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Abstract

Male infertility represents a complex clinical condition that often challenges the ability of reproductive specialists to find its
etiology and then propose an adequate treatment. The unexplained decline in sperm count, as well as the association between
male infertility and mortality, morbidity, and cancer, has prompted researchers toward an urgent need to better understand
the causes of male infertility. Therefore, molecular biologists are increasingly trying to study whether sperm epigenetic
alterations may be involved in male infertility and embryo developmental abnormalities. In this context, research is also try-
ing to uncover the hidden role of sperm RNAs, both coding and non-coding. This narrative review aims to thoroughly and
comprehensively present the relationship between sperm epigenetics, sperm RNAs, and human fertility. We first focused on
the technological aspects of studying sperm epigenetics and RNAs, relating to the complex role(s) played in sperm matura-
tion, fertilization, and embryo development. Then, we examined the intricate connections between epigenetics and RNAs
with fertility measures, namely sperm concentration, embryo growth and development, and live birth rate, in both animal
and human studies. A better understanding of the molecular mechanisms involved in sperm epigenetic regulation, as well
as the impact of RNA players, will help to tackle infertility.
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Introduction

Couple infertility represents a significant public problem
that burdens on the health, psychological, economic, and
Loredana Leggio and Greta Paterno have contributed equally to this social aspects of couples of childbearing ages. According
work. to the World Health Organization (WHO), as many as 48
million couples were diagnosed as infertile in 2010 [1], and
nowadays, the prevalence may be even higher. A male fac-
tor occurs in about half of couples with infertility. It is usu-
ally associated with abnormalities in conventional sperm
parameters (i.e., low sperm concentration, total sperm count,
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forty years, apparently without any explanation [2]. It is wor-
rying that the global decline continues through the twenty-
first century at an accelerated pace [2]. The decline in the
sperm number is also associated with a higher prevalence of
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of more than 26,000 patients who referred to an Androl-
ogy center for infertility, no cause was found to explain the
abnormality sperm parameters, although the patients under-
went a complete diagnostic work-up [3]. Similarly, a pro-
spective study of 1,737 infertile subjects reported a preva-
lence of idiopathic oligozoospermia in 75% of cases [4].
If we also consider, as it has happened especially in recent
years, that poor sperm quality is associated with a greater
risk of hospitalization, cardiovascular disease, diabetes,
mortality, morbidity [5, 6], and cancer [7], the compelling
need to better understand the etiology of male infertility and
its proper treatment is easily comprehensible.

The aforementioned reasons have led several research-
ers to study biofunctional sperm parameters [8]. However,
their evaluation is often insufficient to identify the underly-
ing causes of male infertility [9]. To overcome this pitfall,
molecular biologists have implemented studies on the epi-
genetic origin of both male infertility and embryo develop-
ment abnormalities [10, 11]. Epigenetics focuses on all the
changes occurring during meiosis/mitosis that regulate gene
expression without modifying the DNA sequence. These
studies have allowed in some cases to better understand the
molecular mechanisms behind the so-called idiopathic infer-
tility. DNA methylation and post-translational modifications
(PTMs) of histones represent the major epigenetic changes
occurring at the sperm level [12]. Also, sperm cells, tra-
ditionally thought to be transcriptionally inert, have been
found to contain various RNA species, with a previously
hidden role in fertilization and early embryonic development
[12]. For this reason, this narrative review article aims to
thoroughly and comprehensively evaluate the relationship
between sperm epigenetics and human fertility.

Overview of sperm epigenetics and sperm
RNAs

Formation of a mature spermatozoon requires mitotic
proliferation of spermatogonia with meiotic divisions and
morphological differentiation of spermatids. This leads to
the generation of highly specialized cells characterized
by the presence of a head, an intermediate portion and a
flagellum or tail. The specific organization of spermatozoa
is required to cross the hostile female reproductive tract,
penetrate the oocyte, and ultimately complete multiple
post-penetration events [13]. They allow sexual reproduc-
tion through their union with the female oocyte during
fertilization. For this purpose, spermatozoa must main-
tain their structure and DNA integrity during their journey
toward the oocyte. They are “stripped-down” cells, with-
out typical organelles but with a long and strong flagellum,
to propel them through an aqueous medium [14, 15]. The
sperm head contains secretory vesicles called “acrosomal
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vesicles” enriched with hydrolytic enzymes that may help
spermatozoa to penetrate the outer coat of the oocyte. The
tail is the structure that allows sperm motility and, there-
fore, is rich in mitochondria [16, 17].

Additionally, the sperm head contains a condensed
haploid nucleus with highly packed DNA to facilitate
motility during fertilization. In this context, epigenetic
processes, which include DNA modifications (5-methyl-
cytosine, SmC, and 5-hydroxymethylcytosine, ShmC) and
histone PTMs (acetylation, methylation, phosphorylation,
ubiquitination, etc.), play a crucial role in the complex
regulation of gene expression [18]. The sperm epigenome
is extremely variable, with fluctuations over time based
on specific environmental cues [13]. The modifications
acquired during spermatogenesis allow significant reor-
ganizations of the structure and maturation of sperm
chromatin. Therefore, spermatogenesis is particularly
vulnerable to epigenetic alterations that can result in
spermatogenic abnormality and infertility [19]. During
spermatogenesis, approximately 90-95% of all chromatin
histones are replaced by small nuclear proteins enriched
in arginine domains, called protamines [13], in a process
known as “protamination”. The histone-to-protamine tran-
sition tightly compacts DNA and causes gene repression,
while also decreasing susceptibility to external stimuli.
The remaining 5-10% of histones can also be modified
[20], further showing the crucial contribution of epige-
netic events which, if altered during spermatogenesis [21],
could impact sperm count and embryo quality [22].

Recently, sperm RNAs have been shown to play an
important role in this context [12]. Indeed, spermatozoa
contain coding and non-coding RNAs (ncRNAs), both long
and small, such as microRNAs (miRNAs), Piwi-interacting
RNAs (piRNAs), small interfering RNAs (siRNAs), tRNA-
derived fragments (tRFs), circular RNAs (circRNAs), and
others [23-27]. These RNAs are involved in sperm matu-
ration, transmission of paternal phenotypes, and embryo
development. Any changes in the amount or composition
of sperm RNAs may cause abnormalities in spermatogen-
esis, although the exact molecular mechanisms need to be
further elucidated [28]. Overall, these aspects represent a
breakthrough in the field of human reproduction and infer-
tility [29].

Here, we will first focus on the methods used to study
epigenetics and transcriptomics in spermatozoa. Indeed,
the choice of the most appropriate technology is of par-
ticular importance in the search for the strongest candidate
markers in the context of the gene expression program in
spermatozoa. Next, we will review evidence from animal
and human studies showing how specific epigenetic modi-
fications and alterations in RNA levels in spermatozoa are
crucial during their maturation. Finally, the correlation with
important parameters of sperm quality (count, volume, and
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morphology), embryo development, and disease onset in the
offspring will be further discussed (Fig. 1) [29].

