Skip to main content
Log in

Ferroptosis: a new promising target for hepatocellular carcinoma therapy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is the sixed most common malignant tumor in the world. The study for HCC is mired in the predicament confronted with the difficulty of early diagnosis and high drug resistance, the survival rate of patients with HCC being low. Ferroptosis, an iron-dependent cell death, has been discovered in recent years as a cell death means with tremendous potential to fight against cancer. The in-depth researches for iron metabolism, lipid peroxidation and dysregulation of antioxidant defense have brought about tangible progress in the firmament of ferroptosis with more and more results showing close connections between ferroptosis and HCC. The potential role of ferroptosis has been widely used in chemotherapy, immunotherapy, radiotherapy, and nanotherapy, with the development of various new drugs significantly improving the prognosis of patients. Based on the characteristics and mechanisms of ferroptosis, this article further focuses on the main signaling pathways and promising treatments of HCC, envisioning that existing problems in regard with ferroptosis and HCC could be grappled with in the foreseeable future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

References

  1. He P, Wan H, Wan J, Jiang H, Yang Y, Xie K et al (2022) Systemic therapies in hepatocellular carcinoma: existing and emerging biomarkers for treatment response. Front Oncol 12:1015527. https://doi.org/10.3389/fonc.2022.1015527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou J, Li LU, Fang LI, Xie H, Yao W, Zhou X et al (2016) Quercetin reduces cyclin D1 activity and induces G1 phase arrest in HepG2 cells. Oncol Lett 12:516–522. https://doi.org/10.3892/ol.2016.4639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pang BY, Leng Y, Wang X, Wang YQ, Jiang LH (2023) A meta-analysis and of clinical values of 11 blood biomarkers, such as AFP, DCP, and GP73 for diagnosis of hepatocellular carcinoma. Ann Med 55:42–61. https://doi.org/10.1080/07853890.2022.2153163

    Article  CAS  PubMed  Google Scholar 

  4. Huang Z, Xia H, Cui Y, Yam JWP, Xu Y (2023) Ferroptosis: from basic research to clinical therapeutics in hepatocellular carcinoma. J Clin Transl Hepatol 11:207–218. https://doi.org/10.14218/jcth.2022.00255

    Article  PubMed  Google Scholar 

  5. Bae C, Kim H, Kook YM, Lee C, Kim C, Yang C et al (2022) Induction of ferroptosis using functionalized iron-based nanoparticles for anti-cancer therapy. Mater Today Bio 17:100457. https://doi.org/10.1016/j.mtbio.2022.100457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fuchs Y, Steller H (2011) Programmed cell death in animal development and disease. Cell 147:1640. https://doi.org/10.1016/j.cell.2011.10.033

    Article  CAS  Google Scholar 

  7. Li L, Wang X, Xu H, Liu X, Xu K (2022) Perspectives and mechanisms for targeting ferroptosis in the treatment of hepatocellular carcinoma. Front Mol Biosci 9:947208. https://doi.org/10.3389/fmolb.2022.947208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Peng F, Liao M, Qin R, Zhu S, Peng C, Fu L et al (2022) Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct Target Ther 7:286. https://doi.org/10.1038/s41392-022-01110-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pan F, Lin X, Hao L, Wang T, Song H, Wang R (2022) The critical role of ferroptosis in hepatocellular carcinoma. Front Cell Dev Biol 10:882571. https://doi.org/10.3389/fcell.2022.882571

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shannon AH, Ruff SM, Pawlik TM (2022) Expert insights on current treatments for hepatocellular carcinoma: clinical and molecular approaches and bottlenecks to progress. J Hepatocell Carcinoma 9:1247–1261. https://doi.org/10.2147/jhc.S383922

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R (2021) Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 20:101–124. https://doi.org/10.1038/s41573-020-0090-8

    Article  CAS  PubMed  Google Scholar 

  12. Gan B (2021) Mitochondrial regulation of ferroptosis. J Cell Biol 220:e202105043. https://doi.org/10.1083/jcb.202105043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. You H, Wang L, Bu F, Meng H, Huang C, Fang G et al (2022) Ferroptosis: shedding light on mechanisms and therapeutic opportunities in liver diseases. Cells. https://doi.org/10.3390/cells11203301

