. 2013). Interestingly, the capacity of alumin-
ium to disrupt the activity of ferritin and transferrin, with the
subsequent disruption of iron homeostasis, has been demonstrat-
ed in a series of studies implicating aluminium as a
potential causative agent in certain types of breast can-
cer cells as well as in primary invasive breast cancers
and ductal carcinoma in situ (Darbre et al. 2013; Darbre
et al. 2011; Mannello et al. 2013).

It should also be noted that, until recently, an explanation
which could explain the selective effects of AD on various re-
gions of the brain was lacking. However, in a study using elec-
trothermal atomic absorption spectroscopy of the aluminium
content of the arterial walls of eight arteries which supply the
brain, it was found that aluminium concentration is far higher in
the posterior cerebral artery (arteria cerebri posterior), which sup-
plies the hippocampus, in late-stage AD patients than in age- and
sex-matched controls (Bhattacharjee et al. 2013). This study is
particularly intriguing because, when taken as a whole, the data
indicate the presence of biochemical mechanisms in the endothe-
lial cells supplying the cerebral vasculature which enable the
binding of aluminium to selected areas such as the hippocampus,
known to play a major role in the pathogenesis of the illness
(Bhattacharjee et al. 2013).

There is little doubt that the weight of evidence implicating
aluminium in the causation of AD in at least some patients is
increasing. However, at the current time, despite an analysis
using Hill’s causality criteria concluding that aluminium
played a causative role in the development of AD (Walton
2014), there is currently no universal consensus on the subject,
and it seems reasonable to conclude that there is a correlative
link between aluminium and AD but that this association does
not currently amount to a causative relationship. There is,
however, an accumulating body of evidence suggesting that
that aluminium in adjuvant form may provoke systematic and
symptomatic autoimmune conditions in genetically suscepti-
ble individuals and we will now discuss this phenomenon.

The involvement of aluminium adjuvants
in the development of autoimmune syndrome induced
by adjuvants (ASIA)

Evidence demonstrating the development of chronic autoim-
mune or auto-inflammatory conditions following environmental
exposure to aluminium salts, and indeed other adjuvants, is in-
creasingly becoming a cause for concern (Zafrir et al. 2012;
Cerpa-Cruz et al. 2013; Jensen-Jarolim 2015; Willhite et al.
2014). Much of this evidence has been presented in the context
of the Bautoimmune (auto-inflammatory) syndrome induced by
adjuvants^ (ASIA), which encompasses a broad spectrum of
immune-mediated illnesses triggered by exposure to medical,
cosmetic or environmental adjuvants such as aluminium salts,
silicon compounds or indoor mould (Agmon-Levin et al.
2009). ASIA is characterised by specific and non-specific man-
ifestations of autoimmune disease such as chronic fatigue, myal-
gia, arthralgias, neurocognitive impairment, respiratory symp-
toms, gastrointestinal symptoms, dermatological signs and the
development of autoantibodies (Israeli 2012).

Medical conditions considered by some to be part of the syn-
drome include post-vaccination phenomena, Gulf War syn-
drome, macrophagic myofasciitis, antiphospholipid syndrome,
siliconosis and possibly chronic fatigue syndrome (myalgic en-
cephalomyelitis) and fibromyalgia syndrome (Cruz-Tapias et al.
2013; Vera-Lastra et al. 2013). It is interesting to note that data
from animal models suggest that adjuvants may play a role in the
development of syndromic autoimmune diseases such as SLE,
Sjögren’s syndrome and rheumatoid arthritis in some patients
(Cruz-Tapias et al. 2013; Bagavant et al. 2014).

Adjuvants were once thought to pose little or no independent
threat as drivers of pathology. Unfortunately, studies of animal
models and humans have demonstrated the ability of some of
them to induce autoimmunity and immune-mediated diseases
(Agmon-Levin et al. 2009; Elkayam et al. 2011). The mecha-
nisms underpinning adjuvant-induced immunotoxicity appear to
be somewhat varied, but clearly impinge on both innate and
humoral immune responses (Marrack et al. 2009; Kool et al.
2008a; Eisenbarth et al. 2008). It must be stated however that
adjuvant exposure per se does not appear to cause problems for
the vast majority of people and the development of ASIA seems
to depend on genetic predisposition or as yet undetermined en-
vironmental co-factors (Perricone et al. 2013; Esposito et al.
2014; Shoenfeld and Agmon-Levin 2011; Soriano et al. 2015).

Several authors have examined patients diagnosed with
autoimmune or other immune-mediated illnesses following
hepatitis B virus immunisation (Zafrir et al. 2012; Agmon-
Levin et al. 2009; Agmon-Levin et al. 2014). The largest such
study evaluated the medical records of 93 patients and report-
ed prevalence rates of different manifestations as follows: neu-
rological 67%; general symptoms 60%;musculoskeletal 60%;
gastrointestinal 51%; fatigue 42%, ophthalmological 32%;
muco-cutaneous 30%; sleep disturbance 19%; psychiatric
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16%; and local reactions 11% (Zafrir et al. 2012). Elevated
autoantibody titres were also documented in the sera in 80%
of the patients. Several vaccine adjuvants have also been im-
plicated in the development of autoimmune diseases which lie
outside ASIA, notably ASD which is a subject that we now
consider.

