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Abstract
Male infertility represents a complex clinical condition that often challenges the ability of reproductive specialists to find its 
etiology and then propose an adequate treatment. The unexplained decline in sperm count, as well as the association between 
male infertility and mortality, morbidity, and cancer, has prompted researchers toward an urgent need to better understand 
the causes of male infertility. Therefore, molecular biologists are increasingly trying to study whether sperm epigenetic 
alterations may be involved in male infertility and embryo developmental abnormalities. In this context, research is also try-
ing to uncover the hidden role of sperm RNAs, both coding and non-coding. This narrative review aims to thoroughly and 
comprehensively present the relationship between sperm epigenetics, sperm RNAs, and human fertility. We first focused on 
the technological aspects of studying sperm epigenetics and RNAs, relating to the complex role(s) played in sperm matura-
tion, fertilization, and embryo development. Then, we examined the intricate connections between epigenetics and RNAs 
with fertility measures, namely sperm concentration, embryo growth and development, and live birth rate, in both animal 
and human studies. A better understanding of the molecular mechanisms involved in sperm epigenetic regulation, as well 
as the impact of RNA players, will help to tackle infertility.
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Introduction

Couple infertility represents a significant public problem 
that burdens on the health, psychological, economic, and 
social aspects of couples of childbearing ages. According 
to the World Health Organization (WHO), as many as 48 
million couples were diagnosed as infertile in 2010 [1], and 
nowadays, the prevalence may be even higher. A male fac-
tor occurs in about half of couples with infertility. It is usu-
ally associated with abnormalities in conventional sperm 
parameters (i.e., low sperm concentration, total sperm count, 
progressive or total motility, normal morphology, and viabil-
ity). The prevalence of male infertility is steadily increas-
ing worldwide. A meta-regression analysis of thousands of 
patients from around the world has shown a ⁓50% decrease 
in sperm concentration and total sperm count over the past 
forty years, apparently without any explanation [2]. It is wor-
rying that the global decline continues through the twenty-
first century at an accelerated pace [2]. The decline in the 
sperm number is also associated with a higher prevalence of 
idiopathic forms than in the past. In fact, in 72% of a cohort 
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of more than 26,000 patients who referred to an Androl-
ogy center for infertility, no cause was found to explain the 
abnormality sperm parameters, although the patients under-
went a complete diagnostic work-up [3]. Similarly, a pro-
spective study of 1,737 infertile subjects reported a preva-
lence of idiopathic oligozoospermia in 75% of cases [4]. 
If we also consider, as it has happened especially in recent 
years, that poor sperm quality is associated with a greater 
risk of hospitalization, cardiovascular disease, diabetes, 
mortality, morbidity [5, 6], and cancer [7], the compelling 
need to better understand the etiology of male infertility and 
its proper treatment is easily comprehensible.

The aforementioned reasons have led several research-
ers to study biofunctional sperm parameters [8]. However, 
their evaluation is often insufficient to identify the underly-
ing causes of male infertility [9]. To overcome this pitfall, 
molecular biologists have implemented studies on the epi-
genetic origin of both male infertility and embryo develop-
ment abnormalities [10, 11]. Epigenetics focuses on all the 
changes occurring during meiosis/mitosis that regulate gene 
expression without modifying the DNA sequence. These 
studies have allowed in some cases to better understand the 
molecular mechanisms behind the so-called idiopathic infer-
tility. DNA methylation and post-translational modifications 
(PTMs) of histones represent the major epigenetic changes 
occurring at the sperm level [12]. Also, sperm cells, tra-
ditionally thought to be transcriptionally inert, have been 
found to contain various RNA species, with a previously 
hidden role in fertilization and early embryonic development 
[12]. For this reason, this narrative review article aims to 
thoroughly and comprehensively evaluate the relationship 
between sperm epigenetics and human fertility.

Overview of sperm epigenetics and sperm 
RNAs

Formation of a mature spermatozoon requires mitotic 
proliferation of spermatogonia with meiotic divisions and 
morphological differentiation of spermatids. This leads to 
the generation of highly specialized cells characterized 
by the presence of a head, an intermediate portion and a 
flagellum or tail. The specific organization of spermatozoa 
is required to cross the hostile female reproductive tract, 
penetrate the oocyte, and ultimately complete multiple 
post-penetration events [13]. They allow sexual reproduc-
tion through their union with the female oocyte during 
fertilization. For this purpose, spermatozoa must main-
tain their structure and DNA integrity during their journey 
toward the oocyte. They are “stripped-down” cells, with-
out typical organelles but with a long and strong flagellum, 
to propel them through an aqueous medium [14, 15]. The 
sperm head contains secretory vesicles called “acrosomal 

vesicles” enriched with hydrolytic enzymes that may help 
spermatozoa to penetrate the outer coat of the oocyte. The 
tail is the structure that allows sperm motility and, there-
fore, is rich in mitochondria [16, 17].

Additionally, the sperm head contains a condensed 
haploid nucleus with highly packed DNA to facilitate 
motility during fertilization. In this context, epigenetic 
processes, which include DNA modifications (5-methyl-
cytosine, 5mC, and 5-hydroxymethylcytosine, 5hmC) and 
histone PTMs (acetylation, methylation, phosphorylation, 
ubiquitination, etc.), play a crucial role in the complex 
regulation of gene expression [18]. The sperm epigenome 
is extremely variable, with fluctuations over time based 
on specific environmental cues [13]. The modifications 
acquired during spermatogenesis allow significant reor-
ganizations of the structure and maturation of sperm 
chromatin. Therefore, spermatogenesis is particularly 
vulnerable to epigenetic alterations that can result in 
spermatogenic abnormality and infertility [19]. During 
spermatogenesis, approximately 90–95% of all chromatin 
histones are replaced by small nuclear proteins enriched 
in arginine domains, called protamines [13], in a process 
known as “protamination”. The histone-to-protamine tran-
sition tightly compacts DNA and causes gene repression, 
while also decreasing susceptibility to external stimuli. 
The remaining 5–10% of histones can also be modified 
[20], further showing the crucial contribution of epige-
netic events which, if altered during spermatogenesis [21], 
could impact sperm count and embryo quality [22].

Recently, sperm RNAs have been shown to play an 
important role in this context [12]. Indeed, spermatozoa 
contain coding and non-coding RNAs (ncRNAs), both long 
and small, such as microRNAs (miRNAs), Piwi-interacting 
RNAs (piRNAs), small interfering RNAs (siRNAs), tRNA-
derived fragments (tRFs), circular RNAs (circRNAs), and 
others [23–27]. These RNAs are involved in sperm matu-
ration, transmission of paternal phenotypes, and embryo 
development. Any changes in the amount or composition 
of sperm RNAs may cause abnormalities in spermatogen-
esis, although the exact molecular mechanisms need to be 
further elucidated [28]. Overall, these aspects represent a 
breakthrough in the field of human reproduction and infer-
tility [29].

Here, we will first focus on the methods used to study 
epigenetics and transcriptomics in spermatozoa. Indeed, 
the choice of the most appropriate technology is of par-
ticular importance in the search for the strongest candidate 
markers in the context of the gene expression program in 
spermatozoa. Next, we will review evidence from animal 
and human studies showing how specific epigenetic modi-
fications and alterations in RNA levels in spermatozoa are 
crucial during their maturation. Finally, the correlation with 
important parameters of sperm quality (count, volume, and 
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morphology), embryo development, and disease onset in the 
offspring will be further discussed (Fig. 1) [29].

Experimental approaches for sperm retrieval

Seminal fluid is a heterogeneous sample, in which different 
cell types can be found. These include leukocytes, epithelial 
cells, immature germ cells, and spermatozoa. The proce-
dures used to separate spermatozoa from other cell types 
represent a key methodological aspect in examining DNA 
methylation and RNAs specifically in the sperm popula-
tion. Indeed, incomplete separation procedures lead to the 
analysis of a sample contaminated with other cell types and, 
consequently, to biased results.

In this review, studies conducted on animals and humans 
were carefully selected. Most animal research has obtained 
spermatozoa by epididymal dissection [30–39] and sepa-
rating them using a swim-up protocol. This method allows 
for the separation of motile spermatozoa from other cell 

types in the ejaculate. In particular, this procedure has been 
employed in studies on small animals. In more detail, sper-
matozoa were obtained from the caput in [34] and from the 
cauda epididymis in [30, 35–39] of the epididymis, the lat-
ter allowing the collection of more mature spermatozoa. 
The remaining articles did not specify the exact part of the 
epididymis from which spermatozoa were obtained. Studies 
conducted on large animals (e.g., bulls or boars) obtained 
spermatozoa directly from ejaculate [40, 41]. However, the 
procedures used to separate spermatozoa from other cell 
types are not mentioned, which is a reason to take the results 
with caution. In one case, immature spermatozoa were iso-
lated directly from the testis [42] after digestion with col-
lagenase and anti-trypsin. Finally, few studies included in 
this review did not mention how spermatozoa were separated 
[43, 44].

On the other hand, most human studies have retrieved 
spermatozoa from the ejaculate and used sperm separation 
protocols, such as swim-up [45–47], centrifugation gra-
dient [48–56], or a combination of the two methods [57, 

Fig. 1  External factors (e.g., smoking, drugs, diet, viruses, air pollution) may influence the epigenetic modifications and RNAs of spermatozoa 
with possible consequences on fertility and offspring outcomes
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58]. These approaches allow the collection of only motile 
spermatozoa. A minority of studies have incubated sam-
ples with somatic cell lysis buffer (SCLB) which, by lysing 
specifically the membranes of this type of cells, allows the 
collection of both motile and immotile spermatozoa from 
the ejaculate. Only 2 studies did not use any procedure to 
separate sperm cells, and these results should be taken with 
caution [59, 60].

Experimental approaches 
for sperm epigenetics studies

Nucleic acids can be extracted from several sources, includ-
ing isolated spermatozoa and seminal fluids, through a 
variety of methods, each specifically chosen to perform 
the intended downstream application. In this context, the 
most employed method for DNA purification has been phe-
nol–chloroform-based extraction [31, 38, 42, 45–49, 51, 58, 
60, 66, 67] through a separation into two phases. Other stud-
ies [31, 33, 34, 43, 52, 55, 59, 68, 69] have used solid phase 
extraction on silica matrices, which allows for higher purity 
in less time. Furthermore, a complementary DNA hybridiza-
tion with functionalized magnetic beads was used, avoiding 
any centrifugation [35].

As the field of epigenetics is rapidly expanding, interest in 
exploring new technologies to decode epigenetic landmarks 
in both health and disease states has increased dramatically. 
To obtain reliable results, it is crucial to choose the protocols 
to evaluate the methylation status, the PTM of histones, as 
well as the characterization of sperm RNAome. The pros and 
cons of each technique are highlighted in Table 1. The spe-
cific results obtained in each study will be further discussed 
in the next Sections and in Tables 2 and 3.   