    Article  PubMed  PubMed Central  Google Scholar 

  14. Scindia PHDY, Leeds MDJ, Swaminathan MDS (2019) Iron homeostasis in healthy kidney and its role in acute kidney injury. Semin Nephrol 39:76–84. https://doi.org/10.1016/j.semnephrol.2018.10.006

    Article  CAS  Google Scholar 

  15. Tang Z, Huang Z, Huang Y, Chen Y, Huang M, Liu H et al (2021) Ferroptosis: the silver lining of cancer therapy. Front Cell Dev Biol 9:765859. https://doi.org/10.3389/fcell.2021.765859

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hassannia B, Vandenabeele P, Vanden Berghe T (2019) Targeting ferroptosis to iron out cancer. Cancer Cell 35:830–849. https://doi.org/10.1016/j.ccell.2019.04.002

    Article  CAS  PubMed  Google Scholar 

  17. Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I et al (2017) ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol 13:91–98. https://doi.org/10.1038/nchembio.2239

    Article  CAS  PubMed  Google Scholar 

  18. Yang Y, Zhu T, Wang X, Xiong F, Hu Z, Qiao X et al (2022) ACSL3 and ACSL4, distinct roles in ferroptosis and cancers. Cancers 14:5896. https://doi.org/10.3390/cancers14235896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koppula P, Zhang Y, Zhuang L, Gan B (2018) Amino acid transporter SLC7A11/xCT at the crossroads of regulating redox homeostasis and nutrient dependency of cancer. Cancer Commun 38:12. https://doi.org/10.1186/s40880-018-0288-x

    Article  Google Scholar 

  20. Imai H, Matsuoka M, Kumagai T, Sakamoto T, Koumura T (2017) Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr Top Microbiol Immunol 403:143–170. https://doi.org/10.1007/82_2016_508

    Article  CAS  PubMed  Google Scholar 

  21. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC (2014) Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509:105–109. https://doi.org/10.1038/nature13148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kakhlon O, Cabantchik ZI (2002) The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic Biol Med 33:1037–1046. https://doi.org/10.1016/s0891-5849(02)01006-7

    Article  CAS  PubMed  Google Scholar 

  23. Liu Z, Lv X, Song E, Song Y (2020) Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicol Appl Pharmacol 407:115241. https://doi.org/10.1016/j.taap.2020.115241

    Article  CAS  PubMed  Google Scholar 

  24. Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS, Stockwell BR (2016) Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA 113:E4966–E4975. https://doi.org/10.1073/pnas.1603244113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dodson M, Castro-Portuguez R, Zhang DD (2019) NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol 23:101107. https://doi.org/10.1016/j.redox.2019.101107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mladěnka P, Macáková K, Kujovská Krčmová L, Javorská L, Mrštná K, Carazo A et al (2022) Vitamin K—sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr Rev 80:677–698. https://doi.org/10.1093/nutrit/nuab061

    Article  PubMed  Google Scholar 

  27. Deng F, Sharma I, Dai Y, Yang M, Kanwar YS (2019) Myo-inositol oxygenase expression profile modulates pathogenic ferroptosis in the renal proximal tubule. J Clin Invest 129:5033–5049. https://doi.org/10.1172/jci129903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He F, Zhang P, Liu J, Wang R, Kaufman RJ, Yaden BC et al (2023) ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11 (xCT) to block stress-related ferroptosis. J Hepatol 79:362–377. https://doi.org/10.1016/j.jhep.2023.03.016

    Article  CAS  PubMed  Google Scholar 

  29. Long S, Peng F, Song B, Wang L, Chen J, Shang B (2021) Heat shock protein beta 1 is a prognostic biomarker and correlated with immune infiltrates in hepatocellular carcinoma. Int J Gen Med 14:5483–5492. https://doi.org/10.2147/ijgm.S330608

    Article  PubMed  PubMed Central  Google Scholar 

  30. Suttner DM, Dennery PA (1999) Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. Faseb J 13:1800–1809. https://doi.org/10.1096/fasebj.13.13.1800

