Skip to main content

Advertisement

Log in

Important molecular mechanisms in ferroptosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Ferroptosis is a type of cell death that is caused by the oxidation of lipids and is dependent on the presence of iron. It was first characterized by Brent R. Stockwell in 2012, and since then, research in the field of ferroptosis has rapidly expanded. The process of ferroptosis-induced cell death is genetically, biochemically, and morphologically distinct from other forms of cellular death, such as apoptosis, necroptosis, and non-programmed cell death. Extensive research has been devoted to comprehending the intricate process of ferroptosis and the various factors that contribute to it. While the majority of these studies have focused on examining the effects of lipid metabolism and mitochondria on ferroptosis, recent findings have highlighted the significant involvement of signaling pathways and associated proteins, including Nrf2, P53, and YAP/TAZ, in this process. This review provides a concise summary of the crucial signaling pathways associated with ferroptosis based on relevant studies. It also elaborates on the drugs that have been employed in recent years to treat ferroptosis-related diseases by targeting the relevant signaling pathways. The established and potential therapeutic targets for ferroptosis-related diseases, such as cancer and ischemic heart disease, are systematically addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

ACSL4:

Acyl-CoA synthetase long chain family member 4

ALOX12:

Arachidonic 12-lipoxygenase

ALOX15:

Arachidonic 15-lipoxygenase

ATF3:

Activation transcription factor 3

Bach1:

BTB and CNC homology 1

BRD4:

Bromodomain-containing protein 4

CDK1:

Cyclin-dependent kinase 1

CYP1B1:

Cytochrome P450 1B1

Cys:

Cystine

DMF:

Dimethyl fumarate

DPP4:

Dipeptidyl peptidase 4

EMP1:

Epithelial membrane protein 1

FECH:

Ferrochelatase

FPN:

Ferroportin

FPN1:

Ferroportin 1

FTH:

Ferritin heavy chain

FTH1:

Ferritin heavy chain 1

FTL:

Ferritin light chain

G6PD:

Glucose-6-phosphate dehydrogenase

GCLC:

Glutamate-cysteine ligase catalytic subunit

GCLM:

Glutamate-cysteine ligase modifier subunit

GPX4:

Glutathione peroxidase 4

GSH:

Glutathione

H2Bub1:

H2B ubiquitination modification

HCC:

Hepatocellular carcinoma

HO-1:

Heme oxygenase-1

HSF1:

Heat shock factor 1

HSPB1:

Heat shock protein family B member 1

HSPE1:

Heat shock protein family E member 1

IMA:

Imatinib

JAK:

Janus kinase

LSH:

Lymphoid-specific helicase

MCL1:

Myeloid cell leukemia-1

NADPH:

Nicotinamide adenine dinucleotide phosphate

NCOA4:

Nuclear receptor co-activator protein 4

NEDD4L:

Neural precursor cell expressed developmentally downregulated 4-like

NQO1:

NAD(P)H quinone oxidoreductase 1

Nrf2:

Nuclear factor-erythroid 2-related factor 2

OGD/R:

Oxygen-glucose deprivation and reoxygenation

PLB:

Plumbagin

ROS:

Reactive oxygen species

SAT1:

Spermidine/spermine N1-acetyltransferase 1

SIRT6:

Sirtuin 6

SKP2:

S-phase kinase-associated protein 2

SLC40A1:

Solute carrier family 40 member 1

SLC7A11:

Solute carrier family 7 member 11

STAT3:

Signal transducer and activator of transcription 3

TAZ:

Transcriptional coactivator with PDZ-binding motif

TEAD:

TEA/ATTS domain

TFAP2A:

Transcription factor AP2 alpha

TFRC:

Transferrin receptor

TGF-β:

Transforming growth factor beta

THSWD:

Tao Hong Si Wu Tang

TNFAIP1:

TNF alpha-induced protein 1

Tyk2:

Tyrosine kinase 2

Ub:

Ubiquitin

Usp7:

Ubiquitin-specific protease 7

YAP:

Yes-Association protein

References

  1. Gaschler MM, Hu F, Feng H et al (2018) Determination of the subcellular localization and mechanism of action of ferrostatins in suppressing ferroptosis. ACS Chem Biol 13:1013–1020. https://doi.org/10.1021/acschembio.8b00199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Von Krusenstiern AN, Robson RN, Qian N et al (2023) Identification of essential sites of lipid peroxidation in ferroptosis. Nat Chem Biol 19:719–730. https://doi.org/10.1038/s41589-022-01249-3

    Article  CAS  Google Scholar 

  3. Lei P, Bai T, Sun Y (2019) Mechanisms of ferroptosis and relations with regulated cell death: a review. Front Physiol 10:139. https://doi.org/10.3389/fphys.2019.00139