5mC is the predominant DNA modification and accounts 
for approximately 5% of all cytosines. At a gene-specific res-
olution, several studies have used methylation-specific PCR 
(MS-PCR) on bisulfite-converted DNA [31–35, 38, 42, 45, 
46, 51, 57–59, 66, 67, 72]. In this way, after unmethylated 
cytosines are deaminated to uracils, it is possible to deter-
mine the methylation status at the specific loci of interest. 
Another locus-specific method was applied by [59], through 
high-resolution melting (HRM) analysis. This technique can 
detect single base pair differences by their distinct melting 
curves, after DNA treatment with sodium bisulfite. Another 
approach integrates bisulfite conversion-based PCR with 
restriction digestion, namely combined bisulfite restriction 
analysis (COBRA), as used in [35].

Followed by bisulfite conversion, the global DNA meth-
ylation status can also be determined by hybridization-based 
microarrays, as in [48, 50, 69]. The HumanMethylation27 
DNA Analysis Bead Chip, Illumina HumanMethyla-
tion450 (HM450K), and Infinium Human MethylationEPIC 

BeadChip microarrays could interrogate 27.578, 450.000, 
and 935.000 CpG sites, respectively [48, 50, 69]. These array 
technologies have been widely used due to their high versa-
tility, focusing on the most biologically significant regions 
of the genome. Further scale-up to methylome-wide studies 
were applied in [32, 43]. In particular, the authors in [32] 
used reduced representation bisulfite sequencing (RRBS) 
size fractionation of DNA fragments, after digestion with 
BglII or MspI. These enzymes enrich for CpG-containing 
segments, without targeting specific regions in the genome. 
Finally, whole-genome bisulfite sequencing (WGBS) was 
applied to cover all CpG sites, for a comprehensive methy-
lome profile [43], also used by major epigenome consortia 
(e.g., ENCODE).

However, bisulfite treatment has significant drawbacks, 
being a very harsh chemical reaction that may cause DNA 
damage and loss [73]. Furthermore, converted unmodi-
fied cytosine (95% of all cytosines in the genome) leads to 
reduced DNA sequence complexity, lower mapping effi-
ciency, and biased genomic coverage [74]. Therefore, two 
studies [33, 67] used different approaches, such as methyl 
binding domain-seq (MBD-Seq) and methylated DNA 
immune-precipitation (MeDIP-Seq) [33, 67]. They specifi-
cally enriched methylated regions using antibodies for 5mC, 
followed by high-throughput DNA methylation profiling [33, 
67].

Some studies have used alternative methods for methyla-
tion analysis [34, 49, 52], such as high-pressure liquid chro-
matography (HPLC), flow cytometry (FC), immunofluores-
cence (IF), enzyme-linked immunosorbent assay (ELISA), 
and matrix-assisted laser desorption/ionization–time of 
flight mass spectrometry (MALDI–TOF–MS) [34, 49, 52]. 
However, these methods are nonspecific, lacking the pos-
sibility to differentially characterize regions of interest, and 
only cover global methylation patterns.

Another crucial epigenetic mechanism regulating gene 
expression occurs through the PTM of histone N-terminal 
tails. So far, only one study considered the role of histone 
modifications in the context of sperm epigenetics [43]. The 
authors used native chromatin immunoprecipitation followed 
by NGS (NChIP-Seq). This strategy is based on the selection 
by immune recognition of naturally occurring protein-DNA 
interactions, in particular, for histone modifications [43].

Experimental approaches for sperm RNA 
analysis

Regarding RNA extraction, most studies used an acid-guani-
dinium-phenol-based strategy [28, 30, 32, 36, 38–42, 53, 56, 
67, 70–72]. Similar to DNA extraction, paramagnetic beads 
can be applied for total RNA extraction, a method used in 
[38]. Subsequently, quantitative real-time PCR (qPCR) has 



Molecular and Cellular Biochemistry 

Ta
bl

e 
1 

 D
es

cr
ip

tio
n 

of
 th

e 
te

ch
ni

qu
es

 u
se

d 
in

 th
e 

re
vi

ew
ed

 st
ud

ie
s

Ta
rg

et
Pr

in
ci

pl
e

Sp
ec

ifi
ci

ty
St

ra
te

gy
Pr

os
C

on
s

Re
fe

re
nc

es

D
N

A
 m

et
hy

la
tio

n
B

is
ul

fit
e 

tre
at

m
en

t -
 

se
le

ct
iv

el
y 

de
am

in
at

es
 

un
m

od
ifi

ed
 C

 to
 U

 
w

hi
le

 le
av

in
g 

5m
C

 a
nd

 
5h

m
C

 in
ta

ct

Lo
cu

s
M

S-
PC

R
 a

nd
 S

an
ge

r-S
eq

Ea
se

 o
f d

es
ig

n 
an

d 
ex

ec
u-

tio
n,

 se
ns

iti
vi

ty
 in

 th
e 

de
te

ct
io

n 
of

 th
e 

m
et

h-
yl

at
io

n 
st

at
us

 in
 th

e 
sp

ec
ifi

c 
lo

ci
 o

f i
nt

er
es

t, 
sc

re
en

 a
 la

rg
e 

nu
m

be
r 

of
 sa

m
pl

es

Lo
w

 th
ro

ug
hp

ut
, v

ar
ia

bi
l-

ity
 a

nd
 fa

ls
e-

po
si

tiv
e 

re
su

lt,
 fe

w
 C

pG
 si

te
s 

ca
n 

be
 d

et
ec

te
d

[3
1–

35
, 3

8,
 4

2,
 4

5,
 4

6,
 5

1,
 

57
–5

9,
 6

6,
 6

7,
 7

2]

H
R

M
H

ig
h 

se
ns

iti
vi

ty
, s

m
al

l 
D

N
A

 in
pu

t r
eq

ui
re

d,
 

hi
gh

 c
ap

ab
ili

ty
 o

f 
an

al
yz

in
g 

m
ul

tip
le

 C
pG

 
si

te
s i

n 
a 

re
gi

on

Lo
w

 sp
ec

ifi
ci

ty
, s

en
si

tiv
-

ity
 is

 st
ro

ng
ly

 a
ffe

ct
ed

 
by

 th
e 

pr
im

er
 d

es
ig

n 
an

d 
an

ne
al

in
g 

te
m

pe
ra

-
tu

re
s

[5
9]

CO
B

R
A

M
or

e 
th

an
 o

ne
 re

str
ic

tio
n 

si
te

 c
an

 b
e 

te
ste

d 
on

 
on

e 
PC

R
 p

ro
du

ct
, g

iv
en

 
th

at
 a

dd
iti

on
al

 si
te

s a
re

 
av

ai
la

bl
e

Ti
m

e-
co

ns
um

in
g 

pr
ot

oc
ol

, l
im

ita
tio

n 
by

 
av

ai
la

bl
e 

re
str

ic
tio

n 
si

te
s, 

fa
ls

e-
po

si
tiv

es
 b

y 
in

co
m

pl
et

e 
di

ge
sti

on

[3
5]

A
rr

ay
Ill

um
in

a 
H

um
an

M
et

hy
la

-
tio

n 
27

 D
N

A
 A

na
ly

si
s 

B
ea

d 
C

hi
p

H
ig

h 
se

ns
iti

vi
ty

 a
nd

 
re

pr
od

uc
ib

ili
ty

, h
ig

h-
th

ro
ug

hp
ut

, r
eq

ui
re

s 
sm

al
l a

m
ou

nt
 o

f i
np

ut
 

D
N

A
 (o

nl
y 

1 
μg

)

C
ro

ss
-r

ea
ct

iv
e 

pr
ob

es
, 

SN
P-

aff
ec

te
d 

pr
ob

es
, 

A
rr

ay
 b

ia
s (

ba
tc

h 
eff

ec
ts

)

[4
8]

Ill
um

in
a 

In
fin

iu
m

 
H

um
an

M
et

hy
la

tio
n4

50
 

B
ea

dC
hi

p

H
ig

h 
co

ve
ra

ge
 (≥

 96
%

 o
f 

C
G

Is
), 

hi
gh

 se
ns

iti
vi

ty
, 

hi
gh

 re
pr

od
uc

ib
ili

ty
, 

hi
gh

-th
ro

ug
hp

ut

C
om

pl
ex

 d
at

a 
an

al
ys

is
 

an
d 

no
rm

al
iz

at
io

n,
 

co
m

bi
ne

s t
w

o 
as

sa
ys

 
th

at
 in

te
rr

og
at

e 
di

ffe
r-

en
t n

um
be

r o
f C

pG
s, 

cr
os

s-
re

ac
tiv

e 
pr

ob
es

[6
8]

In
fin

iu
m

 H
um

an
 M

et
h-

yl
at

io
nE

PI
C

 B
ea

dC
hi

p 
m

ic
ro

ar
ra

ys

Ea
se

 o
f u

se
, t

im
e-

 a
nd

 
co

st-
eff

ec
tiv

e,
 g

oo
d 

ag
re

em
en

t w
ith

 D
N

A
 

m
et

hy
la

tio
n 

m
ea

su
re

-
m

en
ts

 fr
om

 o
th

er
 

pl
at

fo
rm

s

H
um

an
 sa

m
pl

es
 o

nl
y,

 
su

bs
ta

nt
ia

l d
eg

ra
da

tio
n 

af
te

r b
is

ul
fit

e 
tre

at
m

en
t, 

co
ve

ra
ge

 is
 h

ig
hl

y 
de

pe
nd

en
t o

n 
ar

ra
y 

de
si

gn

[6
9]



 Molecular and Cellular Biochemistry

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Ta
rg

et
Pr

in
ci

pl
e

Sp
ec

ifi
ci

ty
St

ra
te

gy
Pr

os
C

on
s

Re
fe

re
nc

es

G
en

om
e

R
R

B
S

H
ig

h 
C

G
I c

ov
er

ag
e,

 
su

ite
d 

fo
r r

ed
uc

ed
-

co
m

pl
ex

ity
 o

bt
ai

ne
d 

by
 b

is
ul

fit
e 

tre
at

m
en

t, 
en

ric
he

s f
or

 C
pG

-
co

nt
ai

ni
ng

 re
gi

on
s, 

co
st-

eff
ec

tiv
e 

co
m

pa
re

d 
to

 W
G

B
S,

 le
ss

 d
at

a 
co

ng
es

tio
n

Le
ss

 re
pr

od
uc

ib
le

, l
ow

er
 

co
ve

ra
ge

 a
t i

nt
er

ge
ni

c 
an

d 
di

st
al

 re
gu

la
to

ry
 

el
em

en
ts

, s
ub

st
an

tia
l 

D
N

A
 d

eg
ra

da
tio

n 
af

te
r 

bi
su

lfi
te

 tr
ea

tm
en

t, 
lim

ite
d 

to
 re

gi
on

s i
n 

pr
ox

im
ity

 to
 re

str
ic

tio
n 

en
zy

m
es

’ r
ec

og
ni

tio
n 

si
te

s

[3
2]

