Skip to main content

Advertisement

Log in

PTBP1 as a potential regulator of disease

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Polypyrimidine tract-binding protein 1 (PTBP1) is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family, which plays a key role in alternative splicing of precursor mRNA and RNA metabolism. PTBP1 is universally expressed in various tissues and binds to multiple downstream transcripts to interfere with physiological and pathological processes such as the tumor growth, body metabolism, cardiovascular homeostasis, and central nervous system damage, showing great prospects in many fields. The function of PTBP1 involves the regulation and interaction of various upstream molecules, including circular RNAs (circRNAs), microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). These regulatory systems are inseparable from the development and treatment of diseases. Here, we review the latest knowledge regarding the structure and molecular functions of PTBP1 and summarize its functions and mechanisms of PTBP1 in various diseases, including controversial studies. Furthermore, we recommend future studies on PTBP1 and discuss the prospects of targeting PTBP1 in new clinical therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ule J, Blencowe BJ (2019) Alternative splicing regulatory networks: functions, mechanisms, and evolution. Mol Cell 76:329–345. https://doi.org/10.1016/j.molcel.2019.09.017

    Article  CAS  PubMed  Google Scholar 

  2. Mazin PV, Khaitovich P, Cardoso-Moreira M, Kaessmann H (2021) Alternative splicing during mammalian organ development. Nat Genet 53:925–934. https://doi.org/10.1038/s41588-021-00851-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Merkin J, Russell C, Chen P, Burge CB (2012) Evolutionary dynamics of gene and isoform regulation in Mammalian tissues. Science 338:1593–1599. https://doi.org/10.1126/science.1228186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baralle FE, Giudice J (2017) Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18:437–451. https://doi.org/10.1038/nrm.2017.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wright CJ, Smith CWJ, Jiggins CD (2022) Alternative splicing as a source of phenotypic diversity. Nat Rev Genet 23:697–710. https://doi.org/10.1038/s41576-022-00514-4

    Article  CAS  PubMed  Google Scholar 

  6. Verta JP, Jacobs A (2022) The role of alternative splicing in adaptation and evolution. Trends Ecol Evol 37:299–308. https://doi.org/10.1016/j.tree.2021.11.010

    Article  CAS  PubMed  Google Scholar 

  7. Hu J, Qian H, Xue Y, Fu XD (2018) PTB/nPTB: master regulators of neuronal fate in mammals. Biophys Rep 4:204–214. https://doi.org/10.1007/s41048-018-0066-y

    Article  CAS  PubMed  Google Scholar 

  8. Polydorides AD, Okano HJ, Yang YY, Stefani G, Darnell RB (2000) A brain-enriched polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. Proc Natl Acad Sci U S A 97:6350–6355. https://doi.org/10.1073/pnas.110128397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Keppetipola N, Sharma S, Li Q, Black DL (2012) Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit Rev Biochem Mol Biol 47:360–378. https://doi.org/10.3109/10409238.2012.691456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhu W, Zhou BL, Rong LJ, Ye L, Xu HJ, Zhou Y, Yan XJ, Liu WD, Zhu B, Wang L, Jiang XJ, Ren CP (2020) Roles of PTBP1 in alternative splicing, glycolysis, and oncogensis. J Zhejiang Univ Sci B 21:122–136. https://doi.org/10.1631/jzus.B1900422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen J, Cai Z, Bai M, Yu X, Zhang C, Cao C, Hu X, Wang L, Su R, Wang D, Wang L, Yao Y, Ye R, Hou B, Yu Y, Yu S, Li J, Xue Y (2018) The RNA-binding protein ROD1/PTBP3 cotranscriptionally defines AID-loading sites to mediate antibody class switch in mammalian genomes. Cell Res 28:981–995. https://doi.org/10.1038/s41422-018-0076-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Georgilis A, Klotz S, Hanley CJ, Herranz N, Weirich B, Morancho B, Leote AC, D’Artista L, Gallage S, Seehawer M, Carroll T, Dharmalingam G, Wee KB, Mellone M, Pombo J, Heide D, Guccione E, Arribas J, Barbosa-Morais NL, Heikenwalder M, Thomas GJ, Zender L, Gil J (2018) PTBP1-mediated alternative splicing regulates the inflammatory Secretome and the pro-tumorigenic effects of senescent cells. Cancer Cell 34:85-102.e9. https://doi.org/10.1016/j.ccell.2018.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lan C, Zhang H, Wang K, Liu X, Zhao Y, Guo Z, Zhang N, Zhou Y, Gao M, Gu F, Ma Y (2022) The alternative splicing of intersectin 1 regulated by PTBP1 promotes human glioma progression. Cell Death Dis 13:835. https://doi.org/10.1038/s41419-022-05238-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cho CY, Chung SY, Lin S, Huang JS, Chen YL, Jiang SS, Cheng LC, Kuo TH, Lay JD, Yang YY, Lai GM, Chuang SE (2019) PTBP1-mediated regulation of AXL mRNA stability plays a role in lung tumorigenesis. Sci Rep 9:16922. https://doi.org/10.1038/s41598-019-53097-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim W, Shin JC, Lee KH, Kim KT (2020) PTBP1 positively regulates the translation of circadian clock gene, Period1. Int J Mol Sci 21. https://doi.org/10.3390/ijms21186921

  16. Lee Y, Rio DC (2015) Mechanisms and Regulation of Alternative Pre-mRNA Splicing. Annu Rev Biochem 84:291–323. https://doi.org/10.1146/annurev-biochem-060614-034316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582:1977–1986. https://doi.org/10.1016/j.febslet.2008.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng S, Black DL (2013) Alternative pre-mRNA splicing in neurons: growing up and extending its reach. Trends Genet 29:442–448. https://doi.org/10.1016/j.tig.2013.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Francois B, Zhang L, Mahajan GJ, Stockmeier CA, Friedman E, Albert PR (2018) A novel alternative splicing mechanism that enhances human 5-HT1A receptor RNA stability is altered in major depression. J Neurosci 38:8200–8210. https://doi.org/10.1523/Jneurosci.0902-18.2018

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang M, Ergin V, Lin L, Stork C, Chen L, Zheng SK (2019) Axonogenesis is coordinated by neuron-specific alternative splicing programming and splicing regulator PTBP2. Neuron 101:690. https://doi.org/10.1016/j.neuron.2019.01.022

  21. Romanelli MG, Diani E, Lievens PMJ (2013) New insights into functional roles of the polypyrimidine tract-binding protein. Int J Mol Sci 14:22906–22932. https://doi.org/10.3390/ijms141122906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ontiveros RJ, Hernandez L, Nguyen H, Lopez ALH, Shankar A, Kim E, Keppetipola NM (2020) Identification and characterization of a minimal functional splicing regulatory protein, PTBP1. Biochemistry 59:4766–4774. https://doi.org/10.1021/acs.biochem.0c00664

    Article  CAS  PubMed  Google Scholar 

  23. Han A, Stoilov P, Linares AJ, Zhou Y, Fu XD, Black DL (2014) De novo prediction of PTBP1 binding and splicing targets reveals unexpected features of its RNA recognition and function. PLoS Comput Biol 10:e1003442. https://doi.org/10.1371/journal.pcbi.1003442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Oberstrass FC, Auweter SD, Erat M, Hargous Y, Henning A, Wenter P, Reymond L, Amir-Ahmady B, Pitsch S, Black DL, Allain FH (2005) Structure of PTB bound to RNA: specific binding and implications for splicing regulation. Science 309:2054–2057. https://doi.org/10.1126/science.1114066