    Article  PubMed  PubMed Central  Google Scholar 

  4. Javadov S (2022) Mitochondria and ferroptosis. Curr Opin Physiol 25:100483. https://doi.org/10.1016/j.cophys.2022.100483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gao M, Yi J, Zhu J et al (2019) Role of mitochondria in ferroptosis. Mol Cell 73:354-363.e3. https://doi.org/10.1016/j.molcel.2018.10.042

    Article  CAS  PubMed  Google Scholar 

  6. Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072. https://doi.org/10.1016/j.cell.2012.03.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cao JY, Dixon SJ (2016) Mechanisms of ferroptosis. Cell Mol Life Sci 73:2195–2209. https://doi.org/10.1007/s00018-016-2194-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yang WS, SriRamaratnam R, Welsch ME et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331. https://doi.org/10.1016/j.cell.2013.12.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen C, Chen W, Zhou X et al (2022) Hyperbaric oxygen protects HT22 cells and PC12 cells from damage caused by oxygen-glucose deprivation/reperfusion via the inhibition of Nrf2/System Xc-/GPX4 axis-mediated ferroptosis. PLoS ONE 17:e0276083. https://doi.org/10.1371/journal.pone.0276083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fang X, Ardehali H, Min J et al (2023) The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat Rev Cardiol 20(1):7–23

    Article  PubMed  Google Scholar 

  11. Battaglia AM, Chirillo R, Aversa I et al (2020) Ferroptosis and cancer: mitochondria meet the “Iron Maiden” cell death. Cells 9:1505. https://doi.org/10.3390/cells9061505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Phaniendra A, Jestadi DB, Periyasamy L (2015) Free radicals: properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem 30(1):11–26

    Article  CAS  PubMed  Google Scholar 

  13. Stockwell BR, Friedmann Angeli JP, Bayir H et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285. https://doi.org/10.1016/j.cell.2017.09.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mandal PK, Saharan S, Tripathi M, Murari G (2015) Brain glutathione levels—a novel biomarker for mild cognitive impairment and Alzheimer’s disease. Biol Psychiatry 78:702–710. https://doi.org/10.1016/j.biopsych.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  15. Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol 15:234–245. https://doi.org/10.1016/j.chembiol.2008.02.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xie Y, Zhu S, Song X et al (2017) The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 20:1692–1704. https://doi.org/10.1016/j.celrep.2017.07.055

    Article  CAS  PubMed  Google Scholar 

  17. Wang S-J, Li D, Ou Y et al (2016) Acetylation is crucial for p53-mediated ferroptosis and tumor suppression. Cell Rep 17:366–373. https://doi.org/10.1016/j.celrep.2016.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Maddocks ODK, Vousden KH (2011) Metabolic regulation by p53. J Mol Med 89:237–245. https://doi.org/10.1007/s00109-011-0735-5

    Article  CAS  PubMed  Google Scholar 

  19. Jiang L, Kon N, Li T et al (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62. https://doi.org/10.1038/nature14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tang Y, Zhao W, Chen Y et al (2008) Acetylation Is Indispensable for p53 Activation. Cell 133:612–626. https://doi.org/10.1016/j.cell.2008.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ou Y, Wang S-J, Li D et al (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1607152113

    Article  PubMed  PubMed Central  Google Scholar 

  22. Luci D, Jameson JB, Yasgar A, et al (2010) Discovery of ML355, a potent and selective inhibitor of human 12-Lipoxygenase. In: Probe reports from the NIH molecular libraries program. National Center for Biotechnology Information (US), Bethesda (MD)

  23. Chu B, Kon N, Chen D et al (2019) ALOX12 is required for p53-mediated tumor suppression through a distinct ferroptosis pathway. Nat Cell Biol 21(5):579–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu C, Shen Y, Cavdar O et al (2023) Angiotensin II-induced vascular endothelial cells ferroptosis via P53-ALOX12 signal axis. Clin Exp Hypertens 45:2180019. https://doi.org/10.1080/10641963.2023.2180019

    Article  CAS  PubMed  Google Scholar 

  25. Li W, Li W, Li X et al (2023) Effect of P53 nuclear localization mediated by G3BP1 on ferroptosis in acute liver failure. Apoptosis 28:1226–1240. https://doi.org/10.1007/s10495-023-01856-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Han C, Sheng J, Pei H et al (2023) Environmental toxin chlorpyrifos induces liver injury by activating P53-mediated ferroptosis via GSDMD-mtROS. Ecotoxicol Environ Saf 257:114938. https://doi.org/10.1016/j.ecoenv.2023.114938

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Yang L, Zhang X et al (2019) Epigenetic regulation of ferroptosis by H2B monoubiquitination and p53. EMBO Rep 20:e47563. https://doi.org/10.15252/embr.201847563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tang L-J, Zhou Y-J, Xiong X-M et al (2021) Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radic Biol Med 162:339–352. https://doi.org/10.1016/j.freeradbiomed.2020.10.307