W
G

B
S

Ev
al

ua
te

 m
et

hy
la

tio
n 

st
at

e 
of

 a
lm

os
t e

ve
ry

 
C

pG
 si

te
s, 

in
cl

ud
in

g 
di

st
al

 re
gu

la
to

ry
 e

le
-

m
en

ts
 a

nd
 in

te
rg

en
ic

 
re

gi
on

s

H
ig

h-
co

st,
 su

bs
ta

nt
ia

l 
D

N
A

 d
eg

ra
da

tio
n 

af
te

r 
bi

su
lfi

te
 tr

ea
tm

en
t, 

ca
nn

ot
 d

is
cr

im
in

at
e 

be
tw

ee
n 

5m
C

 a
nd

 
5h

m
C

[4
3]

A
ffi

ni
ty

 e
nr

ic
hm

en
t o

f 
m

et
hy

la
te

d 
re

gi
on

s 
us

in
g 

an
tib

od
ie

s f
or

 
5m

C

G
en

om
e

M
eD

IP
C

os
t‐e

ffe
ct

iv
e,

 n
o 

m
ut

at
io

ns
 in

tro
du

ce
d,

 
sp

ec
ifi

c 
to

 5
m

C
/5

hm
C

 
de

pe
nd

in
g 

on
 th

e 
an

ti-
bo

dy
, m

or
e 

se
ns

iti
ve

 in
 

re
gi

on
s w

ith
 lo

w
 C

pG
 

de
ns

ity

B
ia

se
d 

to
w

ar
d 

hy
pe

r-
m

et
hy

la
te

d 
re

gi
on

s, 
do

es
 n

ot
 id

en
tif

y 
in

di
vi

du
al

 5
m

C
 si

te
s, 

in
ab

ili
ty

 to
 p

re
di

ct
 

ab
so

lu
te

 m
et

hy
la

tio
n 

le
ve

l

[3
3,

 6
7]

O
th

er
s

G
lo

ba
l m

et
hy

la
tio

n 
pa

t-
te

rn
s

H
PL

C
Fa

st 
an

d 
se

ns
iti

ve
N

ot
 sp

ec
ifi

c,
 u

na
bl

e 
to

 
di

sc
rim

in
at

e 
re

gi
on

s o
f 

in
te

re
st

[4
9,

 7
2]

FC
C

an
 a

na
ly

ze
 la

rg
e 

nu
m

-
be

r o
f c

el
ls

[4
9]

IF
/IC

C
H

ig
h 

se
ns

iti
vi

ty
[4

9,
 5

8]

EL
IS

A
C

an
 d

is
cr

im
in

at
e 

be
tw

ee
n 

5m
C

 a
nd

 5
hm

C
[5

2]

M
A

LD
I-T

O
F–

M
S

C
an

 d
is

cr
im

in
at

e 
be

tw
ee

n 
5m

C
 a

nd
 5

hm
C

[3
4]



Molecular and Cellular Biochemistry 

Ta
bl

e 
1 

 (c
on

tin
ue

d)

Ta
rg

et
Pr

in
ci

pl
e

Sp
ec

ifi
ci

ty
St

ra
te

gy
Pr

os
C

on
s

Re
fe

re
nc

es

C
hr

om
at

in
 M

od
ifi

ca
tio

ns
C

hr
om

at
in

 Im
m

un
op

re
-

ci
pi

ta
tio

n 
- a

nt
ib

od
-

ie
s t

ha
t r

ec
og

ni
ze

 
nu

cl
eo

so
m

e 
co

m
pl

ex
es

 
w

ith
 a

 g
iv

en
 P

TM
 

(e
.g

., 
H

3K
9m

e1
/2

/3
, 

H
3K

27
ac

)

G
en

om
e

N
C

hI
P

U
se

 o
f n

at
iv

e 
ch

ro
m

at
in

, 
C

hI
P 

is
 v

er
y 

effi
ci

en
t, 

sp
ec

ifi
ci

ty
 o

f t
he

 a
nt

i-
bo

dy
 b

in
di

ng
 to

 u
nfi

xe
d 

ch
ro

m
at

in
 is

 m
or

e 
pr

ed
ic

ta
bl

e

N
ot

 a
pp

lic
ab

le
 to

 n
on

-
hi

sto
ne

 p
ro

te
in

s, 
da

ng
er

 
of

 p
ro

te
in

 re
ar

ra
ng

e-
m

en
t d

ur
in

g 
ch

ro
m

a-
tin

 p
re

pa
ra

tio
n 

an
d 

pr
ec

ip
ita

tio
n,

 se
le

ct
iv

e 
di

ge
sti

on
 o

f p
ar

tic
ul

ar
 

ch
ro

m
at

in
 d

om
ai

ns
 

du
rin

g 
pr

ep
ar

at
io

n 
m

ay
 

oc
cu

r

[4
3]

R
N

A
Re

ve
rs

e-
Tr

an
sc

rip
tio

n
Lo

cu
s s

pe
ci

fic
 q

PC
R

SY
B

R
Po

w
er

fu
l, 

fa
st,

 c
os

t-
eff

ec
tiv

e
Re

su
lts

 a
re

 d
ep

en
de

nt
 o

n 
pr

im
er

 e
ffi

ci
en

cy
 a

nd
 

pr
od

uc
t l

en
gt

h

[4
1,

 5
3,

 5
5,

 7
1,

 7
2]

Ta
qM

an
 P

ro
be

s
A

cc
ur

at
e 

qu
an

tifi
ca

tio
n,

 
hi

gh
ly

 sp
ec

ifi
c

H
ig

h-
co

st
[3

0,
 5

4]

A
rr

ay
Ta

qM
an

 A
rr

ay
 M

ic
ro

-
R

N
A

 q
PC

R
H

ig
h-

th
ro

ug
hp

ut
, w

id
e 

ex
pr

es
si

on
 sc

re
en

in
g

H
ig

h-
co

st
[5

6,
 7

1]

Tr
an

sc
rip

to
m

e 
(s

ev
er

al
 

m
et

ho
ds

 fo
r l

ib
ra

ry
 

co
ns

tru
ct

io
n)

R
N

A
-S

eq
Id

en
tifi

es
 a

ll 
R

N
A

 sp
e-

ci
es

, h
ig

h 
se

ns
iti

vi
ty

, 
hi

gh
-th

ro
ug

hp
ut

, e
na

-
bl

es
 p

op
ul

at
io

n 
stu

di
es

C
om

pl
ex

 d
at

a 
an

al
ys

is
, 

re
qu

ire
s s

pe
ci

fic
 c

us
to

m
 

al
go

rit
hm

s t
o 

di
sc

rim
i-

na
te

 p
ut

at
iv

e 
sn

cR
N

A
s, 

po
ss

ib
le

 b
ia

s f
or

 so
m

e 
R

N
A

s

[3
0,

 3
6,

 3
8–

41
, 4

7,
 6

0,
 

70
–7

2]



 Molecular and Cellular Biochemistry

Ta
bl

e 
2 

 S
pe

rm
 e

pi
ge

ne
tic

s a
nd

 sp
er

m
 R

N
A

s:
 e

vi
de

nc
es

 in
 a

ni
m

al
s

A
ut

ho
rs

 a
nd

 y
ea

r
Ex

po
su

re
/c

on
di

tio
n

Ta
rg

et
Im

pa
ct

 o
n 

fe
rti

lit
y

St
ar

tin
g 

tis
su

e
Pr

in
ci

pl
e 

of
 a

na
ly

si
s

Re
fe

re
nc

es

A
ni

m
al

 m
od

el
s

Sp
er

m
 e

pi
ge

ne
tic

s
D

os
hi

 e
t a

l.,
 2

01
1

B
is

Ph
en

ol
 A

 (B
PA

)
A

lte
ra

tio
n 

of
 e

str
og

en
 

re
ce

pt
or

 p
ro

m
ot

er
 

an
d 

en
ha

nc
em

en
t o

f 
D

N
M

T 
ex

pr
es

si
on

Im
pa

irm
en

ts
 in

 sp
er

-
m

at
og

en
es

is
Te

sti
s

M
S-

PC
R

 a
nd

 S
an

ge
r-

se
q

[6
6]

X
u 

et
 a

l.,
 2

01
3

To
ba

cc
o 

sm
ok

e
Pr

ot
ei

ns
 o

f t
es

te
s 

in
vo

lv
ed

 in
 b

ot
h 

si
gn

al
in

g 
an

d 
m

et
a-

bo
lic

 p
at

hw
ay

s

Im
pa

irm
en

ts
 in

 sp
er

-
m

at
og

en
es

is
Sp

er
m

at
oc

yt
es

 a
nd

 
ro

un
d 

sp
er

m
at

id
s 

ob
ta

in
ed

 a
fte

r t
es

tis
 

di
ge

sti
on

M
S-

PC
R

, S
an

ge
r-s

eq
, 

M
A

LD
I-T

O
F

[4
2]

La
m

br
ot

 e
t a

l.,
 2

01
3

Fo
la

te
 d

efi
ci

en
cy

G
en

es
 im

pl
ic

at
ed

 
in

 d
ev

el
op

m
en

t, 
di

ab
et

es
, a

ut
is

m
 a

nd
 

sc
hi

zo
ph

re
ni

a

M
us

cu
lo

sk
el

et
al

 a
nd

 
cr

an
io

fa
ci

al
 m

al
fo

r-
m

at
io

ns
 in

 o
ffs

pr
in

g

Sp
er

m
at

oz
oa

 fr
om

 
ca

pu
t e

pi
di

dy
m

is
M

eD
IP

-c
hi

p 
ar

ra
y,

 
M

S-
PC

R
 a

nd
 

Sa
ng

er
-s

eq
, 

M
A

LD
I-T

O
F–

M
S

[3
4]

G
e 

et
 a

l.,
 2

01
4

D
ia

be
te

s a
nd

/o
r 

ob
es

ity
D

N
A

 m
et

hy
la

tio
n 

in
 

Pe
g3

 a
nd

 H
19

Im
pl

ic
at

io
n 

fo
r t

es
tis

 
w

ei
gh

t, 
nu

m
be

r o
f 

Le
yd

in
g 

an
d 

Se
rto

li 
ce

lls
, n

um
be

r o
f 

sp
er

m
at

og
on

ia

Sp
er

m
at

oz
oa

 fr
om

 
ca

pu
t e

pi
di

dy
m

is
CO

B
R

A
 a

nd
 S

an
ge

r-
se

q
[3

5]