Experimental approaches for sperm retrieval

Seminal fluid is a heterogeneous sample, in which different
cell types can be found. These include leukocytes, epithelial
cells, immature germ cells, and spermatozoa. The proce-
dures used to separate spermatozoa from other cell types
represent a key methodological aspect in examining DNA
methylation and RNAs specifically in the sperm popula-
tion. Indeed, incomplete separation procedures lead to the
analysis of a sample contaminated with other cell types and,
consequently, to biased results.

In this review, studies conducted on animals and humans
were carefully selected. Most animal research has obtained
spermatozoa by epididymal dissection [30-39] and sepa-
rating them using a swim-up protocol. This method allows
for the separation of motile spermatozoa from other cell
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types in the ejaculate. In particular, this procedure has been
employed in studies on small animals. In more detail, sper-
matozoa were obtained from the caput in [34] and from the
cauda epididymis in [30, 35-39] of the epididymis, the lat-
ter allowing the collection of more mature spermatozoa.
The remaining articles did not specify the exact part of the
epididymis from which spermatozoa were obtained. Studies
conducted on large animals (e.g., bulls or boars) obtained
spermatozoa directly from ejaculate [40, 41]. However, the
procedures used to separate spermatozoa from other cell
types are not mentioned, which is a reason to take the results
with caution. In one case, immature spermatozoa were iso-
lated directly from the testis [42] after digestion with col-
lagenase and anti-trypsin. Finally, few studies included in
this review did not mention how spermatozoa were separated
[43, 44].

On the other hand, most human studies have retrieved
spermatozoa from the ejaculate and used sperm separation
protocols, such as swim-up [45-47], centrifugation gra-
dient [48-56], or a combination of the two methods [57,
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Fig. 1 External factors (e.g., smoking, drugs, diet, viruses, air pollution) may influence the epigenetic modifications and RNAs of spermatozoa

with possible consequences on fertility and offspring outcomes
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58]. These approaches allow the collection of only motile
spermatozoa. A minority of studies have incubated sam-
ples with somatic cell lysis buffer (SCLB) which, by lysing
specifically the membranes of this type of cells, allows the
collection of both motile and immotile spermatozoa from
the ejaculate. Only 2 studies did not use any procedure to
separate sperm cells, and these results should be taken with
caution [59, 60].

Experimental approaches
for sperm epigenetics studies

Nucleic acids can be extracted from several sources, includ-
ing isolated spermatozoa and seminal fluids, through a
variety of methods, each specifically chosen to perform
the intended downstream application. In this context, the
most employed method for DNA purification has been phe-
nol-chloroform-based extraction [31, 38, 42, 45-49, 51, 58,
60, 66, 67] through a separation into two phases. Other stud-
ies [31, 33, 34,43, 52, 55, 59, 68, 69] have used solid phase
extraction on silica matrices, which allows for higher purity
in less time. Furthermore, a complementary DNA hybridiza-
tion with functionalized magnetic beads was used, avoiding
any centrifugation [35].

As the field of epigenetics is rapidly expanding, interest in
exploring new technologies to decode epigenetic landmarks
in both health and disease states has increased dramatically.
To obtain reliable results, it is crucial to choose the protocols
to evaluate the methylation status, the PTM of histones, as
well as the characterization of sperm RNAome. The pros and
cons of each technique are highlighted in Table 1. The spe-
cific results obtained in each study will be further discussed
in the next Sections and in Tables 2 and 3.

5mC is the predominant DNA modification and accounts
for approximately 5% of all cytosines. At a gene-specific res-
olution, several studies have used methylation-specific PCR
(MS-PCR) on bisulfite-converted DNA [31-35, 38, 42, 45,
46, 51, 57-59, 66, 67, 72]. In this way, after unmethylated
cytosines are deaminated to uracils, it is possible to deter-
mine the methylation status at the specific loci of interest.
Another locus-specific method was applied by [59], through
high-resolution melting (HRM) analysis. This technique can
detect single base pair differences by their distinct melting
curves, after DNA treatment with sodium bisulfite. Another
approach integrates bisulfite conversion-based PCR with
restriction digestion, namely combined bisulfite restriction
analysis (COBRA), as used in [35].

Followed by bisulfite conversion, the global DNA meth-
ylation status can also be determined by hybridization-based
microarrays, as in [48, 50, 69]. The HumanMethylation27
DNA Analysis Bead Chip, Illumina HumanMethyla-
tion450 (HM450K), and Infinium Human MethylationEPIC
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BeadChip microarrays could interrogate 27.578, 450.000,
and 935.000 CpG sites, respectively [48, 50, 69]. These array
technologies have been widely used due to their high versa-
tility, focusing on the most biologically significant regions
of the genome. Further scale-up to methylome-wide studies
were applied in [32, 43]. In particular, the authors in [32]
used reduced representation bisulfite sequencing (RRBS)
size fractionation of DNA fragments, after digestion with
BgllI or Mspl. These enzymes enrich for CpG-containing
segments, without targeting specific regions in the genome.
Finally, whole-genome bisulfite sequencing (WGBS) was
applied to cover all CpG sites, for a comprehensive methy-
lome profile [43], also used by major epigenome consortia
(e.g., ENCODE).

However, bisulfite treatment has significant drawbacks,
being a very harsh chemical reaction that may cause DNA
damage and loss [73]. Furthermore, converted unmodi-
fied cytosine (95% of all cytosines in the genome) leads to
reduced DNA sequence complexity, lower mapping effi-
ciency, and biased genomic coverage [74]. Therefore, two
studies [33, 67] used different approaches, such as methyl
binding domain-seq (MBD-Seq) and methylated DNA
immune-precipitation (MeDIP-Seq) [33, 67]. They specifi-
cally enriched methylated regions using antibodies for SmC,
followed by high-throughput DNA methylation profiling [33,
67].

Some studies have used alternative methods for methyla-
tion analysis [34, 49, 52], such as high-pressure liquid chro-
matography (HPLC), flow cytometry (FC), immunofluores-
cence (IF), enzyme-linked immunosorbent assay (ELISA),
and matrix-assisted laser desorption/ionization—time of
flight mass spectrometry (MALDI-TOF-MS) [34, 49, 52].
However, these methods are nonspecific, lacking the pos-
sibility to differentially characterize regions of interest, and
only cover global methylation patterns.

Another crucial epigenetic mechanism regulating gene
expression occurs through the PTM of histone N-terminal
tails. So far, only one study considered the role of histone
modifications in the context of sperm epigenetics [43]. The
authors used native chromatin immunoprecipitation followed
by NGS (NChIP-Seq). This strategy is based on the selection
by immune recognition of naturally occurring protein-DNA
interactions, in particular, for histone modifications [43].