Aluminium adjuvants in the pathogenesis of ASD

From the perspective of aluminium adjuvants as a potential
contributory factor in the development of ASD (Shaw and
Tomljenovic 2013), a recent analysis applying Hill’s criteria
for establishing causality reported children living in countries
with the highest prevalence of ASD appear to have the
greatest exposure to vaccine based aluminium. Perhaps more
importantly, the increase in exposure to aluminium adjuvants
displayed a significant positive correlation with the increased
prevalence of ASD in the USA recorded over the last 20 years
(r = 0.92, p < 0.0001). Awider analysis revealed the presence
of significant positive correlation between the levels of alu-
minium in adjuvant form administered to preschool children
at around three to four months old and the existing ASD prev-
alence in seven major Western countries (r = 0.89 to 0.94,
p = 0.0018 to 0.0248) (Shaw and Tomljenovic 2013).

Taylor and colleagues, in a meta-analysis of 10 pre-selected
predominantly retrospective studies, reported no causal rela-
tionship between a range of mercury containing vaccines and
a range of neurodevelopmental conditions such as pervasive
developmental delay (PDD), attention-deficit hyperactivity
disorder (ADHD), autistic disorder and ASD as diagnosed
by several different criteria (Taylor et al. 2014).

It is worth noting that the questions asked by the above two
groups are different, with the first focusing entirely on autism
using current diagnostic criteria while the second used a range
of different case definitions of autism and autism-like conditions
and also included children with PDD. Indeed, one large study
included in the analysis focused entirely on PDD (Smeeth et al.
2004 ) , wh i l e ano the r two focused on gene r a l
neurodevelopmental conditions (Andrews et al. 2004;
Verstraeten et al. 2003). It is also fair to say that the conclusions
of another study (DeStefano 2007) have been challenged and a
re-analysis of the data has revealed a significant association be-
tween a first measles, mumps and rubella (MMR) immunisation
before the age of 36 months in African-American males and a
diagnosis of ASD (Hooker 2014), although it should be noted
that this last study has since been retracted. It would appear that
the statisticians involved in the meta-analysis by Taylor et al.
(2014) viewed PDD, ADHD and ASD as essentially the same
condition, or, the interpretation of this and other data is based on
the concept of ASD as a discrete disease entity which is being
increasingly called into question (Zhubi et al. 2014; Voineagu
2012; Betancur 2011; Tordjman et al. 2014; Ruggeri et al.
2014; Georgiades et al. 2013). However, in spite of these issues

those who believe that adjuvants cause Bautism^ have one ques-
tion which currently remains unanswered, namely that if alumin-
ium or other adjuvants per se provoke chronic central nervous
system and peripheral pathology, why is the prevalence of ASD
not far higher than it is now? Given the ubiquity of vaccination
onewould expect that almost every child would be affected. This
fact alonemeans that adjuvants are highly unlikely to be themain
cause of ASD.However, researchwithin theASIA paradigm and
beyond does suggest that aluminium adjuvants, and indeed vac-
cination per se, can cause serious long-term pathology in people
with a certain genetic vulnerability, especially in the case of latent
or subclinical auto-immune diseases, andwe nowmove on brief-
ly to detail such evidence.

Section 2. Pathological effects of vaccines in people
with a predisposition to autoimmunity

Langer-Gould and colleagues reviewed the medical records of
780 patients with newly diagnosed MS, clinically isolated syn-
drome (optic neuritis, transverse myelitis, andmonofocal or mul-
tifocal clinically isolated syndrome) or acute disseminated en-
cephalomyelitis (ADEM) and concluded that vaccines may ac-
celerate or precipitate the transition between subclinical and overt
symptomatic autoimmune conditions within the first 30 days
post-immunisation, particularly in those aged under 50 years
(Langer-Gould et al. 2014). Several other authors have reported
an association between the quadrivalent human papilloma vac-
cine and the development of several autoimmune diseases in-
cluding Raynaud’s disease, Behçet’s syndrome, type 1 diabetes
mellitus and Hashimoto’s syndrome (Arnheim-Dahlstrom et al.
2013; Chao et al. 2012). However, once again it would appear
that affected patients displayed signs of subclinical autoimmunity
prior to vaccination which may have subsequently triggered ac-
tive disease (Chao et al. 2012; Arnheim-Dahlstrom et al. 2013).
Many research teams reviewing adverse event data have reached
similar conclusions (Pellegrino et al. 2015; Petrovsky 2015;
Guimaraes et al. 2015). Grimaldi-Bensouda and colleagues
found a positive association between a personal and family his-
tory of autoimmune diseases and the development of several
different autoimmune diseases post-vaccination (Grimaldi-
Bensouda et al. 2014). Interestingly, and perhaps reassuringly, a
prospective longitudinal case-controlled study examining initial-
ly unaffected patients with no evidence of overt or covert auto-
immune disease failed to demonstrate any association between
vaccination and the development of ADEM or other autoim-
mune conditions (Scheller et al. 2015). However, as previously
noted, there is considerable evidence that vaccines, ormore likely
vaccine adjuvants, may precipitate specific autoimmune
sequelae in genetically or epigenetically vulnerable peo-
ple (Pellegrino et al. 2015; Petrovsky 2015; Guimaraes
et al. 2015). We will now discuss possible mechanisms
which may underpin this effect.
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Polymorphisms in human leukocyte antigen (HLA)
and Toll-like receptor (TLR) and immune response
to vaccination