Ö
st 

et
 a

l.,
 2

01
4

D
ie

t
In

cr
ea

se
d 

ex
pr

es
si

on
 

of
 h

et
er

oc
hr

om
at

ic
-

em
be

dd
ed

 m
et

ab
ol

ic
 

ge
ne

s (
ch

ar
ac

te
riz

ed
 

by
 a

ct
iv

e 
de

po
si

tio
n 

of
 H

3K
9/

K
27

m
e3

Im
pl

ic
at

io
ns

 fo
r c

hr
o-

m
at

in
 st

at
e 

in
 b

ot
h 

m
at

ur
e 

sp
er

m
 a

nd
 

off
sp

rin
g 

em
br

yo
s

Sp
er

m
at

oz
oa

 fr
om

 
se

m
in

al
 v

es
ic

le
s

Tr
uS

eq
 st

ra
nd

ed
 

sa
m

pl
e 

pr
ep

ar
at

io
n 

ki
t f

or
 Il

lu
m

in
a 

R
N

A
-s

eq

[7
0]

Pr
ad

os
 e

t a
l.,

 2
01

5
D

i-(
2-

et
hy

lh
ex

yl
)

ph
ta

la
te

 (D
EH

P)
In

cr
ea

se
 in

 h
yp

er
-

m
et

hy
la

tio
n 

of
 

ge
ne

s i
nv

ol
ve

d 
in

 
bo

th
 sp

er
m

 c
he

m
o-

ta
xi

s a
nd

 p
os

t-
tra

ns
cr

ip
tio

na
l r

eg
u-

la
to

ry
 m

ec
ha

ni
sm

 
in

 th
e 

C
57

B
L/

6J
 

ve
rs

us
 F

V
B

/N

Im
pa

irm
en

ts
 in

 sp
er

-
m

at
og

en
es

is
Sp

er
m

at
oz

oa
 fr

om
 

va
s d

ef
er

en
s a

nd
 

ep
id

id
ym

is

M
B

D
-S

eq
 o

n 
Ill

u-
m

in
a 

H
iS

eq
20

00
, 

M
S-

PC
R

 a
nd

 
Py

ro
se

qu
en

ci
ng

[3
3]

D
ai

 e
t a

l.,
 2

01
6

To
ba

cc
o 

sm
ok

e
H

yp
er

-m
et

hy
la

tio
n 

at
 th

e 
le

ve
l o

f S
or

d 
ge

ne
 p

ro
m

ot
er

Im
pa

irm
en

ts
 in

 sp
er

m
 

m
at

ur
at

io
n 

an
d 

ca
pa

ci
ta

tio
n

Sp
er

m
at

oz
oa

 fr
om

 
ep

id
id

ym
is

M
S-

PC
R

, S
an

ge
r-s

eq
, 

M
A

LD
I-T

O
F

[3
1]

M
ur

ph
y 

et
 a

l.,
 2

01
8

C
an

na
bi

s/
te

tra
hy

dr
o-

ca
nn

ab
in

ol
 (T

H
C

) 
sm

ok
e

⁓
6,

64
0 

C
pG

s s
ite

s 
ab

no
rm

al
ly

 m
et

hy
l-

at
ed

 a
nd

 in
vo

lv
ed

 in
 

th
e 

H
ip

po
 si

gn
al

-
in

g 
an

d 
C

an
ce

r 
pa

th
w

ay
s

A
bn

or
m

al
 e

m
br

yo
ni

c 
de

ve
lo

pm
en

t
Sp

er
m

at
oz

oa
 fr

om
 

ep
id

id
ym

is
R

R
B

S 
on

 Il
lu

m
in

a 
H

iS
eq

15
00

/2
50

0,
 

M
S-

PC
R

 a
nd

 
Py

ro
se

qu
en

ci
ng

[3
2]



Molecular and Cellular Biochemistry 

Ta
bl

e 
2 

 (c
on

tin
ue

d)

A
ut

ho
rs

 a
nd

 y
ea

r
Ex

po
su

re
/c

on
di

tio
n

Ta
rg

et
Im

pa
ct

 o
n 

fe
rti

lit
y

St
ar

tin
g 

tis
su

e
Pr

in
ci

pl
e 

of
 a

na
ly

si
s

Re
fe

re
nc

es

Sa
dl

er
-R

ig
gl

em
an

 
et

 a
l.,

 2
01

9
V

in
cl

oz
ol

in
 a

nd
 

di
ch

lo
ro

di
ph

en
yl

-
tri

ch
lo

ro
et

ha
ne

 
(D

TT
)

Tr
an

sg
en

er
at

io
na

l 
al

te
ra

tio
ns

 in
 D

N
A

 
m

et
hy

la
tio

n,
 n

on
-

co
di

ng
 R

N
A

s, 
an

d 
ge

ne
 e

xp
re

ss
io

n 
in

 
ra

t S
er

to
li 

ce
lls

Te
sti

cu
la

r d
is

ea
se

; 
de

cr
ea

se
d 

sp
er

m
 

co
un

t a
nd

/o
r m

ot
il-

ity
 in

 o
ffs

pr
in

g

Se
rto

li 
ce

lls
 o

bt
ai

ne
d 

af
te

r t
es

tis
 d

ig
es

tio
n

M
eD

IP
-S

eq
 o

n 
Ill

u-
m

in
a 

H
iS

eq
 2

50
0

[6
7]

Li
u 

et
 a

l.,
 2

01
9

C
ar

be
nd

az
im

 a
nd

 
ch

lo
ro

th
al

on
il

M
od

ul
at

io
n 

of
 e

str
o-

ge
n 

re
ce

pt
or

 si
gn

al
-

in
g 

pa
th

w
ay

 a
nd

 
ab

no
rm

al
 D

N
A

 a
nd

 
hi

sto
ne

 m
et

hy
la

tio
n

D
ec

re
as

e 
in

 sp
er

m
a-

to
zo

a 
co

nc
en

tra
tio

n 
an

d 
m

ot
ili

ty

Sp
er

m
at

oz
oa

 (i
so

la
-

tio
n 

no
t m

en
tio

ne
d)

N
C

hI
P-

Se
q 

on
 Il

lu
-

m
in

a 
H

iS
eq

 2
50

0 
an

d 
W

G
B

S 
on

 Il
lu

-
m

in
a 

H
iS

eq
 X

10

[4
3]

Sp
er

m
 R

N
A

s
Ro

dg
er

s e
t a

l.,
 2

01
5

St
re

ss
m

iR
N

A
s

O
ffs

pr
in

g 
w

ith
 a

lte
re

d 
str

es
s r

es
po

ns
e

Zy
go

te
s

Ev
aG

re
en

 S
up

er
-

m
ix

on
 w

ith
 D

EL
TA

 
ge

ne
 a

ss
ay

s q
PC

R
, 

Tr
an

sc
rip

to
m

ic
s o

n 
Tr

uS
eq

 S
tra

nd
ed

 
m

R
N

A
 K

it 
w

ith
 

po
ly

-A
 e

nr
ic

h-
m

en
t o

n 
Ill

um
in

a 
H

iS
eq

20
00

, 
Ta

qM
an

 R
T-

qP
C

R
 

A
rr

ay
 fo

r m
ic

ro
-

R
N

A

[7
1]

C
he

n 
et

 a
l.,

 2
01

6
H

ig
h-

fa
t d

ie
t

tR
N

A
 in

vo
lv

ed
 in

 
m

et
ab

ol
ic

 p
at

hw
ay

s 
an

d 
m

et
ab

ol
ic

 
di

so
rd

er
s

M
et

ab
ol

ic
 d

is
or

de
rs

 
in

 o
ffs

pr
in

g
Sp

er
m

at
oz

oa
 (i

so
la

-
tio

n 
no

t m
en

tio
ne

d)
Tr

an
sc

rip
to

m
ic

s o
f 

M
at

ur
e-

sp
er

m
-

en
ric

he
d 

sm
al

l 
R

N
A

, S
eq

ue
nc

in
g 

pl
at

fo
rm

 n
ot

 sp
ec

i-
fie

d

[4
4]

Sh
ar

m
a 

et
 a

l.,
 2

01
6

Lo
w

 p
ro

te
in

 d
ie

t
H

ig
he

r l
ev

el
 o

f 
tR

N
A

-G
ly

-C
C

C
, 

-T
C

C
, a

nd
 -G

C
C

; 
U

p-
re

gu
la

tio
n 

of
 

tR
F-

Ly
s-

C
TT

 a
nd

 
tR

F-
H

is
-G

TG
 

Im
pa

irm
en

ts
 in

 
em

br
yo

 d
ev

el
op

-
m

en
t

Sp
er

m
at

oz
oa

 fr
om

 
ca

ud
a 

ep
id

id
ym

is
 

an
d 

re
te

 te
sti

s

Se
qu

en
tia

l r
ou

nd
s 

of
 P

C
R

 a
nd

 
Ill

um
in

a 
H

iS
eq

 
20

00
 fo

r s
m

al
l 

R
N

A
s, 

Ta
qM

an
 

m
ic

ro
R

N
A

 a
ss

ay
s 

fo
r t

R
F,

 R
N

A
-s

eq
 

w
ith

 S
M

A
RT

-S
eq

 
on

 Il
lu

m
in

a 
H

iS
eq

 
20

00

[3
0]



 Molecular and Cellular Biochemistry

Ta
bl

e 
2 

 (c
on

tin
ue

d)

A
ut

ho
rs

 a
nd

 y
ea

r
Ex

po
su

re
/c

on
di

tio
n

Ta
rg

et
Im

pa
ct

 o
n 

fe
rti

lit
y

St
ar

tin
g 

tis
su

e
Pr

in
ci

pl
e 

of
 a

na
ly

si
s

Re
fe

re
nc

es

C
ap

ra
 e

t a
l.,

 2
01

7
–

m
iR

N
A

 a
nd

 p
iR

N
A

 
al

te
re

d 
ex

pr
es

si
on

 
be

tw
ee

n 
lo

w
-

m
ot

ili
ty

 v
er

su
s 

hi
gh

-m
ot

ili
ty

 b
ov

in
e 

sp
er

m
at

oz
oa

, w
ith

 
m

or
e 

pi
R

N
A

s i
n 

hi
gh

ly
 m

ot
ile

 c
el

ls

Im
pa

irm
en

ts
 in

 sp
er

-
m

at
og

en
es

is
 a

nd
 

sp
er

m
 m

ot
ili

ty

Sp
er

m
at

oz
oa

 fr
om

 
bu

ll'
s e

ja
cu

la
te

s
Tr

an
sc

rip
to

m
ic

s o
n 

Ill
um

in
a 

Tr
us

eq
 

Sm
al

l R
N

A
 P

re
pa

-
ra

tio
n 

ki
t a

nd
 Il

lu
-

m
in

a 
H

iS
eq

 2
00

0

[4
0]