    Article  CAS  PubMed  Google Scholar 

  29. Xu R, Wang W, Zhang W (2023) Ferroptosis and the bidirectional regulatory factor p53. Cell Death Discov 9:197. https://doi.org/10.1038/s41420-023-01517-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang F, Wang W, Tsuji Y et al (2008) Post-transcriptional modulation of iron homeostasis during p53-dependent growth arrest. J Biol Chem 283:33911–33918. https://doi.org/10.1074/jbc.M806432200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Faniello MC, Di Sanzo M, Quaresima B et al (2008) p53-Mediated downregulation of H ferritin promoter transcriptional efficiency via NF-Y. Int J Biochem Cell Biol 40:2110–2119. https://doi.org/10.1016/j.biocel.2008.02.010

    Article  CAS  PubMed  Google Scholar 

  32. Zhang J, Chen X (2019) p53 tumor suppressor and iron homeostasis. FEBS J 286:620–629. https://doi.org/10.1111/febs.14638

    Article  CAS  PubMed  Google Scholar 

  33. Lee J-H, Jang H, Cho E-J, Youn H-D (2009) Ferritin binds and activates p53 under oxidative stress. Biochem Biophys Res Commun 389(3):399–404

    Article  CAS  PubMed  Google Scholar 

  34. Venkatesh D, Stockwell BR, Prives C (2020) p21 can be a barrier to ferroptosis independent of p53. Aging 12:17800–17814. https://doi.org/10.18632/aging.103961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xie T (2023) Inhibition of ferroptosis ameliorates hypertensive nephropathy through p53/Nrf2/p21 pathway by Taohongsiwu decoction: based on network pharmacology and experimental validation. J Ethnopharmacol 312:116506

    Article  CAS  PubMed  Google Scholar 

  36. Gao Y, Chen B, Wang R et al (2022) Knockdown of RRM1 in tumor cells promotes radio-/chemotherapy induced ferroptosis by regulating p53 ubiquitination and p21-GPX4 signaling axis. Cell Death Discov 8:343. https://doi.org/10.1038/s41420-022-01140-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang W, Gai C, Ding D et al (2018) Targeted p53 on small-molecules-induced ferroptosis in cancers. Front Oncol 8:507. https://doi.org/10.3389/fonc.2018.00507

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gao H, Xie R, Huang R et al (2022) CIRBP regulates pancreatic cancer cell ferroptosis and growth by directly binding to p53. J Immunol Res 2022:2527210

    Article  PubMed  PubMed Central  Google Scholar 

  39. Kang R, Kroemer G, Tang D (2019) The tumor suppressor protein p53 and the ferroptosis network. Free Radic Biol Med 133:162–168. https://doi.org/10.1016/j.freeradbiomed.2018.05.074

    Article  CAS  PubMed  Google Scholar 

  40. Lee J, Hyun D-H (2023) The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases. Antioxidants (Basel) 12(4):918

    Article  CAS  PubMed  Google Scholar 

  41. Han K, Jin X, Guo X et al (2021) Nrf2 knockout altered brain iron deposition and mitigated age-related motor dysfunction in aging mice. Free Radic Biol Med 162:592–602. https://doi.org/10.1016/j.freeradbiomed.2020.11.019

    Article  CAS  PubMed  Google Scholar 

  42. Namgaladze D, Fuhrmann DC, Brüne B (2022) Interplay of Nrf2 and BACH1 in inducing ferroportin expression and enhancing resistance of human macrophages towards ferroptosis. Cell Death Discov 8:327. https://doi.org/10.1038/s41420-022-01117-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao X, Liu Z, Gao J et al (2020) Inhibition of ferroptosis attenuates busulfan-induced oligospermia in mice. Toxicology 440:152489. https://doi.org/10.1016/j.tox.2020.152489

    Article  CAS  PubMed  Google Scholar 

  44. Cheng H, Wang P, Wang N et al (2023) Neuroprotection of NRF2 against ferroptosis after traumatic brain injury in mice. Antioxidants 12(3):731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arber CE, Li A, Houlden H et al (2016) Review: insights into molecular mechanisms of disease in neurodegeneration with brain iron accumulation: unifying theories. Neuropathol Appl Neurobiol 42(3):220–241

    Article  CAS  PubMed  Google Scholar 

  46. Zhao Y, Lu J, Mao A et al (2021) Autophagy inhibition plays a protective role in ferroptosis induced by alcohol via the p62–Keap1–Nrf2 pathway. J Agric Food Chem 69:9671–9683. https://doi.org/10.1021/acs.jafc.1c03751

    Article  CAS  PubMed  Google Scholar 

  47. Li Y et al (2022) Inhibition of CISD2 promotes ferroptosis through ferritinophagy-mediated ferritin turnover and regulation of p62–Keap1–NRF2 pathway. Cell Mol Biol Lett 27(1):81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu J, Ren Z, Yang L et al (2022) The NSUN5-FTH1/FTL pathway mediates ferroptosis in bone marrow-derived mesenchymal stem cells. Cell Death Discov 8:99. https://doi.org/10.1038/s41420-022-00902-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sandberg M, Patil J et al (2014) NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology 79:298–306