There is a vast body of data demonstrating that immune and
inflammatory responses to vaccines such as MMR are heavily
influenced by polymorphisms in the HLA region and in genes
encoding effector proteins such as cytokines and PRRs which
have the capacity to recognise and become activated by con-
served pathogen-associated molecular patterns (PAMPs) to pro-
duce immune response molecules such as PICs and interferons
(Haralambieva et al. 2013; Lucas and Maes 2013). Examples of
PRRs include membrane-bound receptors such as TLRs (e.g.
TLR-4) and cytosolic receptors such as retinoic acid-inducible
gene (RIG)-like receptors (Kumar et al. 2013). Readers interested
in examining the evidence purporting to demonstrate an associ-
ation between HLA polymorphisms and unusual response to the
MMR vaccine are referred to an excellent review by Castiblanco
and Anaya 2015. Extensive research has also revealed that im-
mune responses to vaccines per se in any given individual are
determined by polymorphisms and methylation patterns in the
HLA region, cytokine and TLR genes coupled with the compo-
sition of the microbiome, the presence of co-infections, and a
whole host of environmental variables (review Poland et al.
2013). These observations provide the basis for a mechanism
whereby adjuvants could provoke an abnormal response in peo-
ple with certain polymorphisms and/or methylation patterns in
the HLA region, cytokine and TLR genes leading to excessively
powerful and/or prolonged immune activity resulting in tissue
damage and the generation of DAMPs, such as S100b, with
the subsequent development of chronic immune and inflamma-
tory pathology (Lucas and Maes 2013; Lucas et al. 2015). This
will be the theme developed in the remainder of this paper. First,
however, it is appropriate to consider whether aluminium in en-
vironmental or adjuvant form does indeed possess the capacity to
generate the range of pathology seen in some children with an
ASD diagnosis, which we will now consider.

Section 3. Chronic aluminium exposure
and the development of chronic oxidative stress,
mitochondrial dysfunction and gliopathology

Aluminium exposure provoking PIC and chemokine
production

Aluminium salt-containing adjuvants induce the production of
the interleukins (ILs) IL-1β, IL-8 and IL-18 in TLR-stimulated
dendritic cells and macrophages (Kuroda et al. 2011; Li et al.
2008; Sharp et al. 2009). There are now considerable, albeit
in vitro, data demonstrating that such activation is dependent
upon nucleotide-binding oligomerisation domain-like receptor
pyrin domain-3 (NLRP3) inflammasome activation (Kool et al.

2008a; Franchi and Nunez 2008). Aluminium salts can activate
the NLRP3 inflammasome via a number of different routes.
These include destabilisation of phagosomes, acidification of
lysosomes and increases in reactive oxygen species (ROS) levels
(Kool et al. 2012;Hornung et al. 2008; Sharp et al. 2009). In vivo,
aluminium hydroxide appears to induce dendritic cell and T-cell
activation at least partly via NLRP3 activation (Kool et al. 2008a;
Eisenbarth et al. 2008) although alternative routes such as
immunoreceptor tyrosine-based activation motif (ITAM) and in-
terferon response factor 3 (irf3) activation appear to be involved
(Kuroda et al. 2011; Marichal et al. 2011). Aluminium adjuvants
also provoke an immune response via the generation of DAMPs,
notably uric acid and host DNA (outside cell nuclei and mito-
chondria) (Kool et al. 2012; Kool et al. 2008b). There is a body
of evidence demonstrating that uric acid and DNA are released
in vivo following aluminium hydroxide injection (Marichal et al.
2011; Kool et al. 2008b). Uric acid is a DAMP synthesised
during purine nucleotide catabolism whose concentration in-
creases during cellular stress, such as at the site of injection
(Kool et al. 2008b). The functional relevance of uric acid levels
in increasing T-cell priming and the instigation of humoral im-
mune responses has been repeatedly demonstrated (Kool et al.
2008b; Munks et al. 2010). Both uric acid and aluminium hy-
droxide can independently activate the NLRP3 inflammasome,
inducing the secretion of IL-1β (Kool et al. 2008a; Franchi and
Nunez 2008). Uric acid crystals administered in the form of an
adjuvant can also induce complement responses and a T helper
type 2 (Th2) cell differentiation pattern (Kool et al. 2011; Shi
et al. 2003). Host DNA released into the intracellular space fol-
lowing cellular necrosis also acts as a DAMP. Testimony to the
highly immunogenic nature of double-stranded stranded DNA is
shown by data demonstrating that it can be used as a substitute
for aluminium hydroxide as a vaccine adjuvant (Marichal et al.
2011). Double-stranded cytosolic DNA is sensed by a number of
PRRs including TLR-9, leading to the production of PICs via the
activation of nuclear factor kappa-light-chain-enhancer of acti-
vated B cells (NF-κB) or interferon-beta (IFN-β) via the activa-
tion of irf3 (Stetson andMedzhitov 2006; Thompson et al. 2011).

Aluminium exposure and the generation of oxidative
stress

Oxidative damage as evidenced by increased lipid peroxidation
and depleted anti-oxidant defences induced by prolonged alu-
minium exposure appears to be focused in the prefrontal cortex,
cerebellum, hippocampus and brainstem (Yuan et al. 2012;
Kumar et al. 2011). It is also noteworthy that several authors
have reported a linear relationship between increased cellular
levels of aluminium and concentrations of protein carbonyls
and S100 proteins (Mannello et al. 2013; Darbre et al. 2013;
Darbre et al. 2011). This is of particular interest as these mole-
cules may function as DAMPs and cause chronic stimulation of
PRRs and hence be a source of chronic immune activation as
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discussed above. Increased levels of lipid peroxidation in the
brain with the production of malondialdehyde (MDA), 4-hy-
droxy-2-trans-nonenal (HNE or 4-hydroxynonenal (4-HNA))
and thiobarbituric acid-reactive substances (TBARS) following
oral administration of aluminium chloride is also a common
finding in small-animal studies (Newairy et al. 2009; Albendea
et al. 2007; Yuan et al. 2012; Lu et al. 2013).