G
uo

 e
t a

l.,
 2

01
7

–
R

N
A

-d
ep

le
te

d 
sp

er
-

m
at

oz
oa

Im
pa

irm
en

ts
 in

 
em

br
yo

 d
ev

el
op

-
m

en
t

Sp
er

m
at

oz
oa

 fr
om

 
ca

ud
a 

ep
id

id
ym

is
Se

qu
en

ci
ng

 o
n 

Ill
u-

m
in

a 
H

is
eq

 2
50

0
[3

6]

Zh
an

g 
et

 a
l.,

 2
01

8
H

ig
h-

fa
t d

ie
t

D
el

et
io

n 
of

 D
nm

t2
 

re
du

ce
d 

th
e 

le
ve

ls
 

of
 m

5C
 a

nd
 m

2G
 

of
 sm

al
l R

N
A

s a
nd

 
al

te
re

d 
th

ei
r e

xp
re

s-
si

on
 p

ro
fil

e

Pr
ev

en
tio

n 
of

 m
et

a-
bo

lic
 d

is
or

de
rs

 in
 

off
sp

rin
g

Sp
er

m
at

oz
oa

 fr
om

 
ca

ud
a 

ep
id

id
ym

is
 

an
d 

va
s d

ef
er

en
s

SY
B

R
 g

re
en

 P
C

R
 o

n 
Li

gh
tC

yc
le

r 4
80

 a
nd

 
Tr

uS
eq

 S
tra

nd
ed

 
m

R
N

A
 L

ib
ra

ry
 k

it 
on

 Il
lu

m
in

a 
H

iS
eq

 
40

00
 fo

r t
ot

al
 R

N
A

, 
SY

B
R

 q
PC

R
 fo

r 
sn

cR
N

A
s, 

M
S-

PC
R

 
an

d 
Py

ro
se

qu
en

c-
in

g 
fo

r D
N

A
, 

A
gi

le
nt

 6
46

0 
Tr

ip
le

 
Q

ua
dr

up
ol

e-
A

gi
le

nt
 

12
00

 H
PL

C
 fo

r M
S-

H
PL

C

[7
2]

C
on

in
e 

et
 a

l.,
 2

01
8

Sm
al

l R
N

A
s f

ro
m

 th
e 

ca
pu

t p
or

tio
n

G
en

e 
ex

pr
es

si
on

 
an

al
ys

is
 o

f m
at

ur
e 

vs
. i

m
m

at
ur

e 
sp

er
-

m
at

oz
oa

Im
pa

irm
en

ts
 in

 
em

br
yo

 d
ev

el
op

-
m

en
t

Sp
er

m
at

oz
oa

 fr
om

 
ca

ud
a 

ep
id

id
ym

is
SM

A
RT

-S
eq

 o
n 

N
ex

t-
Se

q 
50

0
[3

8]

G
od

ìa
 e

t a
l.,

 2
02

0
–

ci
rc

R
N

A
s i

nv
ol

ve
d 

in
 sp

er
m

at
og

en
es

is
, 

ci
liu

m
 a

ss
em

bl
y,

 
an

d 
de

ve
lo

pm
en

ta
l 

pr
oc

es
se

s i
n 

pi
gs

A
lte

re
d 

sp
er

m
 q

ua
lit

y
Sp

er
m

at
oz

oa
 fr

om
 

bo
ar

s’
 e

ja
cu

la
te

s
SM

A
RT

er
 L

ib
ra

ry
 

pr
ep

 a
nd

 S
eq

ue
nc

-
in

g 
on

 Il
lu

m
in

a 
H

iS
eq

 2
00

0/
25

00
 

fo
r t

ot
al

 R
N

A
, 

N
EB

N
ex

t L
ib

ra
ry

 
Pr

ep
 K

it 
an

d 
Ill

u-
m

in
a 

H
iS

eq
 2

00
0 

fo
r s

nc
R

N
A

s, 
qP

C
R

 
an

d 
SY

B
R

 S
el

ec
t 

M
as

te
r M

ix
 a

nd
 

Sa
ng

er
 S

eq
ue

nc
in

g 
fo

r c
irc

R
N

A
s

[4
1]



Molecular and Cellular Biochemistry 

been widely applied to study sperm RNAs, both in animal 
and human research [30, 41, 53–55, 71, 72]. Some studies 
have used SYBR dye [41, 53, 55, 71, 72]. While an eco-
nomical and simple strategy, SYBR data can depend on 
primer efficiency and product length and these limits must 
be carefully considered. The use of TaqMan technology can 
improve the specificity of qPCR, as in [30, 54]. This is also 
useful for scale-up approaches, as in [56, 71], where a high-
throughput TaqMan qPCR array was applied to profile a 
variety of selected targets.

The remaining studies [30, 36, 38–41, 47, 60, 70–72] 
applied a broader analysis to comprehensively profile all 
RNA species in spermatozoa, via RNA-seq. This technique 
can also detect new sequences, ranging from mRNAs to 
miRNAs, piRNAs, and circRNAs. In particular, one study 
[40] used a specific bioinformatics pipeline to identify piR-
NAs and miRNAs among bull sperm samples [40].

A peculiar strategy can be applied to circRNAs. Due to 
their unique structure, these can be retro-transcribed and 
amplified by qPCR to then undergo Sanger sequencing, 
similar to the sequencing of cloning vector [41].

One study [28] did not specify the technology for RNA 
analyses, so it should be taken with caution [28].

Animal evidence: impact 
of sperm epigenetic mechanisms 

The establishment of specific genomic methylation patterns 
plays a pivotal role in the so-called hereditary silencing, reg-
ulating germ cell development [75]. Indeed, these patterns 
occur in two different moments, one in the primordial germ 
cells (PGCs), and one during preimplantation for transmis-
sion to offspring [76].

One of the first studies that described the important role 
of DNA methylation for offspring viability dates back to 
1992, when Li and colleaguesinduced targeted mutations in 
the Dnmt gene in the germline of mice, resulting in abnor-
mal embryo development and increased lethality of the 
embryo [77]. DNA methylation is required during meiosis 
for the production of male germ cells and, after fertiliza-
tion, for embryo development. However, after fertilization, 
the paternal genome undergoes demethylation, except for 
imprinted genes and repeated sequences [78]. During sper-
matogenesis, specific environmental cues can influence the 
correct DNA methylation process inducing sperm alterations 
and infertility [79]. In particular, paternal lifestyle can alter 
epigenetic marks in the germline, resulting in the altera-
tion of both spermatozoa and offspring [80]. Incomplete or 
abnormal chromatin condensation causes DNA damage and 
consequent changes in several sperm parameters, such as 
morphology (teratozoospermia), progressive motility (asthe-
nozoospermia), and concentration (oligozoospermia), with Ta
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possible effects on fertility and embryo development [81]. 
Although the exact mechanisms responsible for the aberrant 
sperm DNA methylation in male infertility need to be deeply 
characterized, both environmental factors (e.g., pesticides 
and other toxicants) and lifestyle habits (such as smoking, 
alcohol consumption, and diet) may have an overriding influ-
ence [82, 83].

Tobacco smoke is the most common factor known to have 
a strong negative impact on sperm DNA methylation, but the 
precise mechanisms by which paternal smoking is associated 
with detrimental effects on fertility and sperm parameters 
are poorly understood. In 2013, Xu and coworkers investi-
gated the protein profile of testes of mice exposed daily to 
cigarette smoke, using the MALDI-TOF–MS analysis [42]. 
The authors found that during spermatogenesis, exposure 
to cigarette smoke caused a change in the testicular pro-
teome, particularly in signaling and metabolic pathways with 
consequent impairments on spermatogenesis [42]. Dai and 
collaborators in 2016 obtained similar results [31]. They 
evaluated the protein profile in nicotine-exposed mouse 
epididymal tissue by two-dimensional gel electrophoresis 
and MS analyses. The results showed that there were pro-
teins mainly involved in molecular transportation networks 
and the polyol pathway, indicating an impairment of the 
secretory functions of the epididymis. Furthermore, they 
found that nicotine exposureinduced hypermethylation of the 
promoter region of the Sord gene (sorbitol dehydrogenase), 
inducing reduced secretory function of the epididymis and 
thus preventing proper sperm maturation and capacitation 
[31]. Also, cannabis exposure has been reported to impact 
sperm methylome integrity in both human and rat models, 
as described by Murphy et al. in 2018 [32]. The authors 
analyzed the epigenetic profile using the RRBS approach, 
finding at least 6,640 CpGs sites whose methylation status 
was altered as a results of cannabis or THC exposure. These 
included genes in the Hippo signaling and cancer pathways, 
possibly implicated in growth regulation and consequent 
non-viable embryos [32].

Also, many environmental contaminants can alter the epi-
genetics landscape of male germ cells, thus posing a major 
threat to mammalian development. For instance, in 2011, 
Doshi and colleagues reported that exposure to bisphenol A 
(BPA), an estrogenic endocrine disruptor commonly used in 
the manufacture of polycarbonate plastics and epoxy resins, 
affects the epigenetic signature in testis, and consequently 
the health of offspring [66]. Notably, neonatal exposure to 
BPA alters the methylation of the estrogen receptor promoter 
and enhances the expression of DNMT3A and DNMT3B in 
adult rat testis, at both transcript and protein levels, support-
ing an aberrant DNA methylation at several gene loci that 
influence spermatogenesis and consequently fertility [66]. 
Similarly, Prados and colleagues in 2015, demonstrated 
that Di-(2-Ethylhexyl)-phthalate (DEHP), an industrial Ta
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plasticizer commonly present in the environment, increases 
DNMT1 expression and, consequently, DNA methylation in 
the testis of mice, with effects on spermatogenesis, depend-
ing on the mouse strain [33]. Exposure to DEHP increased 
hyper- and decreased hypo-methylation in C57BL/6J vs. 
FVB/N mice. The same trend was observed at the level 
of gene promoters involved in both sperm chemotaxis and 
post-transcriptional regulatory mechanisms, with a more 
pronounced hypermethylation in the C57BL/6J strain [33]. 
In 2019, a study by Sadler-Riggleman et al. investigated 
the effects of exposure to environmental toxicants on the 
transgenerational inheritance of epigenetic marks [67]. In 
particular, their results demonstrated that transgenerational 
alterations in DNA methylation, ncRNAs and gene expres-
sion occurred in Sertoli cells exposed to the pesticides vin-
clozolin and dichlorodiphenyltrichloroethane (DDT). This 
suggests that germline exposure to environmental factors 
causes epigenetic and transcriptome alterations that can be 
transmitted to the next generations with varying outcomes, 
including testicular disease and a decreased sperm count 
and/or motility [67]. Similarly, several fungicides such as 
carbendazim and chlorothalonil, have been associated with 
aberrant DNA methylation [84]. Liu and coworkers demon-
strated in their findings published in 2019, that low doses of 
each compound influence the spermatogenesis of pubertal 
mice, causing a decrease in sperm concentration and motil-
ity. In particular, these compounds act via modulation of 
estrogen receptor signaling, disrupting both DNA and his-
tone methylation [43, 85].