    Article  CAS  PubMed  Google Scholar 

  50. Xiong L et al (2022) Exposure to low-dose cadmium induces testicular ferroptosis. Ecotoxicol Environ Saf Ecotoxicol Environ Saf 234:113373

    Article  CAS  PubMed  Google Scholar 

  51. Poli A, Schmitt C, Moulouel B et al (2021) Iron, heme synthesis and erythropoietic porphyrias: a complex interplay. Metabolites 11:798. https://doi.org/10.3390/metabo11120798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang C et al (2022) Flavonoid 4,4′-dimethoxychalcone induced ferroptosis in cancer cells by synergistically activating Keap1/Nrf2/HMOX1 pathway and inhibiting FECH. Free Radic Biol Med 188:14–23

    Article  CAS  PubMed  Google Scholar 

  53. Xue W et al (2023) Knockdown of SETD2 promotes erastin-induced ferroptosis in ccRCC. Cell Death Dis Cell Death Dis 14(8):539

    Article  CAS  PubMed  Google Scholar 

  54. He F, Ru X, Wen T (2020) NRF2, a transcription factor for stress response and beyond. Int J Mol Sci 21:4777. https://doi.org/10.3390/ijms21134777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kerins MJ, Ooi A (2018) The roles of NRF2 in modulating cellular iron homeostasis. Antioxid Redox Signal 29:1756–1773. https://doi.org/10.1089/ars.2017.7176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pillai R, Hayashi M, Zavitsanou A-M et al (2022) NRF2: KEAPing tumors protected. Cancer Discov 12(3):625–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhang Y, Lan J, Zhao D et al (2023) Netrin-1 upregulates GPX4 and prevents ferroptosis after traumatic brain injury via the UNC5B/Nrf2 signaling pathway. CNS Neurosci Ther 29:216–227. https://doi.org/10.1111/cns.13997

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Q, Qu H, Chen Y et al (2022) Atorvastatin induces mitochondria-dependent ferroptosis via the modulation of Nrf2-xCT/GPx4 axis. Front Cell Dev Biol 10:806081. https://doi.org/10.3389/fcell.2022.806081

    Article  PubMed  PubMed Central  Google Scholar 

  59. Xiong L, Zhang J, Shi H et al (2022) Downregulation of TNFAIP1 alleviates OGD/R-induced neuronal damage by suppressing Nrf2/GPX4-mediated ferroptosis. Exp Ther Med 25:25. https://doi.org/10.3892/etm.2022.11724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhu L, Chen D, Zhu Y et al (2021) GPX4-regulated ferroptosis mediates S100-induced experimental autoimmune hepatitis associated with the Nrf2/HO-1 signaling pathway. Oxid Med Cell Longev 2021:1–16. https://doi.org/10.1155/2021/6551069

    Article  CAS  Google Scholar 

  61. Yang W, Wang Y, Zhang C et al (2022) Maresin1 protect against ferroptosis-induced liver injury through ROS inhibition and Nrf2/HO-1/GPX4 activation. Front Pharmacol 13:865689. https://doi.org/10.3389/fphar.2022.865689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mi Y, Wei C, Sun L et al (2023) Melatonin inhibits ferroptosis and delays age-related cataract by regulating SIRT6/p-Nrf2/GPX4 and SIRT6/NCOA4/FTH1 pathways. Biomed Pharmacother 157:114048. https://doi.org/10.1016/j.biopha.2022.114048

    Article  CAS  PubMed  Google Scholar 

  63. Liu X, Peng X, Cen S et al (2023) Wogonin induces ferroptosis in pancreatic cancer cells by inhibiting the Nrf2/GPX4 axis. Front Pharmacol 14:1129662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li X, Chen J, Yuan S et al (2022) Activation of the P62-Keap1-NRF2 pathway protects against ferroptosis in radiation-induced lung injury. Oxid Med Cell Longev 2022:1–16. https://doi.org/10.1155/2022/8973509

    Article  CAS  Google Scholar 

  65. Komatsu M, Kurokawa H, Waguri S et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223. https://doi.org/10.1038/ncb2021

    Article  CAS  PubMed  Google Scholar 

  66. Zhan S, Lu L, Pan S et al (2022) Targeting NQO1/GPX4-mediated ferroptosis by plumbagin suppresses in vitro and in vivo glioma growth. Br J Cancer 127:364–376. https://doi.org/10.1038/s41416-022-01800-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Zhang B, Hou Q, Zhang X et al (2023) Anesthetic propofol inhibits ferroptosis and aggravates distant cancer metastasis via Nrf2 upregulation. Free Radic Biol Med 195:298–308. https://doi.org/10.1016/j.freeradbiomed.2022.12.092