    Article  CAS  PubMed  Google Scholar 

  25. Maris C, Dominguez C, Allain FHT (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272:2118–2131. https://doi.org/10.1111/j.1742-4658.2005.04653.x

    Article  CAS  PubMed  Google Scholar 

  26. Simpson PJ, Monie TP, Szendroi A, Davydova N, Tyzack JK, Conte MR, Read CM, Cary PD, Svergun DI, Konarev PV, Curry S, Matthews S (2004) Structure and RNA interactions of the N-terminal RRM domains of PTB. Structure 12:1631–1643. https://doi.org/10.1016/j.str.2004.07.008

    Article  CAS  PubMed  Google Scholar 

  27. Joshi A, Esteve V, Buckroyd AN, Blatter M, Allain FHT, Curry S (2014) Solution and crystal structures of a C-terminal fragment of the neuronal isoform of the polypyrimidine tract binding protein (nPTB). Peerj 2. ARTN e305. https://doi.org/10.7717/peerj.305

  28. Mickleburgh I, Kafasla P, Cherny D, Llorian M, Curry S, Jackson RJ, Smith CWJ (2014) The organization of RNA contacts by PTB for regulation of FAS splicing. Nucleic Acids Res 42:8605–8620. https://doi.org/10.1093/nar/gku519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Tacca LMA, Pulos-Holmes MC, Floor SN, Cate JHD (2019) PTBP1 mRNA isoforms and regulation of their translation. RNA 25:1324–1336. https://doi.org/10.1261/rna.070193.118

    Article  CAS  Google Scholar 

  30. Attig J, Agostini F, Gooding C, Chakrabarti AM, Singh A, Haberman N, Zagalak JA, Emmett W, Smith CWJ, Luscombe NM, Ule J (2018) Heteromeric RNP assembly at LINEs controls lineage-specific RNA processing. Cell 174:1067. https://doi.org/10.1016/j.cell.2018.07.001

  31. Gooding C, Kemp P, Smith CWJ (2003) A novel polypyrimidine tract-binding protein paralog expressed in smooth muscle cells. J Biol Chem 278:15201–15207. https://doi.org/10.1074/jbc.M210131200

    Article  CAS  PubMed  Google Scholar 

  32. Liu CN, Yang ZH, Wu JG, Zhang L, Lee SM, Shin DJ, Tran M, Wang L (2018) Long noncoding RNA H19 interacts with polypyrimidine tract-binding protein 1 to reprogram hepatic lipid homeostasis. Hepatology 67:1768–1783. https://doi.org/10.1002/hep.29654

    Article  CAS  PubMed  Google Scholar 

  33. Yang B, Hu PS, Lin XH, Han W, Zhu LY, Tan XC, Ye F, Wang GZ, Wu F, Yin B, Bao ZS, Jiang T, Yuan JG, Qiang BQ, Peng XZ (2015) PTBP1 induces ADAR1 p110 isoform expression through IRES-like dependent translation control and influences cell proliferation in gliomas. Cell Mol Life Sci 72:4383–4397. https://doi.org/10.1007/s00018-015-1938-7

    Article  CAS  PubMed  Google Scholar 

  34. Ab Hakim NH, Majlis BY, Suzuki H, Tsukahara T (2017) Neuron-specific splicing. Biosci Trends 11:16–22. https://doi.org/10.5582/bst.2016.01169

    Article  CAS  Google Scholar 

  35. Chen M, Manley JL (2009) Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 10:741–754. https://doi.org/10.1038/nrm2777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Xue Y, Zhou Y, Wu T, Zhu T, Ji X, Kwon YS, Zhang C, Yeo G, Black DL, Sun H, Fu XD, Zhang Y (2009) Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. Mol Cell 36:996–1006. https://doi.org/10.1016/j.molcel.2009.12.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Clinton SM, Haroutunian V, Davis KL, Meador-Woodruff JH (2003) Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatry 160:1100–1109. https://doi.org/10.1176/appi.ajp.160.6.1100

    Article  PubMed  Google Scholar 

  38. Kim W, Shin JC, Lee KH and Kim KT (2020) PTBP1 positively regulates the translation of circadian clock gene, Period1. Int J Mol Sci 21. https://doi.org/10.3390/ijms21186921

  39. Mitchell SA, Brown EC, Coldwell MJ, Jackson RJ, Willis AE (2001) Protein factor requirements of the Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-ras. Mol Cell Biol 21:3364–3374. https://doi.org/10.1128/Mcb.21.10.3364-3374.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gueroussov S, Gonatopoulos-Pournatzis T, Irimia M, Raj B, Lin ZY, Gingras AC, Blencowe BJ (2015) An alternative splicing event amplifies evolutionary differences between vertebrates. Science 349:868–873. https://doi.org/10.1126/science.aaa8381

    Article  CAS  PubMed  Google Scholar 

  41. Frederikse P, Nandanoor A, Kasinathan C (2014) PTBP-dependent PSD-95 and CamKIIα alternative splicing in the lens. Mol Vis 20:1660–1667

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Smith P, Al Hashimi A, Girard J, Delay C, Hébert SS (2011) In vivo regulation of amyloid precursor protein neuronal splicing by microRNAs. J Neurochem 116:240–247. https://doi.org/10.1111/j.1471-4159.2010.07097.x

    Article  CAS  PubMed  Google Scholar 

  43. Grammatikakis I, Gorospe M (2016) Identification of neural stem cell differentiation repressor complex Pnky-PTBP1. Stem Cell Investig 3:10. https://doi.org/10.21037/sci.2016.03.05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Linares AJ, Lin CH, Damianov A, Adams KL, Novitch BG, Black DL (2015) The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. Elife 4:e09268. https://doi.org/10.7554/eLife.09268

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kang K, Peng X, Zhang X, Wang Y, Zhang L, Gao L, Weng T, Zhang H, Ramchandran R, Raj JU, Gou D, Liu L (2013) MicroRNA-124 suppresses the transactivation of nuclear factor of activated T cells by targeting multiple genes and inhibits the proliferation of pulmonary artery smooth muscle cells. J Biol Chem 288:25414–25427. https://doi.org/10.1074/jbc.M113.460287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu GF, Geng F, Deng LP, Lin DC, Huang YZ, Lai SM, Lin YC, Gui LX, Sham JSK, Lin MJ (2022) Reduced CircSMOC1 level promotes metabolic reprogramming via PTBP1 (Polypyrimidine Tract-Binding Protein) and miR-329-3p in pulmonary arterial hypertension rats. Hypertension 79:2465–2479. https://doi.org/10.1161/hypertensionaha.122.19183

    Article  CAS  PubMed  Google Scholar 

  47. Tan W, Wang K, Yang X, Wang K, Wang N, Jiang TB (2022) LncRNA HOTAIR promotes myocardial fibrosis in atrial fibrillation through binding with PTBP1 to increase the stability of Wnt5a. Int J Cardiol 369:21–28. https://doi.org/10.1016/j.ijcard.2022.06.073

    Article  PubMed  Google Scholar 

  48. Kim T, Kim JO, Oh JG, Hong SE, Kim DH (2014) Pressure-overload cardiac hypertrophy is associated with distinct alternative splicing due to altered expression of splicing factors. Mol Cells 37:81–87. https://doi.org/10.14348/molcells.2014.2337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Yan G, Sun R, Chen Z, Pan X, Sheng Z, Tang C (2021) PTBP1 targets ILK to regulate the hypoxia-induced phenotypic transformation of pulmonary artery smooth muscle cells. Drug Des Devel Ther 15:2025–2033. https://doi.org/10.2147/dddt.S275000