In modern society, several diet-related diseases result 
from the influence on sperm epigenome [86]. In 2013 Lam-
brot and colleagues demonstrated that paternal diet is asso-
ciated with birth defects in mice. In particular, sperm from 
folate-deficient mice showed differential DNA methylation 
of genes implicated in development, diabetes, autism and 
schizophrenia [34]. There is also evidence that pregesta-
tional diabetes and/or obesity impair DNA methylation in 
offspring spermatozoa, as demonstrated by Gen and col-
leagues in 2014. These spermatozoa have altered DNA 
methylation in Peg3 and H19 genes, with possible implica-
tions for testicular weight, Leydig and Sertoli cell number 
and spermatogonia number [35]. The same year, Ost and 
colleagues, observed that paternal diet influences chro-
matin status in both mature spermatozoa and offspring of 
Drosophila. High sugar intake increased the expression of 
heterochromatic-embedded metabolic genes (characterized 
by active deposition of H3K9/K27me3, as per ENCODE 
data), reprogramming offspring metabolism [70]. Also, a 
similar mechanism could regulate obesity susceptibility in 
mice and humans [70] (Table 2).

However, further studies are needed to better elucidate 
the mechanisms affecting sperm DNA methylation and their 
impact on male infertility. An improved knowledge of sperm 

epigenetic status in relationship with reduced reproductive 
capacity could become a new diagnostic and prognostic 
parameter to evaluate male infertility and pregnancy out-
come, respectively.

Animal evidence: impact of sperm RNAs 

New evidences support the presence of both coding and 
ncRNAs in spermatozoa, with functional roles in embryo 
growth and development, currently under intense investiga-
tion [87, 88].

The discovery of RNA in animal spermatozoa dates 
back to the 1980. Since then, it has been proposed that 
sperm RNAs play three possible functions, with poorly 
understood molecular mechanisms: (i) sperm maturation in 
the epididymis; (ii) transmission of the acquired phenotype 
from parents to offspring; and (iii) embryo development [89, 
90]. In 2015, sperm miRNAs from a mouse model of chronic 
stress were found to be responsible for developing offspring 
with impaired stress responses, like their fathers [71].

Regarding the impact on sperm parameters, in 2017 Capra 
and co-workers characterized the small ncRNA content 
(both miRNAs and piRNAs) in cryopreserved bovine semen 
from a single animal, by RNA-seq [40]. They observed 
more piRNAs clusters in low- vs. high-motility spermato-
zoa. Similarly, miRNA targeting pathways related to cell 
apoptosis and alteration of spermatogenesis—which could 
affect sperm motility and therefore bull fertility—were found 
dysregulated in the low-motile fraction [40]. More recently, 
in 2020, Godìa and colleagues analyzed the circRNAs in 40 
porcine ejaculates [41]. GO enrichment analysis of genes 
harboring circRNAs highlighted epigenetic functions, sper-
matogenesis, cilium assembly and developmental processes. 
Finally, the authors validated correlations between circR-
NAs and sperm motility, suggesting their important roles 
in sperm parameters, and consequently in infertility [41].

Turning to the consequences of sperm RNAs on embryo 
development, Chen and colleagues in 2016 demonstrated 
how a paternal high-fat diet (HFD)induced changes in the 
expression profiles of tRFs – a novel class of small ncRNAs 
derived from active cleavage of tRNAs – in mouse sperma-
tozoa [44]. tRFs are mainly involved in paternal inheritance 
and in the inactivation of retroviral elements of the genome. 
Interestingly, injection of sperm tRF fractions from HFD 
males into normal oocytes resulted in offspring with altered 
expression of genes related to metabolic pathways and disor-
ders [44]. In the same issue of Science journal, Sharma and 
colleagues evaluated how a diet with restricted protein intake 
can interfere with the expression profile of genes involved 
in metabolism, as well as small ncRNA biogenesis. Using 
assisted reproductive techniques (ART), they found that the 
offspring of fathers with low-protein diet had significant 
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upregulation of genes involved in cholesterol production in 
the liver. In addition, RNAs from epididymal cauda sper-
matozoa revealed the presence of an important fraction 
corresponding to tRFs (28–34 nt), mapping to the 5’end of 
tRNAs. Notably, the levels of tRNA-Gly-CCC, -TCC, and 
-GCC were higher in low-protein dietary mice than in con-
trols. In contrast, the Let-7 family of miRNAs was down-
regulated in low-protein spermatozoa. Also, the analysis of 
RNA content in different tissues revealed the existence of 
intense tRNA cleavage in the epididymis but not in the testis, 
suggesting that tRFs can be released from the epididymis to 
spermatozoa via the fusion of these cells with small extra-
cellular vesicles (EVs), called epididymosomes [25]. EVs 
are membranous nanoparticles naturally produced by cells 
that play an important role in cell-to-cell communication 
[91, 92]. Indeed, EVs contain nucleic acids (both DNA and 
RNAs), proteins, lipids, metabolites, etc., that they deliver to 
target cells [93, 94]. Notably, the epididymosome RNAome 
has been shown to consist of ⁓87% of tRFs [25]. In par-
ticular, tRF-Gly-GCC – upregulated in low-protein dietary 
spermatozoa – is able to inhibit the expression of genes 
associated with the retroelements MERVL, with potential 
effects on preimplantation. Overall, these data demonstrated 
that paternal diet could influence embryo development via 
sperm RNAs [25].

One year later, in 2017, Guo and coworkers demonstrated 
that treatment of mature mouse spermatozoa with lysoleci-
thin, pronase and RNases efficiently removed (⁓90%) sperm-
carried RNAs. When the authors used these spermatozoa for 
ART (i.e., injecting them into normal oocytes by intracyto-
plasmic sperm injection, ICSI), they found a decrease both in 
the rate of blastocyst formation and in the live birth rate [36]. 
Furthermore, even if the offspring born from RNA-depleted 
spermatozoa developed a normal reproductive capacity, 
their body weight was lower than the control group, con-
firming the importance of sperm-carried RNAs for embryo 
development [36]. In 2018, Zhang and colleagues showed 
that deletion of Dnmt2 reduced the levels of m5C and m2G 
modifications in 30–40 nt ncRNAs in mouse spermatozoa 
[72]. These modifications were elevated in the sperm RNAs 
of male HFD mice, thus demonstrating that the deletion of 
Dnmt2 prevented the transmission of HFD-induced meta-
bolic disorders to the offspring. Importantly, the deletion 
of Dnmt2 was also responsible for altering the expression 
profile and the secondary structure of small ncRNAs (e.g., 
tRFs and rRNA-derived small RNAs), supporting the impor-
tance of RNA modifications for the preservation of paternal 
inheritance information [72]. The same year, Conine et al. 
demonstrated the importance of small ncRNAs acquired by 
spermatozoa during epididymal transit, for embryo develop-
ment in mice [38]. The authors generated two different types 
of zygotes (by ICSI), using spermatozoa from the proximal 
region of the epididymis (caput) or its distal portion (cauda), 

and then analyzed the embryo development. Caput sperma-
tozoa generated embryos overexpressing the regulatory fac-
tors required for preimplantation development, and did not 
implant. However, the injection of caudal small ncRNAs 
into caput-derived embryos completely rescued the preim-
plantation molecular defects, and resolved the implantation 
problems [38].

More recently, in 2020, Tyebji and colleagues demon-
strated that paternal infections could also alter sperm small 
ncRNA profiles and consequently offspring behavior [39]. 
Toxoplasma-infected male mice showed decreased total 
sperm count and increased sperm morphological abnor-
malities, which resulted in behavioral changes of F1-F2 off-
spring, in a sex-dependent manner. Furthermore, toxoplasma 
infection-induced large differences in the small ncRNA load 
carried by spermatozoa, with possible implications for the 
offspring. Of note, zygotic microinjection of small ncRNAs 
from infected spermatozoa was able to partially recapitulate 
the behavioral changes observed in the naturally born off-
spring of Toxoplasma-infected mice [39] (Table 2).

In conclusion, data from animal models support the role 
of sperm RNAs in early embryo development. These find-
ings require thorough validation in humans.

Human evidence: impact of sperm 
epigenetic mechanisms 

In 2004, Marques and colleagues first described the associa-
tion between oligozoospermia and loss of DNA methyla-
tion in humans [57]. The authors investigated in 27 normo-
zoospermic men vs. 96 oligozoospermic patients whether 
imprinting defects were associated with impairments in 
spermatogenesis. They extracted the sperm DNA and stud-
ied the methylation profiles of two imprinted genes, the 
mesodermal specific transcript (MEST), which is maternally 
imprinted (methylated, repressed) [95], and H19, which is 
instead paternally de novo methylated during the premei-
otic phase of spermatogenesis (unmethylated, therefore 
expressed, in the maternal allele) [96]. They found that the 
maternal imprint of the MEST gene was correctly erased in 
all samples, while some of the oligozoospermic samples, 
with reduced sperm motility, showed differential H19 meth-
ylation profiles. Some patients had incomplete methylation 
and others had a heterogeneous sperm population, half with 
a hypomethylated allele. In particular, they found hypometh-
ylation at the CTCF-binding site, responsible for the repres-
sion of IGF2 in the maternal allele [57]. Importantly, when 
they analyzed the methylation profile of the LINE1 trans-
poson in H19 hypomethylated patients, they found that the 
methylation levels were high, confirming that these defects 
were specific to the imprinted genes [97].
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In 2010, Poplinski et al. analyzed the differentially meth-
ylated regions (DMRs) associated with IGF2/H19 imprint-
ing control region 1 (ICR1), and with MEST, in spermatozoa 
from 148 idiopathic infertile patients and 33 age-matched 
normozoospermic controls [78]. IGF2/H19 ICR1 methyla-
tion was significantly reduced in oligozoospermic patients 
(total sperm count < 40 million spermatozoa/mL) vs. con-
trols (89.6% vs. 95.9%, respectively). In contrast, MEST was 
hypermethylated in patients (9.6% vs. 4.3%). In particular, 
they found that spermatozoa with low-motility had hypo-
methylation of IGF2/H19 ICR1 and hypermethylation of 
MEST. Also, MEST hypermethylation was associated with 
poor sperm morphology [78].