    Article  CAS  PubMed  Google Scholar 

  68. Liu Y, Mi Y, Wang Y et al (2023) Loureirin C inhibits ferroptosis after cerebral ischemia reperfusion through regulation of the Nrf2 pathway in mice. Phytomedicine 113:154729. https://doi.org/10.1016/j.phymed.2023.154729

    Article  CAS  PubMed  Google Scholar 

  69. Song C, Li D, Zhang J, Zhao X (2023) Berberine hydrochloride alleviates imatinib mesylate—induced cardiotoxicity through the inhibition of Nrf2-dependent ferroptosis. Food Funct 14:1087–1098. https://doi.org/10.1039/D2FO03331C

    Article  CAS  PubMed  Google Scholar 

  70. Wang T-X, Duan K-L, Huang Z-X et al (2023) Tanshinone functions as a coenzyme that confers gain of function of NQO1 to suppress ferroptosis. Life Sci Alliance 6:e202201667. https://doi.org/10.26508/lsa.202201667

    Article  CAS  PubMed  Google Scholar 

  71. Huang HX, Yang G et al (2020) TFAP2A is a novel regulator that modulates ferroptosis in gallbladder carcinoma cells via the Nrf2 signalling axis. Eur Rev Med Pharmacol Sci 24(9):4745–4755

    PubMed  Google Scholar 

  72. Wang X, Chen J, Tie H et al (2023) Eriodictyol regulated ferroptosis, mitochondrial dysfunction, and cell viability via Nrf2/HO-1/NQO1 signaling pathway in ovarian cancer cells. J Biochem Mol Toxicol 37:e23368. https://doi.org/10.1002/jbt.23368

    Article  CAS  PubMed  Google Scholar 

  73. Li S, Zhang Y, Zhang J et al (2022) Neferine exerts ferroptosis-inducing effect and antitumor effect on thyroid cancer through Nrf2/HO-1/NQO1 inhibition. J Oncol 2022:1–16. https://doi.org/10.1155/2022/7933775

    Article  CAS  Google Scholar 

  74. Fiore A, Zeitler L, Russier M et al (2022) Kynurenine importation by SLC7A11 propagates anti-ferroptotic signaling. Mol Cell 82:920-932.e7. https://doi.org/10.1016/j.molcel.2022.02.007

    Article  CAS  PubMed  Google Scholar 

  75. Liu X, Chen C, Han D et al (2022) SLC7A11/GPX4 inactivation-mediated ferroptosis contributes to the pathogenesis of triptolide-induced cardiotoxicity. Oxid Med Cell Longev 2022:1–16. https://doi.org/10.1155/2022/3192607

    Article  CAS  Google Scholar 

  76. Feng L, Zhao K, Sun L et al (2021) SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J Transl Med 19:367. https://doi.org/10.1186/s12967-021-03042-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Dong H, Qiang Z, Chai D et al (2020) Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1. Aging 12:12943–12959. https://doi.org/10.18632/aging.103378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Qiang Z, Dong H, Xia Y et al (2020) Nrf2 and STAT3 alleviates ferroptosis-mediated IIR-ALI by regulating SLC7A1. Oxid Med Cell Longev 2020:5146982

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dong H, Xia Y, Jin S et al (2021) Nrf2 attenuates ferroptosis-mediated IIR-ALI by modulating TERT and SLC7A11. Cell Death Dis 12:1027. https://doi.org/10.1038/s41419-021-04307-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Qi D, Chen P, Bao H et al (2023) Dimethyl fumarate protects against hepatic ischemia-reperfusion injury by alleviating ferroptosis via the NRF2/SLC7A11/HO-1 axis. Cell Cycle 22:818–828. https://doi.org/10.1080/15384101.2022.2155016

    Article  CAS  PubMed  Google Scholar 

  81. Yuan Y, Zhai Y, Chen J et al (2021) Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis. Biomolecules 11:923. https://doi.org/10.3390/biom11070923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Liu T, Cui Y, Dong S et al (2022) Treadmill training reduces cerebral ischemia-reperfusion injury by inhibiting ferroptosis through activation of SLC7A11/ GPX4. Oxid Med Cell Longev. https://doi.org/10.1155/2022/8693664

    Article  PubMed  PubMed Central  Google Scholar 

  83. Huang Y, Jiang L, Liu X et al (2022) Melatonin alleviates acute kidney injury by inhibiting NRF2/Slc7a11 axis-mediated ferroptosis. Oxid Med Cell Longev 2022:1–24. https://doi.org/10.1155/2022/4776243

    Article  CAS  Google Scholar 

  84. Luo L, Zhang Z, Weng Y, Zeng J (2022) Ferroptosis-related gene GCLC Is a novel prognostic molecular and correlates with immune infiltrates in lung adenocarcinoma. Cells 11:3371. https://doi.org/10.3390/cells11213371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yang Z, Zou S, Zhang Y et al (2023) ACTL6A protects gastric cancer cells against ferroptosis through induction of glutathione synthesis. Nat Commun 14:4193. https://doi.org/10.1038/s41467-023-39901-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Xu Y, Li Y, Li J, Chen W (2022) Ethyl carbamate triggers ferroptosis in liver through inhibiting GSH synthesis and suppressing Nrf2 activation. Redox Biol 53:102349. https://doi.org/10.1016/j.redox.2022.102349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kang YP, Mockabee-Macias A, Jiang C et al (2021) Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell Metab 33:174-189.e7. https://doi.org/10.1016/j.cmet.2020.12.007