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tang J, Tang QX, Liu S (2023) METTL3-modified lncRNA-SNHG8 binds to PTBP1 to regulate ALAS2 expression to increase oxidative stress and promote myocardial infarction. Mol Cell Biochem 478:1217–1229. https://doi.org/10.1007/s11010-022-04570-6

    Article  CAS  PubMed  Google Scholar 

  51. Wang D, Zhang H, Li M, Frid MG, Flockton AR, McKeon BA, Yeager ME, Fini MA, Morrell NW, Pullamsetti SS, Velegala S, Seeger W, McKinsey TA, Sucharov CC, Stenmark KR (2014) MicroRNA-124 controls the proliferative, migratory, and inflammatory phenotype of pulmonary vascular fibroblasts. Circ Res 114:67–78. https://doi.org/10.1161/circresaha.114.301633

    Article  CAS  PubMed  Google Scholar 

  52. Monteiro JP, Rodor J, Caudrillier A, Scanlon JP, Spiroski AM, Dudnakova T, Pflüger-Müller B, Shmakova A, von Kriegsheim A, Deng L, Taylor RS, Wilson-Kanamori JR, Chen SH, Stewart K, Thomson A, Mitić T, McClure JD, Iynikkel J, Hadoke PWF, Denby L, Bradshaw AC, Caruso P, Morrell NW, Kovacic JC, Ulitsky I, Henderson NC, Caporali A, Leisegang MS, Brandes RP, Baker AH (2021) MIR503HG loss promotes endothelial-to-mesenchymal transition in vascular disease. Circ Res 128:1173–1190. https://doi.org/10.1161/circresaha.120.318124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang H, Wang D, Li M, Plecitá-Hlavatá L, D’Alessandro A, Tauber J, Riddle S, Kumar S, Flockton A, McKeon BA, Frid MG, Reisz JA, Caruso P, El Kasmi KC, Ježek P, Morrell NW, Hu CJ, Stenmark KR (2017) Metabolic and proliferative state of vascular adventitial fibroblasts in pulmonary hypertension is regulated through a MicroRNA-124/PTBP1 (Polypyrimidine Tract Binding Protein 1)/pyruvate kinase muscle axis. Circulation 136:2468–2485. https://doi.org/10.1161/circulationaha.117.028069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hollander D, Donyo M, Atias N, Mekahel K, Melamed Z, Yannai S, Lev-Maor G, Shilo A, Schwartz S, Barshack I, Sharan R, Ast G (2016) A network-based analysis of colon cancer splicing changes reveals a tumorigenesis-favoring regulatory pathway emanating from ELK1. Genome Res 26:541–553. https://doi.org/10.1101/gr.193169.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang X, Li Y, Fan Y, Yu X, Mao X, Jin F (2018) PTBP1 promotes the growth of breast cancer cells through the PTEN/Akt pathway and autophagy. J Cell Physiol 233:8930–8939. https://doi.org/10.1002/jcp.26823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shan H, Hou P, Zhang M, Li L, Pan Y, Chen F, Jiang T, Bai J, Zheng J (2018) PTBP1 knockdown in renal cell carcinoma inhibits cell migration, invasion and angiogenesis in vitro and metastasis in vivo via the hypoxia inducible factor-1α pathway. Int J Oncol 52:1613–1622. https://doi.org/10.3892/ijo.2018.4296

    Article  CAS  PubMed  Google Scholar 

  57. Yang Y, Tu Y, Lu J, Chen Q, Zhu Z, Peng W, Zhu W, Wen S, Zhang J, Yin W, Pi R (2022) PT109, a novel multi-kinase inhibitor suppresses glioblastoma multiforme through cell reprogramming: Involvement of PTBP1/PKM1/2 pathway. Eur J Pharmacol 920:174837. https://doi.org/10.1016/j.ejphar.2022.174837

    Article  CAS  PubMed  Google Scholar 

  58. Wang K, Pan S, Zhao P, Liu L, Chen Z, Bao H, Wang H, Zhang Y, Zhuge Q, Yang J (2022) PTBP1 knockdown promotes neural differentiation of glioblastoma cells through UNC5B receptor. Theranostics 12:3847–3861. https://doi.org/10.7150/thno.71100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Taniguchi K, Sugito N, Shinohara H, Kuranaga Y, Inomata Y, Komura K, Uchiyama K, Akao Y (2018) Organ-Specific MicroRNAs (MIR122, 137, and 206) contribute to tissue characteristics and carcinogenesis by regulating pyruvate kinase M1/2 (PKM) expression. Int J Mol Sci 19. https://doi.org/10.3390/ijms19051276

  60. Jo YK, Roh SA, Lee H, Park NY, Choi ES, Oh JH, Park SJ, Shin JH, Suh YA, Lee EK, Cho DH, Kim JC (2017) Polypyrimidine tract-binding protein 1-mediated down-regulation of ATG10 facilitates metastasis of colorectal cancer cells. Cancer Lett 385:21–27. https://doi.org/10.1016/j.canlet.2016.11.002

    Article  CAS  PubMed  Google Scholar 

  61. Wang ZN, Liu D, Yin B, Ju WY, Qiu HZ, Xiao Y, Chen YJ, Peng XZ, Lu CM (2017) High expression of PTBP1 promote invasion of colorectal cancer by alternative splicing of cortactin. Oncotarget 8:36185–36202. https://doi.org/10.18632/oncotarget.15873

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zhang C, Zhang X, Wang J, Di F, Xue Y, Lin X, Zhang Y, Zhang H, Zhang Z, Gu Y (2020) Lnc00462717 regulates the permeability of the blood-brain tumor barrier through interaction with PTBP1 to inhibit the miR-186-5p/Occludin signaling pathway. Faseb j 34:9941–9958. https://doi.org/10.1096/fj.202000045R

    Article  CAS  PubMed  Google Scholar 

  63. Li J, Li Y, Xu F, Sun B, Yang L, Wang H (2022) Deubiquitinating enzyme PSMD14 facilitates gastric carcinogenesis through stabilizing PTBP1. Exp Cell Res 415:113148. https://doi.org/10.1016/j.yexcr.2022.113148

    Article  CAS  PubMed  Google Scholar 

  64. Carico C, Cui J, Acton A, Placzek WJ (2023) Polypyrimidine tract binding protein 1 (PTBP1) contains a novel regulatory sequence, the rBH3, that binds the prosurvival protein MCL1. J Biol Chem 299:104778. https://doi.org/10.1016/j.jbc.2023.104778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhou J, Zhou J, Wu LJ, Li YY, Li MQ, Liao HQ (2022) CircRNA circUSP36 impairs the stability of NEDD4L mRNA through recruiting PTBP1 to enhance ULK1-mediated autophagic granulosa cell death. J Reprod Immunol 153:103681. https://doi.org/10.1016/j.jri.2022.103681

    Article  CAS  PubMed  Google Scholar 

  66. Jeong DE, Heo S, Han JH, Lee EY, Kulkarni RN, Kim W (2018) Glucose controls the expression of polypyrimidine tract-binding protein 1 via the insulin receptor signaling pathway in pancreatic β cells. Mol Cells 41:909–916. https://doi.org/10.14348/molcells.2018.0147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xiong L, Gong Y, Wu L, Li J, He W, Zhu X, Xiao H (2020) LncRNA-Malat1 is involved in lipotoxicity-induced ß-cell dysfunction and the therapeutic effect of Exendin-4 via Ptbp1. Endocrinology 161. https://doi.org/10.1210/endocr/bqaa065