The same year, Wu and collaborators investigated the 
association between idiopathic male infertility and the 
methylation status of the methylenetetrahydrofolate reduc-
tase (MTHFR) gene [46]. MTHFR encodes an important 
enzyme involved in folate metabolism, DNA synthesis and 
remethylation reactions, with a key role in regulating the 
balance between DNA synthesis and DNA methylation. Fur-
thermore, this gene is involved in spermatogenesis, as it is 
highly expressed in mouse testis, and hypermethylation of its 
promoter is associated with azoospermia [46]. The authors 
found that 45% of idiopathic patients had MTHFR hyper-
methylation compared with 15% of fertile controls. Inter-
estingly, when they divided idiopathic infertile patients by 
sperm count, they found that oligozoospermic patients (< 20 
million/mL) exhibited higher methylation patterns than nor-
mozoospermic men (≥ 20 million/mL). These results con-
firm that MTHFR hypermethylation is associated with idi-
opathic male infertility and the analysis of its methylation 
status can be considered a biomarker useful to identify men 
with a higher risk of infertility [46, 98].

The association between aberrant sperm DNA methyla-
tion and low sperm motility was investigated in 2011 by 
Pacheco et al., who also included the analysis of the sperm 
RNAs [48]. Their integrated analysis revealed that low-
motile spermatozoa exhibited genome-wide DNA hypometh-
ylation, likely due to the failure of chromatin compaction, as 
revealed also by the high levels of the histone deacetylase 
HDAC1, which interfere with the histone-to-protamine tran-
sition during the spermatogenesis. Also, they speculated that 
the high production of radical oxygen species (ROS) in low-
motile spermatozoa might be due to the decrease of sirtuin 3 
(SIRT3) mRNA, with a consequent reduction of the expres-
sion of the antioxidant manganese superoxide dismutase 
(MnSOD). They suggested that increased ROS production 
might interfere with the capacity of DNMT3A to identify 
and set its marks, thus contributing to the hypomethylated 
phenotype [48].

The same year, Marques and colleagues carried out 
the analysis of DNMTs – at mRNA and protein levels 
– in human adult dividing mitotic (spermatogonia A), 

pre-meiotic (primary spermatocytes), post-meiotic (second-
ary spermatocytes and round spermatids) and differentiat-
ing cells (elongated spermatids/spermatozoa) [58]. The H19 
and MEST genes were found to be methylated and demeth-
ylated, respectively, in all the stages analyzed. Also, they 
found that at all the stages DNMT1 expression was higher 
than DNMT3A/3B, while they did not detect any DNMTs 
in elongated spermatids. Conversely, at the protein level, 
DNMT enzymes were present at all stages of spermatogene-
sis. In particular, the enzymes co-localized: i) in the nucleus 
of pachytene and secondary spermatocytes, suggesting re-
methylation events during meiotic recombination and before 
the second meiotic division; ii) in the nucleus of elongated 
spermatids associated with the histone-to-protamine transi-
tion to prevent imprinting errors transmittable by the male 
gamete [58].

Another aspect concerns the association between global 
methylation and the tendency of human spermatozoa to 
undergo spontaneous apoptosis. In 2013, Barzideh et al. 
used HPLC, FC and ICC to detect DNA methylation lev-
els in human spermatozoa from unselected normozoosper-
mic volunteers. They found that low-quality spermatozoa 
retrieved from the low-density region of the Percoll gradient 
showed higher levels of 5mC, associated with high levels 
of annexin V (a marker of early apoptosis). The authors, 
therefore, suggested that the defective and apoptotic sperma-
tozoa were the result of spermatogenesis disorders leading 
to hypermethylation of sperm DNA [49].

The process leading to spermatogenesis involves several 
phases, including epigenetic modifications and the gradual 
elimination of mitochondrial DNA (mtDNA). Considering 
that patients with abnormal sperm parameters have higher 
mtDNA copies than fertile men, Tian and colleagues evalu-
ated the relationship between DNA methylation and mtDNA 
copy number with human semen quality [99]. In fertile men, 
sperm DNA was found fivefold more methylated than in 
somatic cells from blood. In idiopathic infertile patients, 
LINE-1 and the maternally imprinted LIT1 gene were 
hypomethylated compared to somatic cells, while H19 was 
hypermethylated. Also, LIT1 and LINE-1 methylation levels 
were positively associated with those of the testis-specific 
BRDT and the MTHFR genes. Computer-assisted param-
eters of sperm motility were significantly correlated with 
sperm concentration and morphology, thereby confirming 
that sperm motility is an indicator of sperm quality. Overall, 
considering that mtDNA is negatively correlated with these 
parameters, a low mtDNA copy number can be considered 
an indicator of sperm quality [99].

In 2017, Laqqan and colleagues deepened the study of 
different patterns of DNA methylation in 15 infertile patients 
vs. 15 proven fertile men (with at least two children) [50]. 
They selected 4 CpG sites (within the genes PRICKLE2, 
ALS2CR12, ALDH3B2 and PTGIR) differentially methylated 
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between patients and controls for further validation in 111 
samples (55 infertile patients/with abnormal sperm param-
eters and 56 fertile controls). The data showed a signifi-
cant difference in the mean methylation levels across all 
PRICKLE2 CpGs (lower in patients) and ALS2CR12 (higher 
in patients). For ALDH3B2, 7 out of 13 CpGs were less 
methylated in patients, and the same for 9 out of 26 CpGs 
of PITGIR. These variations correlated with the differences 
in sperm quality between fertile men and infertile patients. 
Indeed, the latter showed lower values of semen volume, 
sperm count, motility, vitality and normal morphology [50].

In 2020, Santana et al. analyzed the global DNA meth-
ylation pattern in spermatozoa of patients with varico-
cele, the most common risk factor for male infertility [69]. 
As expected, sperm concentration, viability and normal 
morphology were lower in patients than in controls. A 
genome-wide analysis showed that 54 CpG sites were hypo-
methylated in patients with varicocele, while 5 were hyper-
methylated. Also, the authors observed the presence of 1,695 
DMRs in genes involved in DNA methylation, gamete gen-
eration, piRNA-related processes and meiosis. Interestingly, 
the regions with increased DNA methylation were associated 
with H3K27 methylation in the varicocele group, further 
supporting the potential crosstalk between epigenetic marks. 
A more accurate analysis pointed out only 24 DMRs with a 
strong association with genes involved in genetic imprinting 
and gene expression regulation. Interestingly, these regions 
were hypermethylated in varicocele patients, without differ-
ences between varicocele degrees [69].

As said above, environmental conditions and lifestyle 
habits may affect male fertility and embryo development. 
For example, cannabis use decreases sperm concentration 
and alters DNA methylome, but it is not known yet whether 
these modifications may be passed to the next generation 
[32]. As in rodents, significant correlations between aberrant 
DNA methylation patterns and tobacco smoke were found in 
humans, with a negative impact on sperm parameters [68]. 
Dong and colleagues investigated the association between 
methylation of H19 and SNRPN ICRs with male infertil-
ity in cigarette smokers [51]. Interestingly, they found that 
H19 hypomethylation and SNRPN hypermethylation were 
strongly correlated with a high risk of infertility, and this 
risk was potentiated in cigarette smokers [51].

The effects of long exposure to air pollution were also 
investigated in a recent study by Cheng et al. [52]. DNA 
methylation and 14 semen parameters were evaluated in 
1,554 fertile men, finally classified as normal (⁓62%) 
and abnormal (⁓38%). The results showed that long-term 
exposure to single air pollutants (i.e.,  SO2,  NO2,  PM10 and 
 PM2.5), or the co-exposure to several pollutants, was cor-
related to reduced total sperm motility, with consequences 
on time to pregnancy. Interestingly, a sensitivity analysis 
showed that the association between air pollutants and sperm 

motility was significant also for non-smokers and non-drink-
ers [52]. Moreover, analysis of DNA methylation following 
 PM10 exposure revealed a positive association with the levels 
of 5hmC – another type of epigenetic mark recently found in 
human brain and embryo stem cells, whose precise function 
is still not fully elucidated – but not with 5mC levels [52].

From the early 2000s, several studies revealed that chil-
dren conceived with ART have an increased prevalence 
of imprinting disorders, such as Beckwith-Wiedemann’s 
(11p15.5), Prader–Willi and Angelman (15q11-q13) syn-
dromes, compared to children conceived naturally [100]. 
Therefore, the treatment of male infertility may be respon-
sible for the transmission of paternal imprinting errors. 
Indeed, H19 hypomethylation leads to the presence of 2 
inactive IGF2 genes, with detrimental consequences for 
embryo development [57]. The analysis of the global meth-
ylation level (GML) of sperm DNA carried out during ART 
cycles revealed that, differently from the fertilization rate, 
embryo development may be impaired if GML is below a 
certain threshold value [101]. Epigenetic alterations associ-
ated with ART may depend on the introduction of aber-
rantly methylated DNA into the zygote by the spermatozoa. 
In particular, male infertility is significantly associated with 
defects in the DNA methylation pattern of human sperma-
tozoa. However, it is not clear whether these defects may 
be ascribed either to hypomethylation, hypermethylation, 
or both [49].

Finally, a recent systematic review analyzed the associa-
tion between the methylation of specific genes, sperm DNA 
fragmentation, and the outcome of pregnancy. The authors 
reported aberrant methylation of H19 and KCNQ1 genes 
in patients with high sperm DNA fragmentation. Also, a 
significantly lower H19 methylation rate was found in 
patients with idiopathic recurrent pregnancy loss and infer-
tile patients, compared to fertile men. Lastly, aberrant GLT2 
methylation was found in patients with poor ART outcomes 
[102] (Table 3).

In conclusion, several pieces of evidence strongly sug-
gest the presence of aberrant gene methylation in infer-
tile patients. In particular, H19 hypomethylation appears 
to increase the risk of pregnancy loss, as well as to affect 
embryo growth. However, in general, the relationship 
between the methylation of other genes and ART outcomes, 
as well as the morphokinetic parameters of this technique, 
needs to be further investigated.

Human evidence: impact of sperm RNAs 

Human sperm RNAs were identified starting from 1999, by 
cDNA cloning and sequencing [103]. Since then, and thanks 
to the new technologies available for the study of RNAs, 
such as RNA-seq, the RNAome of male gametes was further 
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characterized [23–25]. However, several RNA populations 
ascribed to spermatozoa are possibly due to contamina-
tion from somatic cells, thus leading to misinterpretation 
of sperm RNA analyses. Indeed, a single human spermato-
zoon contains ⁓50 fg of RNA and ⁓0.3 fg of small ncRNAs, 
which is 200 times less than other cell types [104]. For this 
reason, the development of new protocols for sperm isola-
tion is crucial for implementing the available information 
on sperm RNAs.

Several mRNAs encoding for transcription factors, pro-
tein kinase, growth factors, etc. have been identified, and 
some of them were found differentially expressed in infer-
tile patients [104]. Furthermore, the lack of certain sperm 
mRNAs and/or their specific mutations have been proposed 
as markers and effectors of male infertility, with a possi-
ble function related to the delivery to oocytes [105–107]. 
These transcripts encode proteins mainly involved in ferti-
lization and embryo development, such as clusterin (CLU) 
and calmegin (CLGN); or the integrator complex subu-
nit I (INTSI), involved in the early stages of embryogen-
esis [108]. Sperm transcripts involved in fertilization and 
post-fertilization have been described as mainly located in 
genomic regions enriched for H3K4me3, associated with 
transcriptionally active/poised chromatin. Therefore, these 
results suggested that sperm chromatin might be able to 
undergo de novo transcription in mature spermatozoa [24]. 
These findings highlighted a new key role for spermatozoa, 
not simply genome carriers, but possibly transcriptionally 
active cells crucial for embryo development and offspring 
health [26].