Chronic aluminium exposure also exerts profound detri-
mental effects on cellular anti-oxidant defences leading to sig-
nificantly reduced cellular levels of glutathione transferase,
glutathione peroxidase, catalase, superoxide dismutase and
reduced glutathione (GSH) (Nampoothiri et al. 2015; El-
Demerdash 2004; Yousef 2004; Kumar et al. 2011; Newairy
et al. 2009). Aluminium ingestion also decreases GSH levels
in human blood samples (Khan et al. 2011). Interestingly,
aluminium decreases levels of this thiol by inhibiting the ac-
tivity of NADPH-dependent isocitrate dehydrogenase in mi-
tochondria andmalic enzyme and NADPH isocitrate dehydro-
genase in the cytosol (Murakami and Yoshino 2004). This is
of importance as depleted levels of these enzymes make cells
more sensitive to lipid peroxidation and oxidative mitochon-
drial DNA damage from singlet oxygen species in an environ-
ment of chronic oxidative stress (Kim and Park 2003; Lee
et al. 2002; Kochevar 2004). In this context the existence of
oxidative damage to mitochondrial proteins and DNA follow-
ing prolonged aluminium exposure was reported by Sharma
and colleagues (Sharma et al. 2013). Aluminium ingestion
also leads to increased oxidative stress, markers of lipid per-
oxidation and decreased GSH levels in the epithelial cells
lining the small intestine (Orihuela et al. 2005). This depletion
of GSH appears to be affected by reduced activity of GSH
synthase, GSH reductase and as yet undelineated changes to
the plasma membranes resulting in a reduced influx of GSH
from the lumen to the mucosa (Orihuela et al. 2005). This
aluminium-induced depletion of GSH impairs the activity of
calbindin-D9k resulting in decreased transcellular absorption
of calcium ions (Orihuela et al. 2005). Given the positive role
played by calcium ions in maintaining epithelial barrier integ-
rity (Ma et al. 2000; Schepens et al. 2009), depletion of GSH
could well underpin the increases in intestinal inflammation
and intestinal barrier permeability caused by prolonged con-
sumption of aluminium (Pineton de Chambrun et al. 2014).

Aluminium exposure and the development
of mitochondrial dysfunction

Oxidative stress and subsequent mitochondrial dysfunction con-
stitute the major vehicle underpinning aluminium-induced neu-
rotoxicity (for review see Kumar and Gill 2014). Exposure to
aluminium ions leads to a significant decrease in the activity of
cytochrome C oxidase, NADH and succinate dehydrogenase,
and a subsequent decrease in state 3 (ADP stimulated) and state
4 mitochondrial respiration, which are likely caused by

conformational changes in these enzymes as a direct result of
aluminium ion binding (Dua et al. 2010; Mohan et al. 2009;
Mustafa Rizvi et al. 2014; Kumar et al. 2008). Aluminium also
impairs mitochondrial biogenesis by decreasing levels of perox-
isome proliferator activated receptor gamma co-activator 1α
(PGC-1α) activity, either directly or indirectly as a result of in-
ducing elevated levels of oxidative stress (Sharma et al. 2013).
Aluminium ions also display the capacity to bind to the phos-
phate groups of ATP andADP and inhibit the phosphorylation of
the latter molecule and the dephosphorylation of the former, and
this together with the capacity to inhibit a wide range of kinase
and phosphatase enzymes can grossly impair energy homeostasis
(Kawahara and Kato-Negishi 2011).

Aluminium can also impair mitochondrial function indirectly
via mechanisms such as the induction of endoplasmic reticulum
(ER) stress (Mustafa Rizvi et al. 2014; Johnson et al. 2005).
Aluminium also induces mitochondrial dysfunction by provok-
ing release of calcium ions from intracellular stores, and it is
noteworthy that aluminium-induced oxidative damage and dis-
ruption of calcium ion homeostasis is similar in pattern to that
seen in AD (Johnson et al. 2005; Walton 2012). The functional
and physical relationship between the ER and mitochondria is
well documented in the context of apoptosis, but perhaps under-
discussed in the context of ER stress which is sub-lethal to the
cell (Vannuvel et al. 2013). In the latter environment, the unfold-
ed protein response in general, and protein kinase RNA-like ER
kinase activity in particular, leads to a state of chronic mitochon-
drial underperformance rather than cellular death. This is a com-
plex area and readers wishing to delve deeper into such mecha-
nisms are invited to consult the work of Rainbolt et al. 2014.

Calcium dyshomeostasis is equally detrimental to mito-
chondrial function and of vital importance in the maintenance
of neural function by matching mitochondrial energy produc-
tion to demand (Rueda et al. 2014; Llorente-Folch et al. 2013).
In particular, modest elevations of calcium ions in the cytosol
following increases in neural activity act as the Bgas pedal^ (or
Baccelerator^) to increase energy production and maintain
ATP homeostasis, hence impaired calcium homeostasis can
have profound adverse effects on neural function, even in
the absence of frank apoptosis (Gellerich et al. 2013) The
adverse effects of aluminium on calcium homeostasis is likely
one mechanism involved in aluminium-induced neuropathol-
ogy and we now turn to a consideration of other mechanisms
whereby aluminium exposure could result in the type of as-
trocytic and microglial dysfunction seen in many children
with a confirmed diagnosis of ASD.

The above effects of aluminium are summarised in Fig. 1.