    Article  CAS  PubMed  Google Scholar 

  88. Nishizawa H, Matsumoto M et al (2020) Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1. J Biol Chem 295(1):69–82

    Article  CAS  PubMed  Google Scholar 

  89. Gong S, Zhang A, Yao M et al (2023) REST contributes to AKI-to-CKD transition through inducing ferroptosis in renal tubular epithelial cells. JCI Insight 8:e166001. https://doi.org/10.1172/jci.insight.166001

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wang S, Wang H, Zhu S, Li F (2022) Systematical analysis of ferroptosis regulators and identification of GCLM as a tumor promotor and immunological biomarker in bladder cancer. Front Oncol 12:1040892. https://doi.org/10.3389/fonc.2022.1040892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Khan U, Hadid T (2016) RUSH for G6PD! Blood 128:2742–2742. https://doi.org/10.1182/blood-2016-07-730119

    Article  CAS  PubMed  Google Scholar 

  92. Meng Q, Zhang Y, Hao S et al (2022) Recent findings in the regulation of G6PD and its role in diseases. Front Pharmacol 13:932154. https://doi.org/10.3389/fphar.2022.932154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Cao F, Luo A, Yang C (2021) G6PD inhibits ferroptosis in hepatocellular carcinoma by targeting cytochrome P450 oxidoreductase. Cell Signal 87:110098. https://doi.org/10.1016/j.cellsig.2021.110098

    Article  CAS  PubMed  Google Scholar 

  94. Zhang Y, Ren H, Zhang C et al (2022) Development and validation of four ferroptosis-related gene signatures and their correlations with immune implication in hepatocellular carcinoma. Front Immunol 13:1028054. https://doi.org/10.3389/fimmu.2022.1028054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ding H, Chen Z, Wu K et al (2021) Activation of the NRF2 antioxidant program sensitizes tumors to G6PD inhibition. Sci Adv 7:eabk1023. https://doi.org/10.1126/sciadv.abk1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lv Y, Lv X, Zhang J et al (2022) BRD4 targets the KEAP1-Nrf2-G6PD axis and suppresses redox metabolism in small cell lung cancer. Antioxidants 11:661. https://doi.org/10.3390/antiox11040661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang W-H, Chi J-T (2020) Hippo pathway effectors YAP/TAZ as novel determinants of ferroptosis. Mol Cell Oncol 7:1699375. https://doi.org/10.1080/23723556.2019.1699375

    Article  CAS  PubMed  Google Scholar 

  98. Sun T, Chi J-T (2021) Regulation of ferroptosis in cancer cells by YAP/TAZ and Hippo pathways: the therapeutic implications. Genes Dis 8:241–249. https://doi.org/10.1016/j.gendis.2020.05.004

    Article  CAS  PubMed  Google Scholar 

  99. Magesh S, Cai D (2022) Roles of YAP/TAZ in ferroptosis. Trends Cell Biol 32:729–732. https://doi.org/10.1016/j.tcb.2022.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Zheng Y, Pan D (2019) The Hippo signaling pathway in development and disease. Dev Cell 50:264–282. https://doi.org/10.1016/j.devcel.2019.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gao R, Kalathur RKR, Coto-Llerena M et al (2021) YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med 13:e14351. https://doi.org/10.15252/emmm.202114351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lin C-C, Yang W-H, Lin Y-T et al (2021) DDR2 upregulation confers ferroptosis susceptibility of recurrent breast tumors through the Hippo pathway. Oncogene 40:2018–2034. https://doi.org/10.1038/s41388-021-01676-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Setayeshpour Y, Chi J-T (2021) Editorial: novel insights into ferroptosis. Front Cell Dev Biol 9:754160. https://doi.org/10.3389/fcell.2021.754160

    Article  PubMed  PubMed Central  Google Scholar 

  104. Yang W-H, Ding C-KC, Sun T et al (2019) The Hippo pathway effector TAZ regulates ferroptosis in renal cell carcinoma. Cell Rep 28:2501-2508.e4. https://doi.org/10.1016/j.celrep.2019.07.107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang W-H, Lin C-C, Wu J et al (2021) The Hippo pathway effector YAP promotes ferroptosis via the E3 ligase SKP2. Mol Cancer Res 19:1005–1014. https://doi.org/10.1158/1541-7786.MCR-20-0534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. He S, Li R, Peng Y et al (2022) ACSL4 contributes to ferroptosis-mediated rhabdomyolysis in exertional heat stroke. J Cachexia Sarcopenia Muscle 13:1717–1730. https://doi.org/10.1002/jcsm.12953