  68. Bloem BR, Okun MS, Klein C (2021) Parkinson’s disease. Lancet 397:2284–2303. https://doi.org/10.1016/s0140-6736(21)00218-x

    Article  CAS  PubMed  Google Scholar 

  69. Santiago JA, Potashkin JA (2015) Blood biomarkers associated with cognitive decline in early stage and drug-Naive Parkinson’s disease patients. PLoS ONE 10:e0142582. https://doi.org/10.1371/journal.pone.0142582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Santiago JA, Potashkin JA (2015) Network-based metaanalysis identifies HNF4A and PTBP1 as longitudinally dynamic biomarkers for Parkinson’s disease. Proc Natl Acad Sci U S A 112:2257–2262. https://doi.org/10.1073/pnas.1423573112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu G, Bao X, Wang R (2015) Expression quantitative trait loci regulate HNF4A and PTBP1 expression in human brains. Proc Natl Acad Sci U S A 112:E3975. https://doi.org/10.1073/pnas.1509048112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Vijiaratnam N, Simuni T, Bandmann O, Morris HR, Foltynie T (2021) Progress towards therapies for disease modification in Parkinson’s disease. Lancet Neurol 20:559–572. https://doi.org/10.1016/s1474-4422(21)00061-2

    Article  CAS  PubMed  Google Scholar 

  73. Dorsey ER, Sherer T, Okun MS, Bloem BR (2018) The emerging evidence of the parkinson pandemic. J Parkinsons Dis 8:S3-s8. https://doi.org/10.3233/jpd-181474

    Article  PubMed  PubMed Central  Google Scholar 

  74. Qian H, Kang X, Hu J, Zhang D, Liang Z, Meng F, Zhang X, Xue Y, Maimon R, Dowdy SF, Devaraj NK, Zhou Z, Mobley WC, Cleveland DW, Fu XD (2020) Reversing a model of Parkinson’s disease with in situ converted nigral neurons. Nature 582:550–556. https://doi.org/10.1038/s41586-020-2388-4

    Article  PubMed  PubMed Central  Google Scholar 

  75. Zhou H, Su J, Hu X, Zhou C, Li H, Chen Z, Xiao Q, Wang B, Wu W, Sun Y, Zhou Y, Tang C, Liu F, Wang L, Feng C, Liu M, Li S, Zhang Y, Xu H, Yao H, Shi L, Yang H (2020) Glia-to-neuron conversion by CRISPR-CasRx alleviates symptoms of neurological disease in mice. Cell 181:590-603.e16. https://doi.org/10.1016/j.cell.2020.03.024

    Article  CAS  PubMed  Google Scholar 

  76. Chen W, Zheng Q, Huang Q, Ma S and Li M (2022) Repressing PTBP1 fails to convert reactive astrocytes to dopaminergic neurons in a 6-hydroxydopamine mouse model of Parkinson's disease. Elife 11. https://doi.org/10.7554/eLife.75636

  77. Merino-Serrais P, Loera-Valencia R, Rodriguez-Rodriguez P, Parrado-Fernandez C, Ismail MA, Maioli S, Matute E, Jimenez-Mateos EM, Björkhem I, DeFelipe J, Cedazo-Minguez A (2019) 27-Hydroxycholesterol induces aberrant morphology and synaptic dysfunction in hippocampal neurons. Cereb Cortex 29:429–446. https://doi.org/10.1093/cercor/bhy274

    Article  PubMed  Google Scholar 

  78. van Bergeijk P, Seneviratne U, Aparicio-Prat E, Stanton R, Hasson SA (2019) SRSF1 and PTBP1 are trans-acting factors that suppress the formation of a CD33 splicing isoform linked to Alzheimer's disease risk. Mol Cell Biol 39. https://doi.org/10.1128/mcb.00568-18

  79. Feuillette S, Charbonnier C, Frebourg T, Campion D, Lecourtois M (2020) A connected network of interacting proteins is involved in Human-Tau toxicity in Drosophila. Front Neurosci 14:68. https://doi.org/10.3389/fnins.2020.00068

    Article  PubMed  PubMed Central  Google Scholar 

  80. Roussarie JP, Yao V, Rodriguez-Rodriguez P, Oughtred R, Rust J, Plautz Z, Kasturia S, Albornoz C, Wang W, Schmidt EF, Dannenfelser R, Tadych A, Brichta L, Barnea-Cramer A, Heintz N, Hof PR, Heiman M, Dolinski K, Flajolet M, Troyanskaya OG, Greengard P (2020) Selective neuronal vulnerability in Alzheimer’s disease: a network-based analysis. Neuron 107:821-835.e12. https://doi.org/10.1016/j.neuron.2020.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Guzman-Martinez L, Maccioni RB, Farías GA, Fuentes P, Navarrete LP (2019) Biomarkers for Alzheimer’s disease. Curr Alzheimer Res 16:518–528. https://doi.org/10.2174/1567205016666190517121140

    Article  CAS  PubMed  Google Scholar 

  82. Guo T, Pan X, Jiang G, Zhang D, Qi J, Shao L, Wang Z, Xu H, Zhao Y (2022) Downregulating PTBP1 fails to convert astrocytes into hippocampal neurons and to alleviate symptoms in Alzheimer’s mouse models. J Neurosci 42:7309–7317. https://doi.org/10.1523/jneurosci.1060-22.2022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ruopp NF, Cockrill BA (2022) Diagnosis and treatment of pulmonary arterial hypertension: a review. JAMA 327:1379–1391. https://doi.org/10.1001/jama.2022.4402

    Article  CAS  PubMed  Google Scholar 

  84. Poch D, Mandel J (2021) Pulmonary hypertension. Ann Intern Med 174:Itc49-itc64. doi: https://doi.org/10.7326/aitc202104200

  85. Caruso P, Dunmore BJ, Schlosser K, Schoors S, Dos Santos C, Perez-Iratxeta C, Lavoie JR, Zhang H, Long L, Flockton AR, Frid MG, Upton PD, D’Alessandro A, Hadinnapola C, Kiskin FN, Taha M, Hurst LA, Ormiston ML, Hata A, Stenmark KR, Carmeliet P, Stewart DJ, Morrell NW (2017) Identification of MicroRNA-124 as a major regulator of enhanced endothelial cell glycolysis in pulmonary arterial hypertension via PTBP1 (Polypyrimidine Tract Binding Protein) and Pyruvate Kinase M2. Circulation 136:2451–2467. https://doi.org/10.1161/circulationaha.117.028034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu Z, Wang L, Welch JD, Ma H, Zhou Y, Vaseghi HR, Yu S, Wall JB, Alimohamadi S, Zheng M, Yin C, Shen W, Prins JF, Liu J, Qian L (2017) Single-cell transcriptomics reconstructs fate conversion from fibroblast to cardiomyocyte. Nature 551:100–104. https://doi.org/10.1038/nature24454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Williams AL, Khadka V, Tang M, Avelar A, Schunke KJ, Menor M, Shohet RV (2018) HIF1 mediates a switch in pyruvate kinase isoforms after myocardial infarction. Physiol Genomics 50:479–494. https://doi.org/10.1152/physiolgenomics.00130.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tang J, Tang QX, Liu S (2022) METTL3-modified lncRNA-SNHG8 binds to PTBP1 to regulate ALAS2 expression to increase oxidative stress and promote myocardial infarction. Mol Cell Biochem. https://doi.org/10.1007/s11010-022-04570-6