Data from mouse models have shown that the success rate 
of ICSI is related to the origin of spermatozoa. Spermatozoa 
obtained from the cauda of the epididymis generate embryos 
with various genetic regulation problems, while the tran-
sit through the epididymis is essential for acquiring small 
ncRNAs key for fertilization and embryo development [38]. 
For this reason, the evaluation of some parameters can be 
useful for assessing ART outcomes [38]. However, experi-
mental evidences in humans do not support data from mouse 
models. No differences in fertilization and embryo devel-
opment have been observed with either testicular or caput 
epididymal spermatozoa in ART cycles, as demonstrated for 
patients with azoospermia factor c (AZFc), microdeletions 
and obstructive azoospermia [109, 110]. Interestingly, the 
most abundant miRNA found in human spermatozoa, miR-
34c, was positively correlated with the ICSI success rate 
by Cuiand co-workers in 2015 [53]. Nevertheless, several 
children conceived by ICSI had congenital malformations 
and poor-quality sperm, thus supporting that RNAs acquired 
during the epididymal transit are important for the intergen-
erational/transgenerational subfertility passage [111–114]. 
Indeed, paternally acquired phenotypes (e.g., mental stress 

and metabolic disorders) can be transmitted to offspring 
via alterations of sperm small ncRNA levels [72].

Other small ncRNAs found within spermatozoa are piR-
NAs, involved in the silencing of transposable elements in 
germline cells, thus protecting the integrity of the genome 
and playing an important role in spermatogenesis [115]. 
In obese men, several sperm piRNAs were found altered, 
whose predicted targets are genes involved in food intake 
regulation, supporting the role of piRNAs in the inheritance 
of metabolic disorders [47].

Additional transcripts involved in sperm maturation and 
fertilization are protamine (PRM1 and PRM2), and transi-
tion protein (TNP2) [116–118]. Protamines and transition 
proteins enable proper packing of chromatin during sperm 
maturation, thereby influencing sperm count, morphology 
and, of course, sperm functions. For this reason, Savadi-
Shiraz and colleagues in 2015 analyzed the levels of PRM1, 
PRM2 and TNP2 mRNAs in spermatozoa of both normo-
zoospermic men and teratozoospermic patients, based on 
sperm morphology and ART outcomes [119]. The results 
showed that PRM1 and PRM2 transcript levels were lower 
in patients. Furthermore, while the ratio of PRM1 and PRM2 
was ⁓1 in controls, it was ⁓10 in teratozoospermic patients 
[119]. Interestingly, ⁓42% of the latter (30 out of 72) under-
went at least one ICSI cycle, and pregnancy (with a live 
baby) was achieved in 36.6% of couples (11/30). Of these, 
approximately 70% showed a 1:1 ratio of PRM1 and PRM2, 
thus supporting the notion that a normal protamine mRNAs 
ratio is associated with a higher fertilization rate [120]. In 
contrast, TNP2 levels were higher in the teratozoospermic 
group, correlated with abnormal sperm head morphology 
and, in particular, with an increased percentage of round 
head defect in semen [119]. Also, low protamination was 
related to sperm tail defects (short tails), and multiple chro-
matin breaks were found in teratozoospermic patients. These 
results suggested that PRM1, PRM2 and TNP2 transcripts 
can be used as biomarkers of fertility and as an index of 
sperm morphology and fertility [119].

As expected, both environmental toxins and lifestyle 
cues, such as diet and mental stresses, negatively affect 
sperm parameters. Tobacco-smoking male partners of cou-
ples undergoing ICSI showed higher protamine deficiency 
and sperm DNA fragmentation, in association with lower 
expression of H2BFWT, PRM1, PRM2, TNP1 and TNP2. 
Also, the ratio of protamine mRNAs was higher compared 
to non-smoking men [55].

In 2020, another pilot study evaluated whether levels 
of sperm mRNAs encoding proteins with an active role in 
fertilization, oocyte activation, chromatin remodeling and 
DNA repair, might differ between oligozoospermic patients 
undergoing ICSI and controls. A significantly lower level 
of 21 mRNAs (e.g., AKAP4, PTK7, PLCζ and POU5F1) 
was reported in patients, whose 14% of oocytes were not 
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fertilized and 90% of the embryos did not reach the morula 
stage [56]. More recently, a study conducted in 54 normo-
zoospermic men undergoing ICSI for unexplained infertility 
demonstrated that 324 small ncRNAs (e.g., miR-4755-3p, 
miR-92a-3p, 5’-tRF-Asp-GTC; 5’-tRF-Phe-GAA, let-7f-
2-5p, etc.) were differentially expressed in the samples lead-
ing to high vs. low blastocyst formation rate [121] (Table 3).

In conclusion, emerging animal evidence suggests a role 
for sperm RNAs on sperm parameters, sperm DNA frag-
mentation, natural conception, pregnancy rate, miscarriage 
rate and live birth rate in ART programs. This appears to 
be confirmed by available human studies. However, human 
data are often scarce and mostly based on a very low num-
ber of trials. Therefore, no firm conclusions can be drawn 
on the mechanistic relationship between sperm RNA levels 
and embryo kinetics. Importantly, more robust protocols for 
the isolation of specific germ cell-derived RNAs need to be 
further developed.

Conclusions

According to the WHO, the diagnosis of infertility, particu-
larly sine causa, in couples attempting to conceive, repre-
sents a growing global burden. The prevalence of the male 
factor is constantly increasing, being associated with numer-
ous sperm abnormalities, as well as problems of embryo 
development. Nowadays, the decrease in fertility is one of 
the main factors contributing to a progressive aging of the 
global population [122, 123]. Therefore, understanding the 
molecular mechanisms underneath male infertility would 
help to counteract the aging of the global population and 
to identify new indicators for effective diagnosis and man-
agement of infertility. In this context, how relevant is the role 
of epigenetics and RNAs in sperm health and embryo viabil-
ity? Is it a truth or a myth? Research is currently uncovering 
the multiplicity of functions played by sperm epigenetics and 
sperm RNAs. Both can be regarded as potential molecular 
drivers for proper sperm development, as well as for posi-
tive fertilization outcomes and viable embryo development.

Overall, the findings described in this comprehensive lit-
erature review support the notion that sperm epigenetics, 
especially sperm DNA methylation patterns, are closely 
linked to male fertility. Looking at the evidence from animal 
studies, the exposure to environmental and lifestyle factors, 
which are often a cause of infertility (cigarette smoke, envi-
ronmental pollutants, or diet-related diseases), can influence 
the epigenetic profile of spermatozoa. Furthermore, avail-
able animal data suggest the role played by sperm RNAs 
(coding and non-coding) in embryo development. Specifi-
cally, the passage through the epididymis seems crucial to 
acquire an RNA profile that ensures sperm competence, thus 
avoiding an embryo-lethal phenotype.

Evidences from human studies further support the occur-
rence of epigenetic alterations in spermatozoa from patients 
with abnormal sperm parameters. Similar to animal stud-
ies, cigarette or cannabis smoking and exposure to environ-
mental pollutants negatively affect the epigenetic profile of 
spermatozoa and the health of the offspring. For instance, 
the hypomethylation of the H19 gene leads to the presence 
of two inactive IGF2 alleles, leading to defective embryo 
development. Again, sperm RNAs appear to play a role in 
both post-fertilization events and early-stage embryogen-
esis. RNAs acquired during epididymal transit are key for 
intergenerational/transgenerational subfertility. In particular, 
specific small ncRNAs are involved in paternally acquired 
phenotypes, such as piRNAs, which are crucial in the inher-
itance of metabolic disorders.

Gaining a deeper understanding of the epigenetic and 
RNA landscapes is a crucial step in discovering new factors 
that contribute to male infertility. The key to obtaining reli-
able results is choosing the most appropriate technique for 
sperm isolation and DNA/RNA analyses. In this review, ani-
mal studies mainly focused on spermatozoa as the starting 
tissue to analyze the epigenetic profile or their RNA content. 
Most of the included human studies adopted reliable, well-
known, and standardized protocols for sperm isolation. This 
includes swim-up, gradient centrifugation, and SCLB incu-
bation, with the first two used in clinical practice for sperm 
selection in the ART setting. Furthermore, we compared 
various techniques used to study the epigenetics of DNA and 
RNA populations, from single locus to genome-wide and 
transcriptome-wide assays. The range of omics techniques 
is constantly evolving, to meet the needs of researchers and 
clinicians. WGBS is considered the gold standard for study-
ing DNA methylation. However, bisulfite treatment is an 
aggressive chemical method that, despite uncovering the 
presence of 5mC in CpG-rich sites, significantly reduces 
sequence complexity with biased genomic coverage. It 
also neglects other modifications, such as 5hmC. Emerg-
ing techniques, using enzymatic conversion of cytosine or 
third-generation sequencing, are arising to address these 
biases. Overall, these approaches aim to broaden research 
to the entire spectrum of chromatin modifications, and their 
potential functions.

On the other hand, while gene expression analysis has 
been largely optimized for long RNA species such as 
mRNAs, the task still requires careful development for 
small ncRNAs. This is of particular importance to limit 
biases in reverse-transcription, ligation, library preparation, 
and to identify reliable housekeeping genes for normaliza-
tion of small ncRNAs data. Finally, RNA-seq pipelines need 
more accurate algorithms to identify putative small ncRNAs 
(e.g., piRNAs, tRFs), amid the vast complexity of genomic 
data. Overall, these new results may reveal intriguing per-
spectives on the complex interplay that regulates the sperm 
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genome, from maturation to the early stages of embryo 
development. This is crucial for the search for the strongest 
candidate markers in the context of the sperm gene expres-
sion program.

In conclusion, multiple lines of evidence point to sperm 
epigenetics, and in particular sperm DNA methylation, as 
a relevant factor in the context of seemingly inexplicable 
male infertility. Regarding sperm RNAs, due to the very low 
quantity transported by spermatozoa, current protocols for 
RNA evaluation need to be further optimized. The identifica-
tion of new potential targets of male infertility and predictors 
of poor ART outcomes can be used in diagnostic flowcharts 
of infertile male patients. Importantly, data showing the 
relationship between sperm epigenetics/RNAs and offspring 
health can introduce exciting new insights into the coun-
seling of infertile patients. In the near future, the field will 
need to implement fundamental research with high-quality, 
well-sized, and adequately controlled studies.
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