Experimental approaches for sperm RNA
analysis

Regarding RNA extraction, most studies used an acid-guani-
dinium-phenol-based strategy [28, 30, 32, 36, 38—42, 53, 56,
67, 70-72]. Similar to DNA extraction, paramagnetic beads
can be applied for total RNA extraction, a method used in
[38]. Subsequently, quantitative real-time PCR (qPCR) has
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Table 2 (continued)

References
[39]

Principle of analysis
NEBNext Multiplex

Starting tissue

Impact on fertility

Target

Exposure/condition

Authors and year

Spermatozoa from

Altered sperm qual-

Toxoplasma infection ~ Alteration of the

Tyebji et al., 2020

Small RNA Library
Prep, qPCR for

cauda epididymis

ity; impairments

sperm small ncRNA

profiles

in embryo develop-

ment

quantification and

sequencing on Illu-
mina HiSeq 2500

been widely applied to study sperm RNAs, both in animal
and human research [30, 41, 53-55, 71, 72]. Some studies
have used SYBR dye [41, 53, 55, 71, 72]. While an eco-
nomical and simple strategy, SYBR data can depend on
primer efficiency and product length and these limits must
be carefully considered. The use of TagMan technology can
improve the specificity of qPCR, as in [30, 54]. This is also
useful for scale-up approaches, as in [56, 71], where a high-
throughput TagMan qPCR array was applied to profile a
variety of selected targets.

The remaining studies [30, 36, 38—41, 47, 60, 70-72]
applied a broader analysis to comprehensively profile all
RNA species in spermatozoa, via RNA-seq. This technique
can also detect new sequences, ranging from mRNAs to
miRNAs, piRNAs, and circRNAs. In particular, one study
[40] used a specific bioinformatics pipeline to identify piR-
NAs and miRNAs among bull sperm samples [40].

A peculiar strategy can be applied to circRNAs. Due to
their unique structure, these can be retro-transcribed and
amplified by qPCR to then undergo Sanger sequencing,
similar to the sequencing of cloning vector [41].

One study [28] did not specify the technology for RNA
analyses, so it should be taken with caution [28].

Animal evidence: impact
of sperm epigenetic mechanisms

The establishment of specific genomic methylation patterns
plays a pivotal role in the so-called hereditary silencing, reg-
ulating germ cell development [75]. Indeed, these patterns
occur in two different moments, one in the primordial germ
cells (PGCs), and one during preimplantation for transmis-
sion to offspring [76].

One of the first studies that described the important role
of DNA methylation for offspring viability dates back to
1992, when Li and colleaguesinduced targeted mutations in
the Dnmt gene in the germline of mice, resulting in abnor-
mal embryo development and increased lethality of the
embryo [77]. DNA methylation is required during meiosis
for the production of male germ cells and, after fertiliza-
tion, for embryo development. However, after fertilization,
the paternal genome undergoes demethylation, except for
imprinted genes and repeated sequences [78]. During sper-
matogenesis, specific environmental cues can influence the
correct DNA methylation process inducing sperm alterations
and infertility [79]. In particular, paternal lifestyle can alter
epigenetic marks in the germline, resulting in the altera-
tion of both spermatozoa and offspring [80]. Incomplete or
abnormal chromatin condensation causes DNA damage and
consequent changes in several sperm parameters, such as
morphology (teratozoospermia), progressive motility (asthe-
nozoospermia), and concentration (oligozoospermia), with
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g possible effects on fertility and embryo development [81].
5 Although the exact mechanisms responsible for the aberrant
E ;f: g E l,‘n: g sperm DNA methylation in male infertility need to be deeply
. . - . characterized, both environmental factors (e.g., pesticides
E» £ ‘2 8 & - 2 and other toxicants) and lifestyle habits (such as smoking,
g 2 S g = 8 vl:} f; alcohol consumption, and diet) may have an overriding influ-
s | § 22 58 £ ence [82, 83].

_% E <ZC g > 2 § E’ § Tobacco smoke is the most common factor known to have
£ E‘ ‘%)5_ % Eg § é S| § g3 a strong negative impact on sperm DNA methylation, but the
& < z & « & precise mechanisms by which paternal smoking is associated
- $ 8 s & with detrimental effects on fertility and sperm para.lmeter's
5 £ ‘é “E ° § 5 are poorly understood. In 2013, Xu and coworkers investi-
g‘ :-E % % %’ é § gated the protein profile of testes of mice exposed daily to
SE[2 = = Z%5m 2 2 cigarette smoke, using the MALDI-TOF-MS analysis [42].
£ g 2 E -;.3 g -;% £g < % The authors found that during spermatogenesis, exposure
=3 |& 2 5% 59 § = to cigarette smoke caused a change in the testicular pro-
- B L s teome, particularly in signaling and metabolic pathways with
z § _—é = § %) g E consequent impairments on spermatogenesis [42]. Dai and
E E E3 % E E E 'g % collaborators in 2016 obtained similar results [31]. They
g 2 . % é é E g_ E § § g evaluated the protein profile in nicotine-exposed mouse
g B= 53 5579 E @ g &5 epididymal tissue by two-dimensional gel electrophoresis
E ﬁ & § 53 5 3 Dé: § 8 25 & and MS analyses. The results showed that there were pro-
teins mainly involved in molecular transportation networks
'% 3§ _»% 8 :E and the polyol pathway, indicating an impairment of the
8 zE€5y9 E T - di% secretory functions of the epididymis. Furthermore, they
E fgb_g gb Y 'C% = i, & @ E 4 & f found that nicotine exposureinduced hypermethylation of the
= i Q p; %’ g S EE E g Q § 2 %‘ % o prom(?ter region of the Sord gene '(sorbltol dehyclirogegase),
2 E & é EE ;’: 2O AEEAREL LB inducing reduced secretory function of the epididymis and
= A & < 2 8 thus preventing proper sperm maturation and capacitation
g [31]. Also, cannabis exposure has been reported to impact
é i‘oé sperm methylome integrity in both human and rat models,
% g as described by Murphy et al. in 2018 [32]. The authors
E B S analyzed the epigenetic profile using the RRBS approach,
§ $ —§ finding at least 6,640 CpGs sites whose methylation status
- © ! = ! was altered as a results of cannabis or THC exposure. These
. = z _ g inclu.ded genes in the .Hippo signaling a'nd cancer pathways,
§ ‘E (‘31 5 § g possibly implicated in growth regulation and consequent