    Article  PubMed  Google Scholar 

  89. Li Z, Ye Z, Ma J, Gu Q, Teng J, Gong X (2021) MicroRNA‑133b alleviates doxorubicin‑induced cardiomyocyte apoptosis and cardiac fibrosis by targeting PTBP1 and TAGLN2. Int J Mol Med 48. https://doi.org/10.3892/ijmm.2021.4958

  90. Saleh M, Ambrose JA (2018) Understanding myocardial infarction. F1000Res 7. https://doi.org/10.12688/f1000research.15096.1

  91. Zhang J, Bahi N, Llovera M, Comella JX, Sanchis D (2009) Polypyrimidine tract binding proteins (PTB) regulate the expression of apoptotic genes and susceptibility to caspase-dependent apoptosis in differentiating cardiomyocytes. Cell Death Differ 16:1460–1468. https://doi.org/10.1038/cdd.2009.87

    Article  CAS  PubMed  Google Scholar 

  92. Ye J, Llorian M, Cardona M, Rongvaux A, Moubarak RS, Comella JX, Bassel-Duby R, Flavell RA, Olson EN, Smith CW, Sanchis D (2013) A pathway involving HDAC5, cFLIP and caspases regulates expression of the splicing regulator polypyrimidine tract binding protein in the heart. J Cell Sci 126:1682–1691. https://doi.org/10.1242/jcs.121384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Martí-Gómez C, Larrasa-Alonso J, López-Olañeta M, Villalba-Orero M, García-Pavía P, Sánchez-Cabo F, Lara-Pezzi E (2022) Functional impact and regulation of alternative splicing in mouse heart development and disease. J Cardiovasc Transl Res 15:1239–1255. https://doi.org/10.1007/s12265-022-10244-x

    Article  PubMed  Google Scholar 

  94. Zeng M, Yi S, Xiao Y, Chen Z (2022) LncRNA ROR promotes NLRP3-mediated cardiomyocyte pyroptosis by upregulating FOXP1 via interactions with PTBP1. Cytokine 152:155812. https://doi.org/10.1016/j.cyto.2022.155812

    Article  CAS  PubMed  Google Scholar 

  95. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, Pekmezci M, Schwartzbaum JA, Turner MC, Walsh KM, Wrensch MR, Barnholtz-Sloan JS (2014) The epidemiology of glioma in adults: a “state of the science” review. Neuro Oncol 16:896–913. https://doi.org/10.1093/neuonc/nou087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen R, Smith-Cohn M, Cohen AL, Colman H (2017) Glioma subclassifications and their clinical significance. Neurotherapeutics 14:284–297. https://doi.org/10.1007/s13311-017-0519-x

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gisina A, Kholodenko I, Kim Y, Abakumov M, Lupatov A, Yarygin K (2022) Glioma stem cells: novel data obtained by single-cell sequencing. Int J Mol Sci 23. doi: https://doi.org/10.3390/ijms232214224

  98. Liu P, He GC, Tan YZ, Liu GX, Liu AM, Zhu XP, Zhou Y, Hu WM (2022) PTBP1 is a novel poor prognostic factor for glioma. Biomed Res Int 2022:7590997. https://doi.org/10.1155/2022/7590997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Cheung HC, Corley LJ, Fuller GN, McCutcheon IE, Cote GJ (2006) Polypyrimidine tract binding protein and Notch1 are independently re-expressed in glioma. Mod Pathol 19:1034–1041. https://doi.org/10.1038/modpathol.3800635

    Article  CAS  PubMed  Google Scholar 

  100. Cheung HC, Hai T, Zhu W, Baggerly KA, Tsavachidis S, Krahe R, Cote GJ (2009) Splicing factors PTBP1 and PTBP2 promote proliferation and migration of glioma cell lines. Brain 132:2277–2288. https://doi.org/10.1093/brain/awp153

    Article  PubMed  PubMed Central  Google Scholar 

  101. Kaya B, Goceri E, Becker A, Elder B, Puduvalli V, Winter J, Gurcan M, Otero JJ (2017) Automated fluorescent miscroscopic image analysis of PTBP1 expression in glioma. PLoS ONE 12:e0170991. https://doi.org/10.1371/journal.pone.0170991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Fuentes-Fayos AC, Vázquez-Borrego MC, Jiménez-Vacas JM, Bejarano L, Pedraza-Arévalo S, F LL, Blanco-Acevedo C, Sánchez-Sánchez R, Reyes O, Ventura S, Solivera J, Breunig JJ, Blasco MA, Gahete MD, Castaño JP and Luque RM, (2020) Splicing machinery dysregulation drives glioblastoma development/aggressiveness: oncogenic role of SRSF3. Brain 143:3273–3293. https://doi.org/10.1093/brain/awaa273

    Article  PubMed  PubMed Central  Google Scholar 

  103. Li H, Shen S, Ruan X, Liu X, Zheng J, Liu Y, Yang C, Wang D, Liu L, Ma J, Ma T, Wang P, Cai H, Li Z, Zhao L, Xue Y (2019) Biosynthetic CircRNA_001160 induced by PTBP1 regulates the permeability of BTB via the CircRNA_001160/miR-195-5p/ETV1 axis. Cell Death Dis 10:960. https://doi.org/10.1038/s41419-019-2191-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhu L, Wei Q, Qi Y, Ruan X, Wu F, Li L, Zhou J, Liu W, Jiang T, Zhang J, Yin B, Yuan J, Qiang B, Han W, Peng X (2019) PTB-AS, a novel natural antisense transcript, promotes glioma progression by improving PTBP1 mRNA stability with SND1. Mol Ther 27:1621–1637. https://doi.org/10.1016/j.ymthe.2019.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Barbagallo D, Caponnetto A, Cirnigliaro M, Brex D, Barbagallo C, D'Angeli F, Morrone A, Caltabiano R, Barbagallo GM, Ragusa M, Di Pietro C, Hansen TB, Purrello M (2018) CircSMARCA5 inhibits migration of glioblastoma Multiforme cells by regulating a molecular axis involving splicing factors SRSF1/SRSF3/PTB. Int J Mol Sci 19. https://doi.org/10.3390/ijms19020480

  106. Dahai Z, Daliang C, Famu L, Xiang W, Lenian L, Jianmin C, Xiaobing X (2020) Lowly expressed lncRNA PVT1 suppresses proliferation and advances apoptosis of glioma cells through up-regulating microRNA-128-1-5p and inhibiting PTBP1. Brain Res Bull 163:1–13. https://doi.org/10.1016/j.brainresbull.2020.06.006

    Article  CAS  PubMed  Google Scholar 

  107. Sheng J, He X, Yu W, Chen Y, Long Y, Wang K, Zhu S, Liu Q (2021) p53-targeted lncRNA ST7-AS1 acts as a tumour suppressor by interacting with PTBP1 to suppress the Wnt/β-catenin signalling pathway in glioma. Cancer Lett 503:54–68. https://doi.org/10.1016/j.canlet.2020.12.039

    Article  CAS  PubMed  Google Scholar 

  108. He X, Sheng J, Yu W, Wang K, Zhu S, Liu Q (2021) LncRNA MIR155HG promotes Temozolomide resistance by activating the Wnt/β-Catenin pathway via binding to PTBP1 in Glioma. Cell Mol Neurobiol 41:1271–1284. https://doi.org/10.1007/s10571-020-00898-z