    Article  PubMed  PubMed Central  Google Scholar 

  107. Li Y, Feng D, Wang Z et al (2019) Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ 26:2284–2299. https://doi.org/10.1038/s41418-019-0299-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang Y, Zhang M, Bi R et al (2022) ACSL4 deficiency confers protection against ferroptosis-mediated acute kidney injury. Redox Biol 51:102262. https://doi.org/10.1016/j.redox.2022.102262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tuo Q, Liu Y, Xiang Z et al (2022) Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion. Signal Transduct Target Ther 7:59. https://doi.org/10.1038/s41392-022-00917-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Cui Y, Zhang Y, Zhao X et al (2021) ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun 93:312–321. https://doi.org/10.1016/j.bbi.2021.01.003

    Article  CAS  PubMed  Google Scholar 

  111. Grube J, Woitok MM, Mohs A et al (2022) ACSL4-dependent ferroptosis does not represent a tumor-suppressive mechanism but ACSL4 rather promotes liver cancer progression. Cell Death Dis 13:704. https://doi.org/10.1038/s41419-022-05137-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liao P, Wang W, Wang W et al (2022) CD8+ T cells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell 40:365-378.e6. https://doi.org/10.1016/j.ccell.2022.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chen C, Yang Y, Guo Y et al (2023) CYP1B1 inhibits ferroptosis and induces anti-PD-1 resistance by degrading ACSL4 in colorectal cancer. Cell Death Dis 14:271. https://doi.org/10.1038/s41419-023-05803-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Zeng K, Li W, Wang Y et al (2023) Inhibition of CDK1 overcomes oxaliplatin resistance by regulating ACSL4-mediated ferroptosis in colorectal cancer. Adv Sci. https://doi.org/10.1002/advs.202301088

    Article  Google Scholar 

  115. Aolymat I, Hatmal MM, Olaimat AN (2023) The emerging role of heat shock factor 1 (HSF1) and heat shock proteins (HSPs) in ferroptosis. Pathophysiology 30:63–82. https://doi.org/10.3390/pathophysiology30010007

    Article  PubMed  PubMed Central  Google Scholar 

  116. Sun X, Ou Z, Xie M et al (2015) HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 34:5617–5625. https://doi.org/10.1038/onc.2015.32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang B, Fan Y, Cao P, Tan K (2021) Multifaceted roles of HSF1 in cell death: A state-of-the-art review. Biochim Biophys Acta BBA - Rev Cancer 1876:188591. https://doi.org/10.1016/j.bbcan.2021.188591

    Article  CAS  Google Scholar 

  118. Wang N, Ma H, Li J et al (2021) HSF1 functions as a key defender against palmitic acid-induced ferroptosis in cardiomyocytes. J Mol Cell Cardiol 150:65–76. https://doi.org/10.1016/j.yjmcc.2020.10.010

    Article  CAS  PubMed  Google Scholar 

  119. Jia G, Wu W, Chen L et al (2023) HSF1 is a novel prognostic biomarker in high-risk prostate cancer that correlates with ferroptosis. Discov Oncol 14:107. https://doi.org/10.1007/s12672-023-00715-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Brown CW, Chhoy P, Mukhopadhyay D et al (2021) Targeting prominin2 transcription to overcome ferroptosis resistance in cancer. EMBO Mol Med 13:e13792. https://doi.org/10.15252/emmm.202013792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Han S, Liu Q, Yang Z et al (2022) Identification of ferroptosis-related gene prognostic signature and HSF1 for reversing doxorubicin and gemcitabine resistance in uterine carcinosarcoma. Dis Markers 2022:1–16. https://doi.org/10.1155/2022/6400227

    Article  CAS  Google Scholar 

  122. Liu M, Fan Y, Li D et al (2021) Ferroptosis inducer erastin sensitizes NSCLC cells to celastrol through activation of the ROS–mitochondrial fission–mitophagy axis. Mol Oncol 15:2084–2105. https://doi.org/10.1002/1878-0261.12936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhong Y, Zhang W, Yu H et al (2022) Multi-platform-based characterization of ferroptosis in human colorectal cancer. iScience 25:104750. https://doi.org/10.1016/j.isci.2022.104750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Huang F, Zhang S, Li X et al (2022) STAT3-mediated ferroptosis is involved in ulcerative colitis. Free Radic Biol Med 188:375–385. https://doi.org/10.1016/j.freeradbiomed.2022.06.242

    Article  CAS  PubMed  Google Scholar 

  125. Liu Q, Wang K (2019) The induction of ferroptosis by impairing STAT3/Nrf2/GPx4 signaling enhances the sensitivity of osteosarcoma cells to cisplatin. Cell Biol Int 43:1245–1256. https://doi.org/10.1002/cbin.11121