2 g = _@ 8 5 non-viable embryos [32].
; 5: 2 E ?1 ;j g Also, many environmental contaminants can alter the epi-
£ ":3 E < E Tj é E genetics landscape of male germ cells, thus posing a major
2 398 g " < = threat to mammalian development. For instance, in 2011,
Doshi and colleagues reported that exposure to bisphenol A
(BPA), an estrogenic endocrine disruptor commonly used in
the manufacture of polycarbonate plastics and epoxy resins,
affects the epigenetic signature in testis, and consequently
the health of offspring [66]. Notably, neonatal exposure to
BPA alters the methylation of the estrogen receptor promoter
2 and enhances the expression of DNMT3A and DNMT3B in
E adult rat testis, at both transcript and protein levels, support-
g ing an aberrant DNA methylation at several gene loci that
i’ influence spermatogenesis and consequently fertility [66].
2 Similarly, Prados and colleagues in 2015, demonstrated
fud that Di-(2-Ethylhexyl)-phthalate (DEHP), an industrial
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plasticizer commonly present in the environment, increases
DNMT1 expression and, consequently, DNA methylation in
the testis of mice, with effects on spermatogenesis, depend-
ing on the mouse strain [33]. Exposure to DEHP increased
hyper- and decreased hypo-methylation in C57BL/6J vs.
FVB/N mice. The same trend was observed at the level
of gene promoters involved in both sperm chemotaxis and
post-transcriptional regulatory mechanisms, with a more
pronounced hypermethylation in the C57BL/6J strain [33].
In 2019, a study by Sadler-Riggleman et al. investigated
the effects of exposure to environmental toxicants on the
transgenerational inheritance of epigenetic marks [67]. In
particular, their results demonstrated that transgenerational
alterations in DNA methylation, ncRNAs and gene expres-
sion occurred in Sertoli cells exposed to the pesticides vin-
clozolin and dichlorodiphenyltrichloroethane (DDT). This
suggests that germline exposure to environmental factors
causes epigenetic and transcriptome alterations that can be
transmitted to the next generations with varying outcomes,
including testicular disease and a decreased sperm count
and/or motility [67]. Similarly, several fungicides such as
carbendazim and chlorothalonil, have been associated with
aberrant DNA methylation [84]. Liu and coworkers demon-
strated in their findings published in 2019, that low doses of
each compound influence the spermatogenesis of pubertal
mice, causing a decrease in sperm concentration and motil-
ity. In particular, these compounds act via modulation of
estrogen receptor signaling, disrupting both DNA and his-
tone methylation [43, 85].

In modern society, several diet-related diseases result
from the influence on sperm epigenome [86]. In 2013 Lam-
brot and colleagues demonstrated that paternal diet is asso-
ciated with birth defects in mice. In particular, sperm from
folate-deficient mice showed differential DNA methylation
of genes implicated in development, diabetes, autism and
schizophrenia [34]. There is also evidence that pregesta-
tional diabetes and/or obesity impair DNA methylation in
offspring spermatozoa, as demonstrated by Gen and col-
leagues in 2014. These spermatozoa have altered DNA
methylation in Peg3 and HI9 genes, with possible implica-
tions for testicular weight, Leydig and Sertoli cell number
and spermatogonia number [35]. The same year, Ost and
colleagues, observed that paternal diet influences chro-
matin status in both mature spermatozoa and offspring of
Drosophila. High sugar intake increased the expression of
heterochromatic-embedded metabolic genes (characterized
by active deposition of H3K9/K27me3, as per ENCODE
data), reprogramming offspring metabolism [70]. Also, a
similar mechanism could regulate obesity susceptibility in
mice and humans [70] (Table 2).

However, further studies are needed to better elucidate
the mechanisms affecting sperm DNA methylation and their
impact on male infertility. An improved knowledge of sperm

@ Springer

epigenetic status in relationship with reduced reproductive
capacity could become a new diagnostic and prognostic
parameter to evaluate male infertility and pregnancy out-
come, respectively.

Animal evidence: impact of sperm RNAs

New evidences support the presence of both coding and
ncRNAs in spermatozoa, with functional roles in embryo
growth and development, currently under intense investiga-
tion [87, 88].

The discovery of RNA in animal spermatozoa dates
back to the 1980. Since then, it has been proposed that
sperm RNAs play three possible functions, with poorly
understood molecular mechanisms: (i) sperm maturation in
the epididymis; (ii) transmission of the acquired phenotype
from parents to offspring; and (iii) embryo development [89,
90]. In 2015, sperm miRNAs from a mouse model of chronic
stress were found to be responsible for developing offspring
with impaired stress responses, like their fathers [71].

Regarding the impact on sperm parameters, in 2017 Capra
and co-workers characterized the small ncRNA content
(both miRNAs and piRNAs) in cryopreserved bovine semen
from a single animal, by RNA-seq [40]. They observed
more piRNAs clusters in low- vs. high-motility spermato-
zoa. Similarly, miRNA targeting pathways related to cell
apoptosis and alteration of spermatogenesis—which could
affect sperm motility and therefore bull fertility—were found
dysregulated in the low-motile fraction [40]. More recently,
in 2020, Godia and colleagues analyzed the circRNAs in 40
porcine ejaculates [41]. GO enrichment analysis of genes
harboring circRNAs highlighted epigenetic functions, sper-
matogenesis, cilium assembly and developmental processes.
Finally, the authors validated correlations between circR-
NAs and sperm motility, suggesting their important roles
in sperm parameters, and consequently in infertility [41].

Turning to the consequences of sperm RNAs on embryo
development, Chen and colleagues in 2016 demonstrated
how a paternal high-fat diet (HFD)induced changes in the
expression profiles of tRFs — a novel class of small ncRNAs
derived from active cleavage of tRNAs — in mouse sperma-
tozoa [44]. tRFs are mainly involved in paternal inheritance
and in the inactivation of retroviral elements of the genome.
Interestingly, injection of sperm tRF fractions from HFD
males into normal oocytes resulted in offspring with altered
expression of genes related to metabolic pathways and disor-
ders [44]. In the same issue of Science journal, Sharma and
colleagues evaluated how a diet with restricted protein intake
can interfere with the expression profile of genes involved
in metabolism, as well as small ncRNA biogenesis. Using
assisted reproductive techniques (ART), they found that the
offspring of fathers with low-protein diet had significant
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upregulation of genes involved in cholesterol production in
the liver. In addition, RNAs from epididymal cauda sper-
matozoa revealed the presence of an important fraction
corresponding to tRFs (28-34 nt), mapping to the 5’end of
tRNAs. Notably, the levels of tRNA-Gly-CCC, -TCC, and
-GCC were higher in low-protein dietary mice than in con-
trols. In contrast, the Let-7 family of miRNAs was down-
regulated in low-protein spermatozoa. Also, the analysis of
RNA content in different tissues revealed the existence of
intense tRNA cleavage in the epididymis but not in the testis,
suggesting that tRFs can be released from the epididymis to
spermatozoa via the fusion of these cells with small extra-
cellular vesicles (EVs), called epididymosomes [25]. EVs
are membranous nanoparticles naturally produced by cells
that play an important role in cell-to-cell communication
[91, 92]. Indeed, EVs contain nucleic acids (both DNA and
RNAs), proteins, lipids, metabolites, etc., that they deliver to
target cells [93, 94]. Notably, the epididymosome RNAome
has been shown to consist of ~87% of tRFs [25]. In par-
ticular, tRF-Gly-GCC — upregulated in low-protein dietary
spermatozoa — is able to inhibit the expression of genes
associated with the retroelements MERVL, with potential
effects on preimplantation. Overall, these data demonstrated
that paternal diet could influence embryo development via
sperm RNAs [25].