Aluminium exposure and glial cell activation
or dysfunction

Chronic or prolonged exposure to aluminium can induce astro-
cyte apoptosis with onemechanism thought to involve DNA and
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chromatin damage, and hence mediated by p53 (Suarez-
Fernandez et al. 1999; Johnson et al. 2005). Another route may
involve inhibition of mitochondrial function and ATP produc-
tion, ultimately causing necrosis, which can have profound and
prolonged neuro-inflammatory consequences (Lemire and
Appanna 2011). Prolonged aluminium exposure can also induce
significant metabolic changes in astrocytes, which can
compromise function even in the absence of degenera-
tion. Such abnormalities include decreasing the activity
of γ-butyrobetainealdehyde dehydrogenase and γ-
butyrobetainealdehyde dioxygenase and reduced levels of
α-ketoglutarate (AKG), leading to low levels of L-carnitine
and subsequently impaired fatty acid beta-oxidation, mito-
chondrial dysfunction, reduced ATP production and in-
creased lipogenesis (Mailloux et al. 2011; Lemire et al.
2011; Han et al. 2013).

The increased lipogenesis subsequent to aluminium-
induced mitochondrial dysfunction via this route is enabled
by significant increases in lipogenic enzymes such as acetyl
CoA carboxylase (Mailloux et al. 2006). The increase in ac-
tivity of these enzymes is accompanied by decreases in the
activity of key enzymes within the electron transport chain
and the tricarboxylic acid (Kreb’s) cycle, such as succinate
dehydrogenase and AKG, leading to a significant decrease
in the levels of ATP produced by oxidative phosphorylation
(Mailloux et al. 2009; Mailloux et al. 2006; Mailloux et al.
2007). The loss of AKG activity in mitochondria and cytosol,
likely caused by sequestration of this molecule by antioxidant
defences, also results in significant negative consequences for
energy generation within the glial cells. Briefly, AKG acts to
stabilise hypoxia-inducible factor-1-alpha (HIF-1α) in the cy-
toplasm and prevents its translocation to the nucleus.
However, in a cellular environment of increased aluminium

cations and subsequently reduced AKG levels, HIF-1α trans-
locates to the nucleus provoking increases in the transcription
of hexokinase, pyruvate kinase, lactate dehydrogenase and
glucose-6-phosphate dehydrogenase, with the ultimate effect
of switching from energy production by oxidative phosphor-
ylation to the phylogenetically more ancient pathway of ener-
gy production via glycolysis (Mailloux and Appanna 2007;
Agrawal et al. 2007).

Aluminium also induces significant alterations to
glutamate/glutamine recycling within astrocytes leading to in-
creased glutamine to glutamate conversion coupled with in-
creased uptake of glutamate and increased intracellular levels
of glutamine (Zielke et al. 1993; Struys-Ponsar et al. 2000).
This has the effect of modulating glutamatergic and GABA-
ergic neurotransmission, but may also have significant bioen-
ergetic consequences given that increased levels of glutamate
within astrocytes act as a further stimulus for increased gly-
colysis (Albrecht et al. 2010; Bouzier-Sore and Pellerin 2013).
These observations are pertinent from the perspective of po-
tentially impaired neurodevelopment as astrocytes play an im-
portant role in the development of the brain by regulating
processes involved in synaptic transmission, neuronal migra-
tion, synaptogenesis and maybe even myelination (reviewed
by Molofsky et al. 2012). The weight of evidence also indi-
cates that the activity of these glial cells is of paramount im-
portance in the development and maintenance of neural net-
works and circuits (Clarke and Barres 2013). Furthermore,
there is now considerable evidence indicating that impaired
astrocyte function plays a pivotal role in the pathogenesis of
neurodevelopmental disorders (Molofsky et al. 2012; Sloan
and Barres 2013; Yang et al. 2013).

Aluminium can activate microglia leading to secretion of
TNF-α, IL-6 and cytokine-inducible nitric oxide synthase
(iNOS or NOS-2) and the development of neuro-
inflammatory PICs and ROS (Bondy 2010; Zaky et al.
2013). This is also an important finding as there is now over-
whelming evidence demonstrating that microglia play an in-
dispensable role in the development of the brain by regulating
processes such as synaptic pruning, synaptic plasticity, synap-
togenesis, neuronal development and other vital processes in
neurogenesis (Kettenmann et al. 2013). Microglial dysfunc-
tion and/or priming provoked by immune challenges, inflam-
matory events or other changes in the brain which interfere
with processes such as synaptic pruning and neural prolifera-
tion is now thought to play a major causative role in the de-
velopment of ASD and other neurodevelopmental disorders
such a schizophrenia (Harry and Kraft 2012; Harry 2013;
Hoeijmakers et al. 2016; Edmonson et al. 2016). The stepwise
development of microglia is regulated by the activity of sev-
eral genes, and disruption in the expression of these genes can
occur as a result of prenatal immune activation or disturbances
in the microbiota (Matcovitch-Natan et al. 2016). Aluminium
can also provoke microglial activation and dysfunction via

Fig. 1 Summary of the effects of aluminium
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several other mechanisms, notably by impairing the function
of the multifunctional molecular complex of the adapter pro-
tein, DNAX activating protein of 12 kD (DAP12) with
TREM2, i.e. DAP12/TREM2, which is expressed on the sur-
face of glial cells (Bhattacharjee et al. 2014; Zhao et al. 2014;
Alexandrov et al. 2013).