    Article  CAS  PubMed  Google Scholar 

  31. Liu M, Kong XY, Yao Y, Wang XA, Yang W, Wu H et al (2022) The critical role and molecular mechanisms of ferroptosis in antioxidant systems: a narrative review. Ann Transl Med 10:368. https://doi.org/10.21037/atm-21-6942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park E, Chung SW (2019) ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis 10:822. https://doi.org/10.1038/s41419-019-2064-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang BW, Miyazawa M, Tsuji Y (2014) Distinct regulatory mechanisms of the human ferritin gene by hypoxia and hypoxia mimetic cobalt chloride at the transcriptional and post-transcriptional levels. Cell Signal 26:2702–2709. https://doi.org/10.1016/j.cellsig.2014.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wei X, Yi X, Zhu XH, Jiang DS (2020) Posttranslational modifications in ferroptosis. Oxid Med Cell Longev 2020:8832043. https://doi.org/10.1155/2020/8832043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chen X, Kang R, Kroemer G, Tang D (2021) Broadening horizons: the role of ferroptosis in cancer. Nat Rev Clin Oncol 18:280–296

    Article  CAS  PubMed  Google Scholar 

  36. Kagan VE, Mao G, Qu F, Angeli JP, Doll S, Croix CS et al (2017) Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat Chem Biol 13:81–90. https://doi.org/10.1038/nchembio.2238

    Article  CAS  PubMed  Google Scholar 

  37. Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA et al (2021) Ferroptosis: mechanisms and links with diseases. Signal Transduct Targets 6:49. https://doi.org/10.1038/s41392-020-00428-9

    Article  CAS  Google Scholar 

  38. Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22:266–282. https://doi.org/10.1038/s41580-020-00324-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W et al (2020) Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol 16:302–309. https://doi.org/10.1038/s41589-020-0472-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Galadari S, Rahman A, Pallichankandy S, Thayyullathil F (2017) Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med 104:144–164. https://doi.org/10.1016/j.freeradbiomed.2017.01.004

    Article  CAS  PubMed  Google Scholar 

  41. Capelletti MM, Manceau H, Puy H, Peoc’h K (2020) Ferroptosis in liver diseases: an overview. Int J Mol Sci 21:4908. https://doi.org/10.3390/ijms21144908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin W, Wang C, Liu G, Bi C, Wang X, Zhou Q et al (2020) SLC7A11/xCT in cancer: biological functions and therapeutic implications. Am J Cancer Res 10:3106–3126

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Qu L, He X, Tang Q, Fan X, Liu J, Lin A (2022) Iron metabolism, ferroptosis, and lncRNA in cancer: knowns and unknowns. J Zhejiang Univ Sci B 23:844–862. https://doi.org/10.1631/jzus.B2200194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tang D, Chen X, Kang R, Kroemer G (2021) Ferroptosis: molecular mechanisms and health implications. Cell Res 31:107–125. https://doi.org/10.1038/s41422-020-00441-1

    Article  CAS  PubMed  Google Scholar 

  45. Gao Y, Li Y, Cao H, Jia H, Wang D, Ren C et al (2022) Hypertoxic self-assembled peptide with dual functions of glutathione depletion and biosynthesis inhibition for selective tumor ferroptosis and pyroptosis. J Nanobiotechnol 20:390. https://doi.org/10.1186/s12951-022-01604-5

    Article  CAS  Google Scholar 

  46. Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH et al (2019) The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575:688–692. https://doi.org/10.1038/s41586-019-1705-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pallotti F, Bergamini C, Lamperti C, Fato R (2021) The roles of coenzyme Q in disease: direct and indirect involvement in cellular functions. Int J Mol Sci 23:128. https://doi.org/10.3390/ijms23010128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Y, Huang X, Liu N, Liu M, Sun C, Qi B et al (2022) Discovering the potential value of coenzyme Q10 in oxidative stress: enlightenment from a synthesis of clinical evidence based on various population. Front Pharmacol 14:936233. https://doi.org/10.3389/fphar.2022.936233

    Article  Google Scholar 

  49. Yuan J, Lv T, Yang J, Wu Z, Yan L, Yang J et al (2022) HDLBP-stabilized lncFAL inhibits ferroptosis vulnerability by diminishing Trim69-dependent FSP1 degradation in hepatocellular carcinoma. Redox Biol 58:102546. https://doi.org/10.1016/j.redox.2022.102546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kraft VAN, Bezjian CT, Pfeiffer S, Ringelstetter L, Müller C, Zandkarimi F et al (2020) GTP cyclohydrolase 1/tetrahydrobiopterin counteract ferroptosis through lipid remodeling. Acs Cent Sci 6:41–53. https://doi.org/10.1021/acscentsci.9b01063