    Article  CAS  PubMed  Google Scholar 

  126. Schmitt A, Xu W, Bucher P et al (2021) Dimethyl fumarate induces ferroptosis and impairs NF-kB/STAT3 signaling in DLBCL. Blood 138(10):871–884

    Article  CAS  PubMed  Google Scholar 

  127. Huang Q, Li J, Ma M et al (2023) High-throughput screening identification of a small-molecule compound that induces ferroptosis and attenuates the invasion and migration of hepatocellular carcinoma cells by targeting the STAT3/GPX4 axis. Int J Oncol 62:42. https://doi.org/10.3892/ijo.2023.5490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Luo L, Deng L, Chen Y et al (2023) Identification of lipocalin 2 as a ferroptosis-related key gene associated with hypoxic-ischemic brain damage via STAT3/NF-κB signaling pathway. Antioxidants 12:186. https://doi.org/10.3390/antiox12010186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ouyang S, Li H, Lou L et al (2022) Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biol 52:102317. https://doi.org/10.1016/j.redox.2022.102317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhang W, Gong M, Zhang W et al (2022) Thiostrepton induces ferroptosis in pancreatic cancer cells through STAT3/GPX4 signalling. Cell Death Dis 13:630. https://doi.org/10.1038/s41419-022-05082-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Huang C-Y, Chen L-J, Chen G et al (2022) SHP-1/STAT3-signaling-axis-regulated coupling between BECN1 and SLC7A11 contributes to sorafenib-induced ferroptosis in hepatocellular carcinoma. Int J Mol Sci 23:11092. https://doi.org/10.3390/ijms231911092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Nie X-H, Qiu S, Xing Y et al (2022) Paeoniflorin regulates NEDD4L/STAT3 pathway to induce ferroptosis in human glioma cells. J Oncol 2022:1–15. https://doi.org/10.1155/2022/6093216

    Article  CAS  Google Scholar 

  133. Duan J, Huang D, Liu C et al (2023) USP11-mediated LSH deubiquitination inhibits ferroptosis in colorectal cancer through epigenetic activation of CYP24A1. Cell Death Dis 14:402. https://doi.org/10.1038/s41419-023-05915-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Li Y, Yan J, Zhao Q et al (2022) ATF3 promotes ferroptosis in sorafenib-induced cardiotoxicity by suppressing Slc7a11 expression. Front Pharmacol 13:904314. https://doi.org/10.3389/fphar.2022.904314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Wang L, Liu Y, Du T et al (2020) ATF3 promotes erastin-induced ferroptosis by suppressing system Xc–. Cell Death Differ 27:662–675. https://doi.org/10.1038/s41418-019-0380-z

    Article  CAS  PubMed  Google Scholar 

  136. Ye J, Zhang F, Li B et al (2023) Knockdown of ATF3 suppresses the progression of ischemic stroke through inhibiting ferroptosis. Front Mol Neurosci 15:1079338. https://doi.org/10.3389/fnmol.2022.1079338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ling H, Xiao H, Luo T et al (2023) Role of ferroptosis in regulating the epithelial-mesenchymal transition in pulmonary fibrosis. Biomedicines 11:163. https://doi.org/10.3390/biomedicines11010163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Bao R, Wang Q, Yu M et al (2023) AAV9-HGF cooperating with TGF-beta/Smad inhibitor attenuates silicosis fibrosis via inhibiting ferroptosis. Biomed Pharmacother 161:114537. https://doi.org/10.1016/j.biopha.2023.114537

    Article  CAS  PubMed  Google Scholar 

  139. Yang Y, Ma Y, Li Q et al (2022) STAT6 inhibits ferroptosis and alleviates acute lung injury via regulating P53/SLC7A11 pathway. Cell Death Dis 13:530. https://doi.org/10.1038/s41419-022-04971-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mukhopadhyay S, Encarnación-Rosado J, Lin EY et al (2023) Autophagy supports mitochondrial metabolism through the regulation of iron homeostasis in pancreatic cancer. Sci Adv 9:eadf9284. https://doi.org/10.1126/sciadv.adf9284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Santana-Codina N, Del Rey MQ, Kapner KS et al (2022) NCOA4-mediated ferritinophagy is a pancreatic cancer dependency via maintenance of iron bioavailability for iron-sulfur cluster proteins. Cancer Discov 12:2180–2197. https://doi.org/10.1158/2159-8290.CD-22-0043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).

Author information

Authors and Affiliations

Authors

Contributions

Lai and Hu were responsible for the main manuscript preparation, while Yue carried out the main proofreading and literature collection. Images 1-6 were produced by Tan,Tao and Zhai. Li carried out direction and topic related guidance. Tan and Lai make subsequent revisions to the article.

Corresponding author

Correspondence to Yunsen Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, L., Tan, M., Hu, M. et al. Important molecular mechanisms in ferroptosis. Mol Cell Biochem (2024). https://doi.org/10.1007/s11010-024-05009-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-024-05009-w

Keywords

Navigation