One year later, in 2017, Guo and coworkers demonstrated
that treatment of mature mouse spermatozoa with lysoleci-
thin, pronase and RNases efficiently removed (~90%) sperm-
carried RNAs. When the authors used these spermatozoa for
ART (i.e., injecting them into normal oocytes by intracyto-
plasmic sperm injection, ICSI), they found a decrease both in
the rate of blastocyst formation and in the live birth rate [36].
Furthermore, even if the offspring born from RNA-depleted
spermatozoa developed a normal reproductive capacity,
their body weight was lower than the control group, con-
firming the importance of sperm-carried RNAs for embryo
development [36]. In 2018, Zhang and colleagues showed
that deletion of Dnmi2 reduced the levels of m5C and m2G
modifications in 30-40 nt ncRNAs in mouse spermatozoa
[72]. These modifications were elevated in the sperm RNAs
of male HFD mice, thus demonstrating that the deletion of
Dnmt2 prevented the transmission of HFD-induced meta-
bolic disorders to the offspring. Importantly, the deletion
of Dnmt2 was also responsible for altering the expression
profile and the secondary structure of small ncRNAs (e.g.,
tRFs and rRNA-derived small RNAs), supporting the impor-
tance of RNA modifications for the preservation of paternal
inheritance information [72]. The same year, Conine et al.
demonstrated the importance of small ncRNAs acquired by
spermatozoa during epididymal transit, for embryo develop-
ment in mice [38]. The authors generated two different types
of zygotes (by ICSI), using spermatozoa from the proximal
region of the epididymis (caput) or its distal portion (cauda),

and then analyzed the embryo development. Caput sperma-
tozoa generated embryos overexpressing the regulatory fac-
tors required for preimplantation development, and did not
implant. However, the injection of caudal small ncRNAs
into caput-derived embryos completely rescued the preim-
plantation molecular defects, and resolved the implantation
problems [38].

More recently, in 2020, Tyebji and colleagues demon-
strated that paternal infections could also alter sperm small
ncRNA profiles and consequently offspring behavior [39].
Toxoplasma-infected male mice showed decreased total
sperm count and increased sperm morphological abnor-
malities, which resulted in behavioral changes of F1-F2 off-
spring, in a sex-dependent manner. Furthermore, toxoplasma
infection-induced large differences in the small ncRNA load
carried by spermatozoa, with possible implications for the
offspring. Of note, zygotic microinjection of small ncRNAs
from infected spermatozoa was able to partially recapitulate
the behavioral changes observed in the naturally born off-
spring of Toxoplasma-infected mice [39] (Table 2).

In conclusion, data from animal models support the role
of sperm RNAs in early embryo development. These find-
ings require thorough validation in humans.

Human evidence: impact of sperm
epigenetic mechanisms

In 2004, Marques and colleagues first described the associa-
tion between oligozoospermia and loss of DNA methyla-
tion in humans [57]. The authors investigated in 27 normo-
zoospermic men vs. 96 oligozoospermic patients whether
imprinting defects were associated with impairments in
spermatogenesis. They extracted the sperm DNA and stud-
ied the methylation profiles of two imprinted genes, the
mesodermal specific transcript (MEST), which is maternally
imprinted (methylated, repressed) [95], and H19, which is
instead paternally de novo methylated during the premei-
otic phase of spermatogenesis (unmethylated, therefore
expressed, in the maternal allele) [96]. They found that the
maternal imprint of the MEST gene was correctly erased in
all samples, while some of the oligozoospermic samples,
with reduced sperm motility, showed differential H7/9 meth-
ylation profiles. Some patients had incomplete methylation
and others had a heterogeneous sperm population, half with
a hypomethylated allele. In particular, they found hypometh-
ylation at the CTCF-binding site, responsible for the repres-
sion of /GF?2 in the maternal allele [57]. Importantly, when
they analyzed the methylation profile of the LINE] trans-
poson in H19 hypomethylated patients, they found that the
methylation levels were high, confirming that these defects
were specific to the imprinted genes [97].
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In 2010, Poplinski et al. analyzed the differentially meth-
ylated regions (DMRs) associated with IGF2/H19 imprint-
ing control region 1 (ICR1), and with MEST, in spermatozoa
from 148 idiopathic infertile patients and 33 age-matched
normozoospermic controls [78]. IGF2/H19 ICR1 methyla-
tion was significantly reduced in oligozoospermic patients
(total sperm count <40 million spermatozoa/mL) vs. con-
trols (89.6% vs. 95.9%, respectively). In contrast, MEST was
hypermethylated in patients (9.6% vs. 4.3%). In particular,
they found that spermatozoa with low-motility had hypo-
methylation of /IGF2/H19 ICR1 and hypermethylation of
MEST. Also, MEST hypermethylation was associated with
poor sperm morphology [78].

The same year, Wu and collaborators investigated the
association between idiopathic male infertility and the
methylation status of the methylenetetrahydrofolate reduc-
tase (MTHFR) gene [46]. MTHFR encodes an important
enzyme involved in folate metabolism, DNA synthesis and
remethylation reactions, with a key role in regulating the
balance between DNA synthesis and DNA methylation. Fur-
thermore, this gene is involved in spermatogenesis, as it is
highly expressed in mouse testis, and hypermethylation of its
promoter is associated with azoospermia [46]. The authors
found that 45% of idiopathic patients had MTHFR hyper-
methylation compared with 15% of fertile controls. Inter-
estingly, when they divided idiopathic infertile patients by
sperm count, they found that oligozoospermic patients (<20
million/mL) exhibited higher methylation patterns than nor-
mozoospermic men (> 20 million/mL). These results con-
firm that MTHFR hypermethylation is associated with idi-
opathic male infertility and the analysis of its methylation
status can be considered a biomarker useful to identify men
with a higher risk of infertility [46, 98].