    Article  CAS  PubMed  Google Scholar 

  51. Su J, Bian C, Zheng Z, Wang H, Meng L, Xin Y et al (2022) Cooperation effects of radiation and ferroptosis on tumor suppression and radiation injury. Front Cell Dev Biol 10:951116. https://doi.org/10.3389/fcell.2022.951116

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H et al (2021) DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593:586–590. https://doi.org/10.1038/s41586-021-03539-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tian Y, Zhang M, Fan M, Xu H, Wu S, Zou S et al (2022) A miRNA-mediated attenuation of hepatocarcinogenesis in both hepatocytes and Kupffer cells. Mol Ther Nucleic Acids 30:1–12. https://doi.org/10.1016/j.omtn.2022.08.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dai SM, Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG et al (2022) Relationship between miRNA and ferroptosis in tumors. Front Pharmacol 13:977062. https://doi.org/10.3389/fphar.2022.977062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lu Y, Chan YT, Tan HY, Zhang C, Guo W, Xu Y et al (2022) Epigenetic regulation of ferroptosis via ETS1/miR-23a-3p/ACSL4 axis mediates sorafenib resistance in human hepatocellular carcinoma. J Exp Clin Cancer Res 41:3. https://doi.org/10.1186/s13046-021-02208-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hu Z, Li L, Li M, Zhang X, Zhang Y, Ran J et al (2023) miR-21–5p inhibits ferroptosis in hepatocellular carcinoma cells by regulating the AKT/mTOR signaling pathway through MELK. J Immunol Res 2023:8929525. https://doi.org/10.1155/2023/8929525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yao Z, Luo J, Hu K, Lin J, Huang H, Wang Q et al (2017) ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways. Mol Oncol 11:422–437. https://doi.org/10.1002/1878-0261.12045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zuo YB, Zhang YF, Zhang R, Tian JW, Lv XB, Li R et al (2022) Ferroptosis in cancer progression: role of noncoding RNAs. Int J Biol Sci 18:1829–1843. https://doi.org/10.7150/ijbs.66917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lyu N, Zeng Y, Kong Y, Chen Q, Deng H, Ou S et al (2021) Ferroptosis is involved in the progression of hepatocellular carcinoma through the circ0097009/miR-1261/SLC7A11 axis. Ann Transl Med 9:675. https://doi.org/10.21037/atm-21-997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu Q, Zhou L, Yang G, Meng F, Wan Y, Wang L et al (2020) CircIL4R facilitates the tumorigenesis and inhibits ferroptosis in hepatocellular carcinoma by regulating the miR-541–3p/GPX4 axis. Cell Biol Int 44:2344–2356. https://doi.org/10.1002/cbin.11444

    Article  CAS  PubMed  Google Scholar 

  61. Liu Z, Wang Q, Wang X, Xu Z, Wei X, Li J (2020) Circular RNA cIARS regulates ferroptosis in HCC cells through interacting with RNA binding protein ALKBH5. Cell Death Discov 6:72. https://doi.org/10.1038/s41420-020-00306-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zhai H, Zhong S, Wu R, Mo Z, Zheng S, Xue J et al (2023) Suppressing circIDE/miR-19b-3p/RBMS1 axis exhibits promoting-tumour activity through upregulating GPX4 to diminish ferroptosis in hepatocellular carcinoma. Epigenetics 18:2192438. https://doi.org/10.1080/15592294.2023.2192438

    Article  PubMed  PubMed Central  Google Scholar 

  63. Liu Y, Li J (2023) Circular RNA 0016142 knockdown induces ferroptosis in hepatocellular carcinoma cells via modulation of the MicroRNA-188–3p/glutathione peroxidase 4 axis. Biochem Genet. https://doi.org/10.1007/s10528-023-10417-6

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fang Y, Zhang X, Huang H, Zeng Z (2023) The interplay between noncoding RNAs and drug resistance in hepatocellular carcinoma: the big impact of little things. J Transl Med 21:369. https://doi.org/10.1186/s12967-023-04238-9

    Article  PubMed  PubMed Central  Google Scholar 

  65. Qi W, Li Z, Xia L, Dai J, Zhang Q, Wu C et al (2019) LncRNA GABPB1-AS1 and GABPB1 regulate oxidative stress during erastin-induced ferroptosis in HepG2 hepatocellular carcinoma cells. Sci Rep 9:16185. https://doi.org/10.1038/s41598-019-52837-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. He GN, Bao NR, Wang S, Xi M, Zhang TH, Chen FS (2021) Ketamine induces ferroptosis of liver cancer cells by targeting lncRNA PVT1/miR-214–3p/GPX4. Drug Des Dev Ther 15:3965–3978. https://doi.org/10.2147/DDDT.S332847