    Article  CAS  PubMed  Google Scholar 

  109. Kim JH, Jeong K, Li J, Murphy JM, Vukadin L, Stone JK, Richard A, Tran J, Gillespie GY, Flemington EK, Sobol RW, Lim SS, Ahn EE (2021) SON drives oncogenic RNA splicing in glioblastoma by regulating PTBP1/PTBP2 switching and RBFOX2 activity. Nat Commun 12:5551. https://doi.org/10.1038/s41467-021-25892-x

    Article  PubMed  PubMed Central  Google Scholar 

  110. Wang ZL, Huang RY, Han B, Wu F, Sun ZY, Li GZ, Zhang W, Zhao Z, Liu X (2022) Identification of tumor-associated antigens and immune subtypes of lower-grade glioma and glioblastoma for mRNA vaccine development. Chin Neurosurg J 8:34. https://doi.org/10.1186/s41016-022-00301-4

    Article  PubMed  PubMed Central  Google Scholar 

  111. Taniguchi K, Sugito N, Kumazaki M, Shinohara H, Yamada N, Nakagawa Y, Ito Y, Otsuki Y, Uno B, Uchiyama K, Akao Y (2015) MicroRNA-124 inhibits cancer cell growth through PTB1/PKM1/PKM2 feedback cascade in colorectal cancer. Cancer Lett 363:17–27. https://doi.org/10.1016/j.canlet.2015.03.026

    Article  CAS  PubMed  Google Scholar 

  112. Takahashi H, Nishimura J, Kagawa Y, Kano Y, Takahashi Y, Wu X, Hiraki M, Hamabe A, Konno M, Haraguchi N, Takemasa I, Mizushima T, Ishii M, Mimori K, Ishii H, Doki Y, Mori M, Yamamoto H (2015) Significance of Polypyrimidine tract-binding Protein 1 expression in colorectal cancer. Mol Cancer Ther 14:1705–1716. https://doi.org/10.1158/1535-7163.Mct-14-0142

    Article  CAS  PubMed  Google Scholar 

  113. Taniguchi K, Sakai M, Sugito N, Kumazaki M, Shinohara H, Yamada N, Nakayama T, Ueda H, Nakagawa Y, Ito Y, Futamura M, Uno B, Otsuki Y, Yoshida K, Uchiyama K, Akao Y (2016) PTBP1-associated microRNA-1 and -133b suppress the Warburg effect in colorectal tumors. Oncotarget 7:18940–18952. https://doi.org/10.18632/oncotarget.8005

    Article  PubMed  PubMed Central  Google Scholar 

  114. Cheng C, Xie Z, Li Y, Wang J, Qin C, Zhang Y (2018) PTBP1 knockdown overcomes the resistance to vincristine and oxaliplatin in drug-resistant colon cancer cells through regulation of glycolysis. Biomed Pharmacother 108:194–200. https://doi.org/10.1016/j.biopha.2018.09.031

    Article  CAS  PubMed  Google Scholar 

  115. Kuranaga Y, Sugito N, Shinohara H, Tsujino T, Taniguchi K, Komura K, Ito Y, Soga T, Akao Y (2018) SRSF3, a Splicer of the PKM gene, regulates cell growth and maintenance of cancer-specific energy metabolism in colon cancer cells. Int J Mol Sci 19. https://doi.org/10.3390/ijms19103012

  116. Li X, Han F, Liu W, Shi X (2018) PTBP1 promotes tumorigenesis by regulating apoptosis and cell cycle in colon cancer. Bull Cancer 105:1193–1201. https://doi.org/10.1016/j.bulcan.2018.08.013

    Article  PubMed  Google Scholar 

  117. Mochizuki Y, Funayama R, Shirota M, Kikukawa Y, Ohira M, Karasawa H, Kobayashi M, Ohnuma S, Unno M, Nakayama K (2021) Alternative microexon splicing by RBFOX2 and PTBP1 is associated with metastasis in colorectal cancer. Int J Cancer 149:1787–1800. https://doi.org/10.1002/ijc.33758

    Article  CAS  PubMed  Google Scholar 

  118. Chen J, Wu Y, Luo X, Jin D, Zhou W, Ju Z, Wang D, Meng Q, Wang H, Fu X, Xu J, Song Z (2021) Circular RNA circRHOBTB3 represses metastasis by regulating the HuR-mediated mRNA stability of PTBP1 in colorectal cancer. Theranostics 11:7507–7526. https://doi.org/10.7150/thno.59546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Wang Y, Li Z, Xu S, Li W, Chen M, Jiang M, Fan X (2022) LncRNA FIRRE functions as a tumor promoter by interaction with PTBP1 to stabilize BECN1 mRNA and facilitate autophagy. Cell Death Dis 13:98. https://doi.org/10.1038/s41419-022-04509-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Zhao A, Wang Y, Lin F, Bai K, Gu C (2022) Long noncoding RNA LBX2-AS1 promotes colorectal cancer progression via binding with PTBP1 and stabilizing KAT2A expression. J Biochem Mol Toxicol 36:e23020. https://doi.org/10.1002/jbt.23020

    Article  CAS  PubMed  Google Scholar 

  121. Fu Z, Zhang P, Zhang R, Zhang B, Xiang S, Zhang Y, Luo Z, Huang C (2023) Novel hypoxia-induced HIF1α-circTDRD3-positive feedback loop promotes the growth and metastasis of colorectal cancer. Oncogene 42:238–252. https://doi.org/10.1038/s41388-022-02548-8

    Article  CAS  PubMed  Google Scholar 

  122. He X, Arslan AD, Ho TT, Yuan C, Stampfer MR, Beck WT (2014) Involvement of polypyrimidine tract-binding protein (PTBP1) in maintaining breast cancer cell growth and malignant properties. Oncogenesis 3:e84. https://doi.org/10.1038/oncsis.2013.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wen J, Toomer KH, Chen Z, Cai X (2015) Genome-wide analysis of alternative transcripts in human breast cancer. Breast Cancer Res Treat 151:295–307. https://doi.org/10.1007/s10549-015-3395-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. An M, Zang X, Wang J, Kang J, Tan X, Fu B (2021) Comprehensive analysis of differentially expressed long noncoding RNAs, miRNAs and mRNAs in breast cancer brain metastasis. Epigenomics 13:1113–1128. https://doi.org/10.2217/epi-2021-0152

    Article  CAS  PubMed  Google Scholar 

  125. Han M, Qian X, Cao H, Wang F, Li X, Han N, Yang X, Yang Y, Dou D, Hu J, Wang W, Han J, Zhang F, Dong H (2020) lncRNA ZNF649-AS1 induces Trastuzumab resistance by promoting ATG5 expression and autophagy. Mol Ther 28:2488–2502. https://doi.org/10.1016/j.ymthe.2020.07.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen X, Luo R, Zhang Y, Ye S, Zeng X, Liu J, Huang D, Liu Y, Liu Q, Luo ML, Song E (2022) Long noncoding RNA DIO3OS induces glycolytic-dominant metabolic reprogramming to promote aromatase inhibitor resistance in breast cancer. Nat Commun 13:7160. https://doi.org/10.1038/s41467-022-34702-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Takai T, Yoshikawa Y, Inamoto T, Minami K, Taniguchi K, Sugito N, Kuranaga Y, Shinohara H, Kumazaki M, Tsujino T, Takahara K, Ito Y, Akao Y, Azuma H (2017) A novel combination RNAi toward Warburg effect by replacement with miR-145 and silencing of PTBP1 induces apoptotic cell death in bladder cancer cells. Int J Mol Sci 18. doi: https://doi.org/10.3390/ijms18010179