The association between aberrant sperm DNA methyla-
tion and low sperm motility was investigated in 2011 by
Pacheco et al., who also included the analysis of the sperm
RNAs [48]. Their integrated analysis revealed that low-
motile spermatozoa exhibited genome-wide DNA hypometh-
ylation, likely due to the failure of chromatin compaction, as
revealed also by the high levels of the histone deacetylase
HDACI, which interfere with the histone-to-protamine tran-
sition during the spermatogenesis. Also, they speculated that
the high production of radical oxygen species (ROS) in low-
motile spermatozoa might be due to the decrease of sirtuin 3
(SIRT3) mRNA, with a consequent reduction of the expres-
sion of the antioxidant manganese superoxide dismutase
(MnSOD). They suggested that increased ROS production
might interfere with the capacity of DNMT3A to identify
and set its marks, thus contributing to the hypomethylated
phenotype [48].

The same year, Marques and colleagues carried out
the analysis of DNMTs — at mRNA and protein levels
— in human adult dividing mitotic (spermatogonia A),
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pre-meiotic (primary spermatocytes), post-meiotic (second-
ary spermatocytes and round spermatids) and differentiat-
ing cells (elongated spermatids/spermatozoa) [58]. The H19
and MEST genes were found to be methylated and demeth-
ylated, respectively, in all the stages analyzed. Also, they
found that at all the stages DNMT1 expression was higher
than DNMT3A/3B, while they did not detect any DNMTs
in elongated spermatids. Conversely, at the protein level,
DNMT enzymes were present at all stages of spermatogene-
sis. In particular, the enzymes co-localized: 1) in the nucleus
of pachytene and secondary spermatocytes, suggesting re-
methylation events during meiotic recombination and before
the second meiotic division; ii) in the nucleus of elongated
spermatids associated with the histone-to-protamine transi-
tion to prevent imprinting errors transmittable by the male
gamete [58].

Another aspect concerns the association between global
methylation and the tendency of human spermatozoa to
undergo spontaneous apoptosis. In 2013, Barzideh et al.
used HPLC, FC and ICC to detect DNA methylation lev-
els in human spermatozoa from unselected normozoosper-
mic volunteers. They found that low-quality spermatozoa
retrieved from the low-density region of the Percoll gradient
showed higher levels of SmC, associated with high levels
of annexin V (a marker of early apoptosis). The authors,
therefore, suggested that the defective and apoptotic sperma-
tozoa were the result of spermatogenesis disorders leading
to hypermethylation of sperm DNA [49].

The process leading to spermatogenesis involves several
phases, including epigenetic modifications and the gradual
elimination of mitochondrial DNA (mtDNA). Considering
that patients with abnormal sperm parameters have higher
mtDNA copies than fertile men, Tian and colleagues evalu-
ated the relationship between DNA methylation and mtDNA
copy number with human semen quality [99]. In fertile men,
sperm DNA was found fivefold more methylated than in
somatic cells from blood. In idiopathic infertile patients,
LINE-1 and the maternally imprinted LITI gene were
hypomethylated compared to somatic cells, while H/9 was
hypermethylated. Also, LIT] and LINE-I methylation levels
were positively associated with those of the testis-specific
BRDT and the MTHFR genes. Computer-assisted param-
eters of sperm motility were significantly correlated with
sperm concentration and morphology, thereby confirming
that sperm motility is an indicator of sperm quality. Overall,
considering that mtDNA is negatively correlated with these
parameters, a low mtDNA copy number can be considered
an indicator of sperm quality [99].

In 2017, Lagqan and colleagues deepened the study of
different patterns of DNA methylation in 15 infertile patients
vs. 15 proven fertile men (with at least two children) [50].
They selected 4 CpG sites (within the genes PRICKLE?2,
ALS2CR12, ALDH3B?2 and PTGIR) differentially methylated
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between patients and controls for further validation in 111
samples (55 infertile patients/with abnormal sperm param-
eters and 56 fertile controls). The data showed a signifi-
cant difference in the mean methylation levels across all
PRICKLE? CpGs (lower in patients) and ALS2CR12 (higher
in patients). For ALDH3B2, 7 out of 13 CpGs were less
methylated in patients, and the same for 9 out of 26 CpGs
of PITGIR. These variations correlated with the differences
in sperm quality between fertile men and infertile patients.
Indeed, the latter showed lower values of semen volume,
sperm count, motility, vitality and normal morphology [50].

In 2020, Santana et al. analyzed the global DNA meth-
ylation pattern in spermatozoa of patients with varico-
cele, the most common risk factor for male infertility [69].
As expected, sperm concentration, viability and normal
morphology were lower in patients than in controls. A
genome-wide analysis showed that 54 CpG sites were hypo-
methylated in patients with varicocele, while 5 were hyper-
methylated. Also, the authors observed the presence of 1,695
DMRs in genes involved in DNA methylation, gamete gen-
eration, piRNA-related processes and meiosis. Interestingly,
the regions with increased DNA methylation were associated
with H3K27 methylation in the varicocele group, further
supporting the potential crosstalk between epigenetic marks.
A more accurate analysis pointed out only 24 DMRs with a
strong association with genes involved in genetic imprinting
and gene expression regulation. Interestingly, these regions
were hypermethylated in varicocele patients, without differ-
ences between varicocele degrees [69].

As said above, environmental conditions and lifestyle
habits may affect male fertility and embryo development.
For example, cannabis use decreases sperm concentration
and alters DNA methylome, but it is not known yet whether
these modifications may be passed to the next generation
[32]. As in rodents, significant correlations between aberrant
DNA methylation patterns and tobacco smoke were found in
humans, with a negative impact on sperm parameters [68].
Dong and colleagues investigated the association between
methylation of H/9 and SNRPN ICRs with male infertil-
ity in cigarette smokers [51]. Interestingly, they found that
H19 hypomethylation and SNRPN hypermethylation were
strongly correlated with a high risk of infertility, and this
risk was potentiated in cigarette smokers [51].

The effects of long exposure to air pollution were also
investigated in a recent study by Cheng et al. [52]. DNA
methylation and 14 semen parameters were evaluated in
1,554 fertile men, finally classified as normal (~62%)
and abnormal (~38%). The results showed that long-term
exposure to single air pollutants (i.e., SO,, NO,, PM,, and
PM, 5), or the co-exposure to several pollutants, was cor-
related to reduced total sperm motility, with consequences
on time to pregnancy. Interestingly, a sensitivity analysis
showed that the association between air pollutants and sperm

motility was significant also for non-smokers and non-drink-
ers [52]. Moreover, analysis of DNA methylation following
PM,, exposure revealed a positive association with the levels
of ShmC — another type of epigenetic mark recently found in
human brain and embryo stem cells, whose precise function
is still not fully elucidated — but not with SmC levels [52].