The DAP12/TREM2 protein complex plays a major role in
the regulation of central nervous system homeostasis
(Paradowska-Gorycka and Jurkowska 2013; Thrash et al.
2009). TREM2 binds a range of liposaccharides, phospholipids
and polyanions with the subsequent activation of DAP12 and an
array of downstream kinases cumulating in cellular activation
(Poliani et al. 2015; Takahashi et al. 2007). Activation of the
DAP12/TREM2 axis has an important role in limiting PICs
and other neurotoxins following TLR activation by PAMPs
and DAMPs, and promotes the survival and proliferation of mi-
croglia and other cells of the myeloid lineage (Poliani et al. 2015;
Peng et al. 2013). However, in recent years the bulk of research
on the DAP12/TREM2 complex has focused on its role in en-
abling and regulating microglial phagocytosis (Neumann and
Takahashi 2007; Painter et al. 2015). TREM2 acts as a molecular
sensor of macromolecular debris and plays an indispensable role
in its immunogenically silent clearance, thereby resolving poten-
tially inflammatory reactions and acting as an impediment to the
development of neuro-inflammation (Painter et al. 2015;
Takahashi et al. 2005; Takahashi et al. 2007; Hsieh et al. 2009).

Microglial phagocytic processes play an essential role in
removing damaged or stressed neurons and synaptic struc-
tures, apoptotic cells and other cellular debris from the brain,
which have the potential of being immunogenic, and thus
militate against the development of neuro-inflammation.
Hence, this process plays an indispensable role in the mainte-
nance of neural homeostasis (Fu et al. 2014; Jones et al. 2014;
Zhao and Lukiw 2013). Unsurprisingly, several research
teams have reported that failure of these unceasing microglial
phagocytic processes have serious and potentially catastrophic
innate-immune, pro-inflammatory and neuropathogenic con-
sequences (Jones et al. 2014; Koenigsknecht-Talboo et al.
2008). Crucially, as previously noted, microglial apoptosis is
both regulated and enabled by TREM2 (Zhao and Lukiw
2013; Alexandrov et al. 2013; Jones et al. 2014; Wang et al.
2015). Impairment in the activity and/or expression of
TREM2 causes gross impairments of microglial phagocytic
activity leading to a broad spectrum of central nervous system
pathology including neuro-inflammation, synapatic loss, neu-
ronal loss and exaggerated production of PICs (Wang et al.
2015; Hickman and El Khoury 2014; Jiang et al. 2014).

TREM2 expression in turn is regulated by a number of
miRNAs, most notably miR-34a (Zhao et al. 2013; Zhao
and Lukiw 2013; Alexandrov et al. 2013). Microglial miR-
34a expression is upregulated by activation of the pro-
inflammatory transcription factor NF-κB (Zhang et al. 2011;
Hickman and El Khoury 2014; Bhattacharjee et al. 2014).

Aluminium in adjuvant or environmental form upregulates
NF-κB (Pogue et al. 2009; Bondy 2014), and thereby induces
a number of NF-κB-sensitive pro-inflammatory miRNAs, no-
tably miR-34a (Fu et al. 2014; Jones et al. 2014; Hickman and
El Khoury 2014; Zhang et al. 2013; Zhao and Lukiw 2013),
which in turn downregulates TREM2 expression in the mem-
branes of glial cells leading to a profound deficit in their
phagocytic capability (Hickman and El Khoury 2014; Zhao
et al. 2013; Bhattacharjee et al. 2014).

Upregulation of NF-κB induces the synthesis of other in-
flammatory miRNAs such as miR-9, miR-125b, miR-146a
and miR-155, which are recognised drivers of pathology in
several neurodegenerative diseases such as AD (Zhao et al.
2014; Lukiw 2012). While aluminium clearly could provoke
chronic pathology in people with a high or prolonged expo-
sure, it should be further emphasised that the likelihood that
adjuvant use could be the main cause of ASD in children, or
indeed harmful to the vast majority of children with normal
immune responses, appears to be vanishingly small. However,
the situation in children with an abnormal immune system and
a predisposition to autoimmunity may be different, and this
will be the final area of discussion in this paper.

The actions of aluminium on astrocytes and microglia are
summarised in Fig. 2.

Section 4. Consequences of aluminium exposure
in individuals with abnormal immune responses

Polymorphisms in immune effector genes

Abnormalities in the performance of PPRs are increasingly
associated with the development of neurodegenerative and
autoimmune conditions (Moraes et al. 2013; Cook et al.

Fig. 2 Effects of aluminium on astrocytes and microglia
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2004; Marshak-Rothstein 2006; Pradhan et al. 2012; Liu et al.
2014). In particular, functional polymorphisms in the genes
encoding proteins involved in effecting the immune response
following ligation of TLR-4, TLR-7 and TLR-9 increase the
susceptibility to and/or severity of a range of neurological,
auto-immune, inflammatory and infective illnesses, including
SLE, rheumatoid arthritis, asthma, sepsis and hepatitis
(Moraes et al. 2013; Dhaouadi et al. 2013; Fichna et al.
2016; Netea et al. 2012). Unsurprisingly, functional polymor-
phisms in cytokine genes such as those encoding for TNF-α,
IL-β, IL-6, IL-10 and IL-4 also increase the susceptibility to
develop a range of inflammatory, infective and autoimmune
conditions (Morris and Berk 2015).

The presence of these polymorphisms can also heavily in-
fluence the severity and ultimate trajectory of these diseases in
any given individual (Arfanakis et al. 2013; Tunçbilek 2014;
Haukim et al. 2002; Hollegaard and Bidwell 2006). There is
also accumulating evidence that functional polymorphisms in
genes encoding cytokines and/or their receptors increase the
risk of neuro-inflammatory and neurodegenerative pathology
such as stroke, AD, and MS (Ottoboni et al. 2013; Bagnoli
et al. 2007; Miranda-Hernandez and Baxter 2013; Cui et al.
2012). Functional polymorphisms can also lead to altered
structure and function of receptor and effector proteins in-
volved in a broad range of inflammasome responses, and once
again such mutations are also involved in the pathogenesis of
several autoimmune, neuro-immune and neurodegenerative
diseases (Pontillo et al. 2012; Tan et al. 2013; review by
Yang and Chiang 2015). In general, Bpathological^ polymor-
phisms within nuclear localisation leucine-rich-repeat protein-
1 (NLRP1) pathways lead to an exaggerated and/or prolonged
inflammatory response (Levandowski et al. 2013).