  128. Minami K, Taniguchi K, Sugito N, Kuranaga Y, Inamoto T, Takahara K, Takai T, Yoshikawa Y, Kiyama S, Akao Y, Azuma H (2017) MiR-145 negatively regulates Warburg effect by silencing KLF4 and PTBP1 in bladder cancer cells. Oncotarget 8:33064–33077. https://doi.org/10.18632/oncotarget.16524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bielli P, Panzeri V, Lattanzio R, Mutascio S, Pieraccioli M, Volpe E, Pagliarulo V, Piantelli M, Giannantoni A, Di Stasi SM, Sette C (2018) The splicing factor PTBP1 promotes expression of oncogenic splice variants and predicts poor prognosis in patients with non-muscle-invasive Bladder cancer. Clin Cancer Res 24:5422–5432. https://doi.org/10.1158/1078-0432.Ccr-17-3850

    Article  CAS  PubMed  Google Scholar 

  130. Xie R, Chen X, Chen Z, Huang M, Dong W, Gu P, Zhang J, Zhou Q, Dong W, Han J, Wang X, Li H, Huang J, Lin T (2019) Polypyrimidine tract binding protein 1 promotes lymphatic metastasis and proliferation of bladder cancer via alternative splicing of MEIS2 and PKM. Cancer Lett 449:31–44. https://doi.org/10.1016/j.canlet.2019.01.041

    Article  CAS  PubMed  Google Scholar 

  131. Sugiyama T, Taniguchi K, Matsuhashi N, Tajirika T, Futamura M, Takai T, Akao Y, Yoshida K (2016) MiR-133b inhibits growth of human gastric cancer cells by silencing pyruvate kinase muscle-splicer polypyrimidine tract-binding protein 1. Cancer Sci 107:1767–1775. https://doi.org/10.1111/cas.13091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu M, Lin C, Liu F, Cao Q (2022) Clinicopathological significance and prognostic value of polypyrimidine tract binding protein 1 (PTBP1) in gastric cancer. Transl Cancer Res 11:2660–2670. https://doi.org/10.21037/tcr-22-303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhou Y, Liu SX, Zhou YN, Wang J, Ji R (2021) Research on the relationship between RAGE and its ligand HMGB1, and prognosis and pathogenesis of gastric cancer with diabetes mellitus. Eur Rev Med Pharmacol Sci 25:1339–1350. https://doi.org/10.26355/eurrev_202102_24841

    Article  CAS  PubMed  Google Scholar 

  134. Ding Y, Gao S, Zheng J, Chen X (2022) Blocking lncRNA-SNHG16 sensitizes gastric cancer cells to 5-Fu through targeting the miR-506-3p-PTBP1-mediated glucose metabolism. Cancer Metab 10:20. https://doi.org/10.1186/s40170-022-00293-w

    Article  PubMed  PubMed Central  Google Scholar 

  135. Ni T, Chu Z, Tao L, Zhao Y, Zhu M, Luo Y, Sunagawa M, Wang H, Liu Y (2023) PTBP1 drives c-Myc-dependent gastric cancer progression and stemness. Br J Cancer 128:1005–1018. https://doi.org/10.1038/s41416-022-02118-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Kang H, Heo S, Shin JJ, Ji E, Tak H, Ahn S, Lee KJ, Lee EK, Kim W (2019) A miR-194/PTBP1/CCND3 axis regulates tumor growth in human hepatocellular carcinoma. J Pathol 249:395–408. https://doi.org/10.1002/path.5325

    Article  CAS  PubMed  Google Scholar 

  137. Shen L, Lei S, Zhang B, Li S, Huang L, Czachor A, Breitzig M, Gao Y, Huang M, Mo X, Zheng Q, Sun H, Wang F (2020) Skipping of exon 10 in Axl pre-mRNA regulated by PTBP1 mediates invasion and metastasis process of liver cancer cells. Theranostics 10:5719–5735. https://doi.org/10.7150/thno.42010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Shi J, Guo C, Li Y, Ma J (2022) The long noncoding RNA TINCR promotes self-renewal of human liver cancer stem cells through autophagy activation. Cell Death Dis 13:961. https://doi.org/10.1038/s41419-022-05424-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Yang H, Sun W, Bi T, Wang Q, Wang W, Xu Y, Liu Z, Li J (2023) The PTBP1‑NCOA4 axis promotes ferroptosis in liver cancer cells. Oncol Rep 49. https://doi.org/10.3892/or.2023.8482

  140. He YC, Hao ZN, Li Z, Gao DW (2023) Nanomedicine-based multimodal therapies: Recent progress and perspectives in colon cancer. World J Gastroenterol 29:670–681. https://doi.org/10.3748/wjg.v29.i4.670

    Article  PubMed  PubMed Central  Google Scholar 

  141. Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M, Lincet H (2018) How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat 38:1–11. https://doi.org/10.1016/j.drup.2018.03.001

    Article  PubMed  Google Scholar 

  142. Wu H, Cui M, Li C, Li H, Dai Y, Cui K, Li Z (2021) Kaempferol reverses aerobic glycolysis via miR-339-5p-mediated PKM alternative splicing in colon cancer cells. J Agric Food Chem 69:3060–3068. https://doi.org/10.1021/acs.jafc.0c07640

    Article  CAS  PubMed  Google Scholar 

  143. Wu H, Du J, Li C, Li H, Guo H, Li Z (2022) Kaempferol can reverse the 5-Fu resistance of colorectal cancer cells by inhibiting PKM2-mediated glycolysis. Int J Mol Sci 23. https://doi.org/10.3390/ijms23073544

  144. Michaels E, Worthington RO, Rusiecki J (2023) Breast cancer: risk assessment, screening, and primary prevention. Med Clin North Am 107:271–284. https://doi.org/10.1016/j.mcna.2022.10.007

    Article  PubMed  Google Scholar 

  145. Tantray I, Ojha R, Sharma AP (2022) Non-coding RNA and autophagy: finding novel ways to improve the diagnostic management of bladder cancer. Front Genet 13:1051762. https://doi.org/10.3389/fgene.2022.1051762

    Article  CAS  PubMed  Google Scholar 

  146. Montero-Hidalgo AJ, Pérez-Gómez JM, Martínez-Fuentes AJ, Gómez-Gómez E, Gahete MD, Jiménez-Vacas JM, Luque RM (2022) Alternative splicing in bladder cancer: potential strategies for cancer diagnosis, prognosis, and treatment. Wiley Interdiscip Rev RNA:e1760. https://doi.org/10.1002/wrna.1760

  147. Januszewicz W, Turkot MH, Malfertheiner P, Regula J (2023) A global perspective on gastric cancer screening: which concepts are feasible, and when? Cancers (Basel) 15. https://doi.org/10.3390/cancers15030664

  148. Ni T, Chu Z, Tao L, Zhao Y, Zhu M, Luo Y, Sunagawa M, Wang H, Liu Y (2023) PTBP1 drives c-Myc-dependent gastric cancer progression and stemness. Br J Cancer. https://doi.org/10.1038/s41416-022-02118-5