From the early 2000s, several studies revealed that chil-
dren conceived with ART have an increased prevalence
of imprinting disorders, such as Beckwith-Wiedemann’s
(11p15.5), Prader—Willi and Angelman (15q11-q13) syn-
dromes, compared to children conceived naturally [100].
Therefore, the treatment of male infertility may be respon-
sible for the transmission of paternal imprinting errors.
Indeed, H19 hypomethylation leads to the presence of 2
inactive IGF2 genes, with detrimental consequences for
embryo development [57]. The analysis of the global meth-
ylation level (GML) of sperm DNA carried out during ART
cycles revealed that, differently from the fertilization rate,
embryo development may be impaired if GML is below a
certain threshold value [101]. Epigenetic alterations associ-
ated with ART may depend on the introduction of aber-
rantly methylated DNA into the zygote by the spermatozoa.
In particular, male infertility is significantly associated with
defects in the DNA methylation pattern of human sperma-
tozoa. However, it is not clear whether these defects may
be ascribed either to hypomethylation, hypermethylation,
or both [49].

Finally, a recent systematic review analyzed the associa-
tion between the methylation of specific genes, sperm DNA
fragmentation, and the outcome of pregnancy. The authors
reported aberrant methylation of H/9 and KCNQ1 genes
in patients with high sperm DNA fragmentation. Also, a
significantly lower H19 methylation rate was found in
patients with idiopathic recurrent pregnancy loss and infer-
tile patients, compared to fertile men. Lastly, aberrant GLT2
methylation was found in patients with poor ART outcomes
[102] (Table 3).

In conclusion, several pieces of evidence strongly sug-
gest the presence of aberrant gene methylation in infer-
tile patients. In particular, H/9 hypomethylation appears
to increase the risk of pregnancy loss, as well as to affect
embryo growth. However, in general, the relationship
between the methylation of other genes and ART outcomes,
as well as the morphokinetic parameters of this technique,
needs to be further investigated.

Human evidence: impact of sperm RNAs

Human sperm RNAs were identified starting from 1999, by
cDNA cloning and sequencing [103]. Since then, and thanks
to the new technologies available for the study of RNAs,
such as RNA-seq, the RNAome of male gametes was further
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characterized [23-25]. However, several RNA populations
ascribed to spermatozoa are possibly due to contamina-
tion from somatic cells, thus leading to misinterpretation
of sperm RNA analyses. Indeed, a single human spermato-
zoon contains ~50 fg of RNA and ~0.3 fg of small ncRNAs,
which is 200 times less than other cell types [104]. For this
reason, the development of new protocols for sperm isola-
tion is crucial for implementing the available information
on sperm RNAs.

Several mRNAs encoding for transcription factors, pro-
tein kinase, growth factors, etc. have been identified, and
some of them were found differentially expressed in infer-
tile patients [104]. Furthermore, the lack of certain sperm
mRNAs and/or their specific mutations have been proposed
as markers and effectors of male infertility, with a possi-
ble function related to the delivery to oocytes [105-107].
These transcripts encode proteins mainly involved in ferti-
lization and embryo development, such as clusterin (CLU)
and calmegin (CLGN); or the integrator complex subu-
nit I (INTSI), involved in the early stages of embryogen-
esis [108]. Sperm transcripts involved in fertilization and
post-fertilization have been described as mainly located in
genomic regions enriched for H3K4me3, associated with
transcriptionally active/poised chromatin. Therefore, these
results suggested that sperm chromatin might be able to
undergo de novo transcription in mature spermatozoa [24].
These findings highlighted a new key role for spermatozoa,
not simply genome carriers, but possibly transcriptionally
active cells crucial for embryo development and offspring
health [26].

Data from mouse models have shown that the success rate
of ICST is related to the origin of spermatozoa. Spermatozoa
obtained from the cauda of the epididymis generate embryos
with various genetic regulation problems, while the tran-
sit through the epididymis is essential for acquiring small
ncRNAs key for fertilization and embryo development [38].
For this reason, the evaluation of some parameters can be
useful for assessing ART outcomes [38]. However, experi-
mental evidences in humans do not support data from mouse
models. No differences in fertilization and embryo devel-
opment have been observed with either testicular or caput
epididymal spermatozoa in ART cycles, as demonstrated for
patients with azoospermia factor ¢ (AZFc), microdeletions
and obstructive azoospermia [109, 110]. Interestingly, the
most abundant miRNA found in human spermatozoa, miR-
34c, was positively correlated with the ICSI success rate
by Cuiand co-workers in 2015 [53]. Nevertheless, several
children conceived by ICSI had congenital malformations
and poor-quality sperm, thus supporting that RNAs acquired
during the epididymal transit are important for the intergen-
erational/transgenerational subfertility passage [111-114].
Indeed, paternally acquired phenotypes (e.g., mental stress
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and metabolic disorders) can be transmitted to offspring
via alterations of sperm small ncRNA levels [72].

Other small ncRNAs found within spermatozoa are piR-
NAs, involved in the silencing of transposable elements in
germline cells, thus protecting the integrity of the genome
and playing an important role in spermatogenesis [115].
In obese men, several sperm piRNAs were found altered,
whose predicted targets are genes involved in food intake
regulation, supporting the role of piRNAs in the inheritance
of metabolic disorders [47].

Additional transcripts involved in sperm maturation and
fertilization are protamine (PRM1 and PRM?2), and transi-
tion protein (TNP2) [116—118]. Protamines and transition
proteins enable proper packing of chromatin during sperm
maturation, thereby influencing sperm count, morphology
and, of course, sperm functions. For this reason, Savadi-
Shiraz and colleagues in 2015 analyzed the levels of PRM1,
PRM2 and TNP2 mRNAs in spermatozoa of both normo-
zoospermic men and teratozoospermic patients, based on
sperm morphology and ART outcomes [119]. The results
showed that PRM1 and PRM2 transcript levels were lower
in patients. Furthermore, while the ratio of PRM1 and PRM2
was ~1 in controls, it was ~10 in teratozoospermic patients
[119]. Interestingly, ~42% of the latter (30 out of 72) under-
went at least one ICSI cycle, and pregnancy (with a live
baby) was achieved in 36.6% of couples (11/30). Of these,
approximately 70% showed a 1:1 ratio of PRM1 and PRM2,
thus supporting the notion that a normal protamine mRNAs
ratio is associated with a higher fertilization rate [120]. In
contrast, TNP2 levels were higher in the teratozoospermic
group, correlated with abnormal sperm head morphology
and, in particular, with an increased percentage of round
head defect in semen [119]. Also, low protamination was
related to sperm tail defects (short tails), and multiple chro-
matin breaks were found in teratozoospermic patients. These
results suggested that PRM1, PRM2 and TNP2 transcripts
can be used as biomarkers of fertility and as an index of
sperm morphology and fertility [119].