It is of interest that recent research has revealed a signifi-
cant association between the cumulative presence of immune
gene polymorphisms and increased risk of developing ASD
(Ramos et al. 2012). Single nucleotide polymorphisms (SNPs)
in immune genes in many children also display a signature
pattern which is characteristic of autoimmune diseases such as
MS (Jung et al. 2011). Unsurprisingly, polymorphisms in the
HLA system, notably HLA-DR4 and HLA-A2, are associated
with a significantly increased likelihood of developing the
syndrome (Mostafa et al. 2013; Torres et al. 2012). It is also
noteworthy that the concomitant presence of abnormally
expressed genes governing the regulation and delivery of im-
mune and inflammatory responses can predict the develop-
ment of ASDwith some 83% accuracy (Pramparo et al. 2015).

There is now copious evidence of dysregulated expression
of genes regulating the innate and adaptive immune response
in children with ASD (Michel et al. 2012; Gupta et al. 2014).
There is also some evidence of functional polymorphisms
coupled with exaggerated PRR responses in at least some
affected children (Bennabi et al. 2015; Enstrom et al. 2010).
There is also an accumulating body of research demonstrating

that immune responses following activation of TLRs are ab-
normal in many children who have received a diagnosis of
ASD (Mead and Ashwood 2015; Gesundheit et al. 2013;
Enstrom et al. 2010). Moreover, several research teams have
adduced evidence indicating that the immune response is ab-
normal in many children with ASD, and in particular that
genes governing the regulation and performance of immune
and inflammatory responses are upregulated allowing for an
excessive and/or prolonged response to an environmental in-
sult (Voineagu and Eapen 2013; Koufaris and Sismani 2015).
It is also noteworthy that several researchers have also report-
ed an association between initial inflammatory insults and the
subsequent development of chronic immune disturbances in
ASD children (Siniscalco 2015; Gottfried et al. 2015;
McDougle et al. 2015). This is particularly noteworthy, as
prolonged and/or excessive activation of immune and inflam-
matory pathways leading to oxidative and nitrosative stress
can have detrimental consequences for cellular and tissue in-
tegrity, which in turn could lead to the chronic activation of
immune and inflammatory pathways and ultimately of mi-
croglia and astrocytes in the brain as we will now discuss.

Prolonged or excessive immune responses
and the production of DAMPs

Oxidative stress activates NFκB and other transcription fac-
tors such as activated protein-1 (AP-1), leading to the synthe-
sis and secretion of PICs, various chemokine species by anti-
gen presentation cells, and activation and proliferation of T
and B lymphocytes (Morris et al. 2015a; Lucas et al. 2015).
Such activation and PIC production leads to the upregulation
of iNOS and NADPH oxidase, leading to the production of
superoxide, NO and peroxynitrite, and hence further increases
in ROS and reactive nitrogen species (RNS) levels (Morris
and Maes 2014; Morris et al. 2015a). This bidirectional and
self-amplifying relationship between the development of
chronic systemic inflammation as evidenced by increased
PIC levels and chronic nitro-oxidative stress as evidenced by
increased levels of ROS and RNS is often labelled an
Bautotoxic loop^ (Reuter et al. 2010; Ortiz et al. 2013).
Excessive levels of ROS and RNS can also lead to the oxida-
tive and nitrosative modification of lipids, proteins and DNA,
leading to misfolded, and consequently immunogenic, pro-
teins, oxidative modification of DNA and lipid peroxidation
of cell membranes, together with the production of highly
reactive ketones and aldehydes (Lucas et al. 2015). The net
result of these processes is the indirect and direct formation of
DAMPs capable of activating pathogen-sensing receptors on
the cell surface, and in the cytoplasm of immune cells (Hwang
2013; Ortiz et al. 2013).

In summary, the presence of the immune abnormalities
discussed allows for an abnormally excessive or prolonged
inflammatory response following exposure to aluminium
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adjuvants, leading to the production of DAMPs and subse-
quent chronic immune activation in genetically susceptible
children. It is noteworthy that several authors have reported
the presence of DAMPs such as protein carbonyls, MDA and
high-mobility group box-1 (HMGB1) protein in at least some
children afforded a diagnosis of ASD, and suchDAMPs could
play a major role in initiating and maintaining a state of im-
mune activation and inflammation seen in many children with
an ASD diagnosis (Babinska et al. 2014; Emanuele et al.
2010; Frank et al. 2016; Napoli et al. 2013).