    Article  Google Scholar 

  67. Li X, Li Y, Lian P, Lv Q, Liu F (2023) Silencing lncRNA HCG18 regulates GPX4-inhibited ferroptosis by adsorbing miR-450b-5p to avert sorafenib resistance in hepatocellular carcinoma. Hum Exp Toxicol 42:9603271221142818. https://doi.org/10.1177/09603271221142818

    Article  PubMed  Google Scholar 

  68. Guan L, Wang F, Wang M, Han S, Cui Z, Xi S et al (2022) Downregulation of HULC induces ferroptosis in hepatocellular carcinoma via targeting of the miR-3200–5p/ATF4 axis. Oxid Med Cell Longev 2022:9613095. https://doi.org/10.1155/2022/9613095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shi Z, Li Z, Jin B, Ye W, Wang L, Zhang S et al (2023) Loss of LncRNA DUXAP8 synergistically enhanced sorafenib induced ferroptosis in hepatocellular carcinoma via SLC7A11 de-palmitoylation. Clin Transl Med 13:e1300. https://doi.org/10.1002/ctm2.1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang Y, Luo M, Cui X, O’Connell D, Yang Y (2022) Long noncoding RNA NEAT1 promotes ferroptosis by modulating the miR-362–3p/MIOX axis as a ceRNA. Cell Death Differ 29:1850–1863. https://doi.org/10.1038/s41418-022-00970-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang B, Bao W, Zhang S, Chen B, Zhou X, Zhao J et al (2022) LncRNA HEPFAL accelerates ferroptosis in hepatocellular carcinoma by regulating SLC7A11 ubiquitination. Cell Death Dis 13:734. https://doi.org/10.1038/s41419-022-05173-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kang X, Huo Y, Jia S, He F, Li H, Zhou Q et al (2022) Silenced LINC01134 enhances oxaliplatin sensitivity by facilitating ferroptosis through GPX4 in hepatocarcinoma. Front Oncol 12:939605. https://doi.org/10.3389/fonc.2022.939605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ren X, Wang X, Yan Y, Chen X, Cai Y, Liang Q et al (2022) Integrative bioinformatics and experimental analysis revealed TEAD as novel prognostic target for hepatocellular carcinoma and its roles in ferroptosis regulation. Aging 14:961–974. https://doi.org/10.18632/aging.203853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Qin Y, Pei Z, Feng Z, Lin P, Wang S, Li Y et al (2021) Oncogenic activation of YAP signaling sensitizes ferroptosis of hepatocellular carcinoma via ALOXE3-mediated lipid peroxidation accumulation. Front Cell Dev Biol 9:751593. https://doi.org/10.3389/fcell.2021.751593

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ascenzi F, De Vitis C, Maugeri-Saccà M, Napoli C, Ciliberto G, Mancini R (2021) SCD1, autophagy and cancer: implications for therapy. J Exp Clin Cancer Res 40:265. https://doi.org/10.1186/s13046-021-02067-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Luis G, Godfroid A, Nishiumi S, Cimino J, Blacher S, Maquoi E et al (2021) Tumor resistance to ferroptosis driven by Stearoyl-CoA Desaturase-1 (SCD1) in cancer cells and Fatty Acid Biding Protein-4 (FABP4) in tumor microenvironment promote tumor recurrence. Redox Biol 43:102006. https://doi.org/10.1016/j.redox.2021.102006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao Y, Li M, Yao X, Fei Y, Lin Z, Li Z et al (2020) HCAR1/MCT1 regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep 33:108487. https://doi.org/10.1016/j.celrep.2020.108487

    Article  CAS  PubMed  Google Scholar 

  78. Zhang L, Li XM, Shi XH, Ye K, Fu XL, Wang X et al (2022) Sorafenib triggers ferroptosis via inhibition of HBXIP/SCD axis in hepatocellular carcinoma. Acta Pharmacol Sin. https://doi.org/10.1038/s41401-022-00981-9