As expected, both environmental toxins and lifestyle
cues, such as diet and mental stresses, negatively affect
sperm parameters. Tobacco-smoking male partners of cou-
ples undergoing ICSI showed higher protamine deficiency
and sperm DNA fragmentation, in association with lower
expression of H2BFWT, PRM1, PRM2, TNP1 and TNP2.
Also, the ratio of protamine mRNAs was higher compared
to non-smoking men [55].

In 2020, another pilot study evaluated whether levels
of sperm mRNAs encoding proteins with an active role in
fertilization, oocyte activation, chromatin remodeling and
DNA repair, might differ between oligozoospermic patients
undergoing ICSI and controls. A significantly lower level
of 21 mRNAs (e.g., AKAP4, PTK7, PLC{ and POUSF1)
was reported in patients, whose 14% of oocytes were not
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fertilized and 90% of the embryos did not reach the morula
stage [56]. More recently, a study conducted in 54 normo-
zoospermic men undergoing ICSI for unexplained infertility
demonstrated that 324 small ncRNAs (e.g., miR-4755-3p,
miR-92a-3p, 5’-tRF-Asp-GTC; 5’-tRF-Phe-GAA, let-7f-
2-5p, etc.) were differentially expressed in the samples lead-
ing to high vs. low blastocyst formation rate [121] (Table 3).

In conclusion, emerging animal evidence suggests a role
for sperm RNAs on sperm parameters, sperm DNA frag-
mentation, natural conception, pregnancy rate, miscarriage
rate and live birth rate in ART programs. This appears to
be confirmed by available human studies. However, human
data are often scarce and mostly based on a very low num-
ber of trials. Therefore, no firm conclusions can be drawn
on the mechanistic relationship between sperm RNA levels
and embryo kinetics. Importantly, more robust protocols for
the isolation of specific germ cell-derived RNAs need to be
further developed.

Conclusions

According to the WHO, the diagnosis of infertility, particu-
larly sine causa, in couples attempting to conceive, repre-
sents a growing global burden. The prevalence of the male
factor is constantly increasing, being associated with numer-
ous sperm abnormalities, as well as problems of embryo
development. Nowadays, the decrease in fertility is one of
the main factors contributing to a progressive aging of the
global population [122, 123]. Therefore, understanding the
molecular mechanisms underneath male infertility would
help to counteract the aging of the global population and
to identify new indicators for effective diagnosis and man-
agement of infertility. In this context, how relevant is the role
of epigenetics and RNAs in sperm health and embryo viabil-
ity? Is it a truth or a myth? Research is currently uncovering
the multiplicity of functions played by sperm epigenetics and
sperm RNAs. Both can be regarded as potential molecular
drivers for proper sperm development, as well as for posi-
tive fertilization outcomes and viable embryo development.

Overall, the findings described in this comprehensive lit-
erature review support the notion that sperm epigenetics,
especially sperm DNA methylation patterns, are closely
linked to male fertility. Looking at the evidence from animal
studies, the exposure to environmental and lifestyle factors,
which are often a cause of infertility (cigarette smoke, envi-
ronmental pollutants, or diet-related diseases), can influence
the epigenetic profile of spermatozoa. Furthermore, avail-
able animal data suggest the role played by sperm RNAs
(coding and non-coding) in embryo development. Specifi-
cally, the passage through the epididymis seems crucial to
acquire an RNA profile that ensures sperm competence, thus
avoiding an embryo-lethal phenotype.

Evidences from human studies further support the occur-
rence of epigenetic alterations in spermatozoa from patients
with abnormal sperm parameters. Similar to animal stud-
ies, cigarette or cannabis smoking and exposure to environ-
mental pollutants negatively affect the epigenetic profile of
spermatozoa and the health of the offspring. For instance,
the hypomethylation of the H/9 gene leads to the presence
of two inactive /GF2 alleles, leading to defective embryo
development. Again, sperm RNAs appear to play a role in
both post-fertilization events and early-stage embryogen-
esis. RNAs acquired during epididymal transit are key for
intergenerational/transgenerational subfertility. In particular,
specific small ncRNAs are involved in paternally acquired
phenotypes, such as piRNAs, which are crucial in the inher-
itance of metabolic disorders.

Gaining a deeper understanding of the epigenetic and
RNA landscapes is a crucial step in discovering new factors
that contribute to male infertility. The key to obtaining reli-
able results is choosing the most appropriate technique for
sperm isolation and DNA/RNA analyses. In this review, ani-
mal studies mainly focused on spermatozoa as the starting
tissue to analyze the epigenetic profile or their RNA content.
Most of the included human studies adopted reliable, well-
known, and standardized protocols for sperm isolation. This
includes swim-up, gradient centrifugation, and SCLB incu-
bation, with the first two used in clinical practice for sperm
selection in the ART setting. Furthermore, we compared
various techniques used to study the epigenetics of DNA and
RNA populations, from single locus to genome-wide and
transcriptome-wide assays. The range of omics techniques
is constantly evolving, to meet the needs of researchers and
clinicians. WGBS is considered the gold standard for study-
ing DNA methylation. However, bisulfite treatment is an
aggressive chemical method that, despite uncovering the
presence of SmC in CpG-rich sites, significantly reduces
sequence complexity with biased genomic coverage. It
also neglects other modifications, such as ShmC. Emerg-
ing techniques, using enzymatic conversion of cytosine or
third-generation sequencing, are arising to address these
biases. Overall, these approaches aim to broaden research
to the entire spectrum of chromatin modifications, and their
potential functions.

On the other hand, while gene expression analysis has
been largely optimized for long RNA species such as
mRNAs, the task still requires careful development for
small ncRNAs. This is of particular importance to limit
biases in reverse-transcription, ligation, library preparation,
and to identify reliable housekeeping genes for normaliza-
tion of small ncRNAs data. Finally, RNA-seq pipelines need
more accurate algorithms to identify putative small ncRNAs
(e.g., piRNAs, tRFs), amid the vast complexity of genomic
data. Overall, these new results may reveal intriguing per-
spectives on the complex interplay that regulates the sperm
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genome, from maturation to the early stages of embryo
development. This is crucial for the search for the strongest
candidate markers in the context of the sperm gene expres-
sion program.

In conclusion, multiple lines of evidence point to sperm
epigenetics, and in particular sperm DNA methylation, as
a relevant factor in the context of seemingly inexplicable
male infertility. Regarding sperm RNAs, due to the very low
quantity transported by spermatozoa, current protocols for
RNA evaluation need to be further optimized. The identifica-
tion of new potential targets of male infertility and predictors
of poor ART outcomes can be used in diagnostic flowcharts
of infertile male patients. Importantly, data showing the
relationship between sperm epigenetics/RNAs and offspring
health can introduce exciting new insights into the coun-
seling of infertile patients. In the near future, the field will
need to implement fundamental research with high-quality,
well-sized, and adequately controlled studies.
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