    Article  PubMed  PubMed Central  Google Scholar 

  149. Cheng S, Ray D, Lee RTH, Naripogu KB, Yusoff P, Goh PBL, Liu Y, Suzuki Y, Das K, Chan HS, Wong WK, Chan WH, Chow PK, Ong HS, Raj P, Soo KC, Tan P, Epstein DM, Rozen SG (2020) A functional network of gastric-cancer-associated splicing events controlled by dysregulated splicing factors. NAR Genom Bioinform 2:lqaa013. https://doi.org/10.1093/nargab/lqaa013

  150. Anwanwan D, Singh SK, Singh S, Saikam V, Singh R (2020) Challenges in liver cancer and possible treatment approaches. Biochim Biophys Acta Rev Cancer 1873:188314. https://doi.org/10.1016/j.bbcan.2019.188314

    Article  CAS  PubMed  Google Scholar 

  151. Huang Q, Gu S, Fang J, Li X, Lin L (2022) A pan-cancer analysis of the oncogenic role of polypyrimidine tract binding protein 1 (PTBP1) in human tumors. Medicine (Baltimore) 101:e32428. https://doi.org/10.1097/md.0000000000032428

    Article  CAS  PubMed  Google Scholar 

  152. Birch J, Gil J (2020) Senescence and the SASP: many therapeutic avenues. Genes Dev 34:1565–1576. https://doi.org/10.1101/gad.343129.120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Maurice J, Manousou P (2018) Non-alcoholic fatty liver disease. Clin Med (Lond) 18:245–250. https://doi.org/10.7861/clinmedicine.18-3-245

    Article  PubMed  Google Scholar 

  154. Ruan X, Li P, Ma Y, Jiang CF, Chen Y, Shi Y, Gupta N, Seifuddin F, Pirooznia M, Ohnishi Y, Yoneda N, Nishiwaki M, Dumbovic G, Rinn JL, Higuchi Y, Kawai K, Suemizu H, Cao H (2021) Identification of human long noncoding RNAs associated with nonalcoholic fatty liver disease and metabolic homeostasis. J Clin Invest 131. https://doi.org/10.1172/jci136336

  155. Del Río-Moreno M, Alors-Pérez E, González-Rubio S, Ferrín G, Reyes O, Rodríguez-Perálvarez M, Sánchez-Frías ME, Sánchez-Sánchez R, Ventura S, López-Miranda J, Kineman RD, de la Mata M, Castaño JP, Gahete MD, Luque RM (2019) Dysregulation of the splicing machinery is associated to the development of nonalcoholic fatty liver disease. J Clin Endocrinol Metab 104:3389–3402. https://doi.org/10.1210/jc.2019-00021

    Article  PubMed  PubMed Central  Google Scholar 

  156. Hasegawa S, Yoneda M, Kurita Y, Nogami A, Honda Y, Hosono K, Nakajima A (2021) Cholestatic liver disease: current treatment strategies and new therapeutic agents. Drugs 81:1181–1192. https://doi.org/10.1007/s40265-021-01545-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Trauner M, Fuchs CD (2022) Novel therapeutic targets for cholestatic and fatty liver disease. Gut 71:194–209. https://doi.org/10.1136/gutjnl-2021-324305

    Article  CAS  PubMed  Google Scholar 

  158. Zhang L, Yang Z, Huang W, Wu J (2019) H19 potentiates let-7 family expression through reducing PTBP1 binding to their precursors in cholestasis. Cell Death Dis 10:168. https://doi.org/10.1038/s41419-019-1423-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Zhang L, Yang Z, Trottier J, Barbier O, Wang L (2017) Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology 65:604–615. https://doi.org/10.1002/hep.28882

    Article  CAS  PubMed  Google Scholar 

  160. Setyowati Karolina D, Sepramaniam S, Tan HZ, Armugam A, Jeyaseelan K (2013) miR-25 and miR-92a regulate insulin I biosynthesis in rats. RNA Biol 10:1365–1378. https://doi.org/10.4161/rna.25557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Ehehalt F, Knoch K, Erdmann K, Krautz C, Jäger M, Steffen A, Wegbrod C, Meisterfeld R, Kersting S, Bergert H, Kuhlisch E, Bornstein S, Bonifacio E, Saeger HD, Solimena M (2010) Impaired insulin turnover in islets from type 2 diabetic patients. Islets 2:30–36. https://doi.org/10.4161/isl.2.1.10098

    Article  PubMed  Google Scholar 

  162. Chattopadhyay S, Joharapurkar A, Das N, Khatoon S, Kushwaha S, Gurjar AA, Singh AK, Shree S, Ahmed MZ, China SP, Pal S, Kumar H, Ramachandran R, Patel V, Trivedi AK, Lahiri A, Jain MR, Chattopadhyay N, Sanyal S (2022) Estradiol overcomes adiponectin-resistance in diabetic mice by regulating skeletal muscle adiponectin receptor 1 expression. Mol Cell Endocrinol 540:111525. https://doi.org/10.1016/j.mce.2021.111525

    Article  CAS  PubMed  Google Scholar 

  163. Heni M, Ketterer C, Wagner R, Linder K, Böhm A, Herzberg-Schäfer SA, Machicao F, Knoch KP, Fritsche A, Staiger H, Häring HU, Solimena M (2012) Polymorphism rs11085226 in the gene encoding polypyrimidine tract-binding protein 1 negatively affects glucose-stimulated insulin secretion. PLoS ONE 7:e46154. https://doi.org/10.1371/journal.pone.0046154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hansen TH, Vestergaard H, Jørgensen T, Jørgensen ME, Lauritzen T, Brandslund I, Christensen C, Pedersen O, Hansen T, Gjesing AP (2015) Impact of PTBP1 rs11085226 on glucose-stimulated insulin release in adult Danes. BMC Med Genet 16:17. https://doi.org/10.1186/s12881-015-0160-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Knoch KP, Nath-Sain S, Petzold A, Schneider H, Beck M, Wegbrod C, Sönmez A, Münster C, Friedrich A, Roivainen M, Solimena M (2014) PTBP1 is required for glucose-stimulated cap-independent translation of insulin granule proteins and Coxsackieviruses in beta cells. Mol Metab 3:518–530. https://doi.org/10.1016/j.molmet.2014.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Guo WH, Guo Q, Liu YL, Yan DD, Jin L, Zhang R, Yan J, Luo XH, Yang M (2022) Mutated lncRNA increase the risk of type 2 diabetes by promoting β cell dysfunction and insulin resistance. Cell Death Dis 13:904. https://doi.org/10.1038/s41419-022-05348-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14:88–98. https://doi.org/10.1038/nrendo.2017.151

    Article  PubMed  Google Scholar 

  168. Kadowaki T, Yamauchi T, Kubota N, Hara K, Ueki K, Tobe K (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J Clin Invest 116:1784–1792. https://doi.org/10.1172/jci29126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Editage (www.editage.cn) for English language editing.

Funding

This work was supported by the National Natural Science Foundation of China (82271425); the Industrial Technology Research and Development Project of Development and Reform Commission of Jilin Province (2022C044-5); and the Technology Development Plan Project of Jilin Province (20220101278JC).

Author information

Authors and Affiliations

Authors

Contributions

QY and TW drafted and edited the manuscript, QY designed and prepared the figures and the tables, WX and JW commented on previous versions of the manuscript, AZ and MW were in charge of proofreading manuscripts, ML and GC critically revised the manuscript, and supervised the overall work.

Corresponding authors

Correspondence to Meiying Li or Guangfan Chi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

None.

Consent to participate

None.

Consent to publish

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 303 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Wu, T., Xu, W. et al. PTBP1 as a potential regulator of disease. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04905-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04905-x

Keywords

Navigation