Chronic engagement of TLRs by DAMPs leads to the de-
velopment of a positive feedback loop, whereby increasing
tissue damage caused by elevated PICs, ROS and RNS per-
petuates and escalates pro-inflammatory responses, leading to
a state of chronic inflammation nitro-oxidative stress, mito-
chondrial dysfunction and glial cell activation (Drexler and
Foxwell 2010; Piccinini and Midwood 2010; Goh and
Midwood 2012; Morris and Berk 2015). Unsurprisingly,
chronic engagement of TLRs, nucleotide-binding
oligomerisation domain (NOD)-like receptors and RIG-like
receptors is implicated in the pathogenesis and pathophysiol-
ogy of SLE, rheumatoid arthritis andMS (review (Drexler and
Foxwell 2010; Piccinini and Midwood 2010; Goh and
Midwood 2012)). Pertinently, the presence of DAMPs can
also lead to the chronic activation of the inflammasome
(Anders and Schaefer 2014) which is also implicated in the
development of neuro-inflammation and abnormal central
nervous system signalling characteristic of neurodegenerative
and neurodevelopmental disorders (Tan et al. 2013; Singhal
et al. 2014). It is also of interest that a recent study has reported
the presence of activated inflammasome complexes in at least
some children afforded a diagnosis of ASD (Saresella et al.
2016) There is now overwhelming evidence that prolonged
and/or chronic activation of peripheral immune and inflam-
matory pathways provokes the development of chronic neuro-
inflammtion and/or microglial priming and a brief explanation
of this process will constitute the final subsection of this paper.

Systemic immune activation primed microglia
and chronic neuro-inflammation

There is ample evidence demonstrating that chronic immune
system activation and systemic inflammation can lead to the
development of chronic neuro-inflammation (Perry and
Holmes 2014; Cunningham 2013). Communication of inflam-
matory signals to the brain is mediated by PICs via a number of
routes, including innervation of the vagus nerve, carrier-enabled
transport across the blood-brain barrier (BBB), activation of en-
dothelial cells within the BBB and perivascular macrophages,
and finally via transport through circumventricular organs devoid
of a functional BBB (Morris and Maes 2012, 2014). The trans-
duced inflammatory signals may lead to the development of
chronic neuro-inflammation via the activation of microglia if of

sufficient intensity and/or duration or lead to the development of
Bprimed^ microglia (Perry and Holmes 2014; Su and Federoff
2014).Microglial priming involves the upregulation of a range of
surface receptors such as MHC class II, CD11b and CD11c
integrins, co-stimulatory molecule CD86 and TLR-4 (Su and
Federoff 2014).

Following the upregulation of these receptors, such mi-
croglia become exquisitely sensitive to subsequent inflamma-
tory stimuli, leading to an exaggerated production of neuro-
toxic molecules that may exacerbate the pre-existing patholo-
gy and may even accelerate the progression of existing neuro-
inflammatory or neurodegenerative diseases (Ferrari and
Tarelli 2011; Lunnon et al. 2011). Activated microglia exert
their neurotoxic effects by releasing PICs, such as TNF-α, IL-
1β, IL-6, and IFN-γ, and free radicals including superoxide,
NO and peroxynitrite, as well as inflammatorymolecules such
as prostaglandin E2. Moreover, TNF-α, IL-1β and IFN-γ can
act as secondary sources of RNS and other inflammatory mol-
ecules by acting as potent inducers of iNOS and via their
capacity to upregulate cyclooxygenase-2 (COX-2) with the
resultant production of prostaglandin E2 (Morris et al.
2015b; Perry et al. 2010). The concept of microglial priming
could change the frame of reference from a consideration of a
single inoculation containing aluminium adjuvant to a cumu-
lative effect caused by a vaccination schedule in which suc-
cessive immune insults over a short period could provoke
chronic pathology either directly, by provoking microglial ac-
tivity, or more indirectly by provoking macromolecular dam-
age which could eventually reach a threshold capable of pro-
voking chronic pathology. It should be noted that there is an
accumulating body of evidence, albeit from animal studies,
that successive and frequent postnatal immune and inflamma-
tory insults play a pivotal role in the advent of microglial
priming and the genesis of neurodevelopmental disorders
(Ibi and Yamada 2015; Nagai 2013). There is also emerging
data implicating the development of microglial priming as a
major factor in the development of several if not all neurode-
generative diseases (Bhattacharya et al. 2016; Zhao et al.
2014; Shastri et al. 2013; Hoeijmakers et al. 2016).

Summary

Evidence of the neurotoxicity of aluminium cations (Al3+) in-
cludes: an association between chronic aluminium exposure
and the development of AD; the involvement of aluminium
adjuvants in the development of ASIA; and epidemiological
evidence pointing to an association between the use of alumin-
ium adjuvants and ASD. There is good evidence to suggest that
immunisation may accelerate or precipitate the transition be-
tween subclinical and overt symptomatic autoimmune condi-
tions within the first 30 days post-immunisation, particularly in
those younger than 50 years of age. The immune response to

1346 Metab Brain Dis (2017) 32:1335–1355



immunisation may be influenced by variations in HLA, TLR
and cytokine genes. Moreover, aluminium exposure is associ-
ated with the production of pro-inflammatory cytokines and
chemokines and with the development of chronic oxidative
stress, mitochondrial dysfunction and glial activation or dys-
function; these changes in turn are associated with ASD.

Conclusions and Future Directions

Aluminium has no known beneficial physiological action in
the human body and some genetic polymorphisms predispose
to a greater susceptibility to its adverse effects. Therefore, a
strong case can be made for avoiding unnecessary exposure to
environmental sources of aluminium salts, especially on the
part of children, pregnant mothers and women of child-
bearing age who may become pregnant. Such avoidance need
not lead to hardship or inconvenience; aluminium cookware
may be replaced by safer alternatives, while aluminium-
containing antiperspirants, potentially implicated in the rise
of cases of breast cancer particularly affecting the upper outer
quadrant of the mammary gland, may be replaced by non-
aluminium versions. The use of aluminium salts in medical
products is a more contentious issue. While antacids are avail-
able which do not contain aluminium salts, the avoidance of
immunisations which do not contain aluminium salts as adju-
vants has wider political and financial implications. It would
seem prudent to try to find an alternative to aluminium adju-
vants as soon as possible and phase out their use.
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