    Article  PubMed  PubMed Central  Google Scholar 

  79. Xu R, Wang W, Zhang W (2023) Ferroptosis and the bidirectional regulatory factor p53. Cell Death Discov 9:197. https://doi.org/10.1038/s41420-023-01517-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhang Z, Guo M, Shen M, Kong D, Zhang F, Shao J et al (2020) The BRD7-P53-SLC25A28 axis regulates ferroptosis in hepatic stellate cells. Redox Biol 36:101619. https://doi.org/10.1016/j.redox.2020.101619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H et al (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62. https://doi.org/10.1038/nature14344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ou Y, Wang SJ, Li D, Chu B, Gu W (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA 113:E6806–E6812. https://doi.org/10.1073/pnas.1607152113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Xie Y, Zhu S, Song X, Sun X, Fan Y, Liu J et al (2017) The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 20:1692–1704. https://doi.org/10.1016/j.celrep.2017.07.055

    Article  CAS  PubMed  Google Scholar 

  84. Zhang X, Zheng Q, Yue X, Yuan Z, Ling J, Yuan Y et al (2022) ZNF498 promotes hepatocellular carcinogenesis by suppressing p53-mediated apoptosis and ferroptosis via the attenuation of p53 Ser46 phosphorylation. J Exp Clin Cancer Res 41:79. https://doi.org/10.1186/s13046-022-02288-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen J, Zhao F, Yang H, Wen J, Tang Y, Wan F et al (2022) Gentian violet induces apoptosis and ferroptosis via modulating p53 and MDM2 in hepatocellular carcinoma. Am J Cancer Res 12:3357–3372

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ghosh R, Samanta P, Sarkar R, Biswas S, Saha P, Hajra S et al (2022) Targeting HIF-1α by natural and synthetic compounds: a promising approach for anti-cancer therapeutics development. Molecules 27:5192. https://doi.org/10.3390/molecules27165192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu Y, He L, Liu B, Ying Y, Xu J, Yu M et al (2022) Pharmacological inhibition of sphingolipid synthesis reduces ferroptosis by stimulating the HIF-1 pathway. iScience 25:104533. https://doi.org/10.1016/j.isci.2022.104533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang M, Wu X, Hu J, Wang Y, Wang Y, Zhang L et al (2022) COMMD10 inhibits HIF1α/CP loop to enhance ferroptosis and radiosensitivity by disrupting Cu-Fe balance in hepatocellular carcinoma. J Hepatol 76:1138–1150. https://doi.org/10.1016/j.jhep.2022.01.009

    Article  CAS  PubMed  Google Scholar 

  89. Li Y, Yang W, Zheng Y, Dai W, Ji J, Wu L et al (2023) Targeting fatty acid synthase modulates sensitivity of hepatocellular carcinoma to sorafenib via ferroptosis. J Exp Clin Cancer Res 42:6. https://doi.org/10.1186/s13046-022-02567-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fan Z, Yang G, Zhang W, Liu Q, Liu G, Liu P et al (2021) Hypoxia blocks ferroptosis of hepatocellular carcinoma via suppression of METTL14 triggered YTHDF2-dependent silencing of SLC7A11. J Cell Mol Med 25:10197–10212. https://doi.org/10.1111/jcmm.16957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wu J, Xue R, Wu M, Yin X, Xie B, Meng Q (2022) Nrf2-mediated ferroptosis inhibition exerts a protective effect on acute-on-chronic liver failure. Oxid Med Cell Longev 2022:4505513. https://doi.org/10.1155/2022/4505513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shan Y, Yang G, Lu Q, Hu X, Qi D, Zhou Y et al (2022) Centrosomal protein 290 is a novel prognostic indicator that modulates liver cancer cell ferroptosis via the Nrf2 pathway. Aging 14:2367–2382. https://doi.org/10.18632/aging.203946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Tang K, Chen Q, Liu Y, Wang L, Lu W (2022) Combination of metformin and sorafenib induces ferroptosis of hepatocellular carcinoma through p62-Keap1-Nrf2 pathway. J Cancer 13:3234–3243. https://doi.org/10.7150/jca.76618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Elkateb AS, Nofal S, Ali SA, Atya HB (2023) Camptothecin sensitizes hepatocellular carcinoma cells to sorafenib- induced ferroptosis via suppression of Nrf2. Inflammation 46:1493–1511. https://doi.org/10.1007/s10753-023-01823-4

    Article  CAS  PubMed  Google Scholar 

  95. Wang Q, Bin C, Xue Q, Gao Q, Huang A, Wang K et al (2021) GSTZ1 sensitizes hepatocellular carcinoma cells to sorafenib-induced ferroptosis via inhibition of NRF2/GPX4 axis. Cell Death Dis 12:426. https://doi.org/10.1038/s41419-021-03718-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Feng H, Liu Y, Gan Y, Li M, Liu R, Liang Z et al (2022) AdipoR1 regulates ionizing radiation-induced ferroptosis in HCC cells through Nrf2/xCT pathway. Oxid Med Cell Longev 2022:8091464. https://doi.org/10.1155/2022/8091464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zhao Y, Wang Y, Miao Z, Liu Y, Yang Q (2023) c-Myc protects hepatocellular carcinoma cell from ferroptosis induced by glutamine deprivation via upregulating GOT1 and Nrf2. Mol Biol Rep 50:6627–6641. https://doi.org/10.1007/s11033-023-08495-1

    Article  CAS  PubMed  Google Scholar 

  98. Li H, Zhao J, Zhong XL, Xu PY, Du LJ, Fang P et al (2023) CPLX2 regulates ferroptosis and apoptosis through NRF2 pathway in human hepatocellular carcinoma cells. Appl Biochem Biotechnol 195:597–609. https://doi.org/10.1007/s12010-022-04135-9

    Article  CAS  PubMed  Google Scholar 

  99. Zhu YJ, Zheng B, Wang HY, Chen L (2017) New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin 38:614–622. https://doi.org/10.1038/aps.2017.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Huang W, Chen K, Lu Y, Zhang D, Cheng Y, Li L et al (2021) ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia 23:1227–1239. https://doi.org/10.1016/j.neo.2021.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hsu TW, Su YH, Chen HA, Liao PH, Shen SC, Tsai KY et al (2023) Galectin-1-mediated MET/AXL signaling enhances sorafenib resistance in hepatocellular carcinoma by escaping ferroptosis. Aging 15:6503–6525. https://doi.org/10.18632/aging.204867

    Article  PubMed  PubMed Central  Google Scholar 

  102. Huang CY, Chen LJ, Chen G, Chao TI, Wang CY (2022) SHP-1/STAT3-signaling-axis-regulated coupling between BECN1 and SLC7A11 contributes to sorafenib-induced ferroptosis in hepatocellular carcinoma. Int J Mol Sci. https://doi.org/10.3390/ijms231911092

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hua HW, Jiang HS, Jia L, Jia YP, Yao YL, Chen YW et al (2021) SPARC regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma. Cancer Biomark 32:425–433. https://doi.org/10.3233/CBM-200101

    Article  CAS  PubMed  Google Scholar 

  104. Louandre C, Marcq I, Bouhlal H, Lachaier E, Godin C, Saidak Z et al (2015) The retinoblastoma (Rb) protein regulates ferroptosis induced by sorafenib in human hepatocellular carcinoma cells. Cancer Lett 356:971–977. https://doi.org/10.1016/j.canlet.2014.11.014

    Article  CAS  PubMed  Google Scholar 

  105. Li B, Wei S, Yang L, Peng X, Ma Y, Wu B et al (2021) CISD2 promotes resistance to sorafenib-induced ferroptosis by regulating autophagy in hepatocellular carcinoma. Front Oncol 11:657723. https://doi.org/10.3389/fonc.2021.657723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wang K, Zhang Z, Tsai HI, Liu Y, Gao J, Wang M et al (2021) Branched-chain amino acid aminotransferase 2 regulates ferroptotic cell death in cancer cells. Cell Death Differ 28:1222–1236. https://doi.org/10.1038/s41418-020-00644-4

    Article  CAS  PubMed  Google Scholar 

  107. Zhao Y, Li Y, Zhang R, Wang F, Wang T, Jiao Y (2020) The role of erastin in ferroptosis and its prospects in cancer therapy. Onco Targets Ther 13:5429–5441. https://doi.org/10.2147/ott.S254995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Liao Y, Hu K, Liu W, Wang W, Qiu H, Pan S et al (2023) Bortezomib inhibits hepatocellular carcinoma via the Hippo-Yes-associated protein signalling pathway. Basic Clin Pharmacol Toxicol 132:297–311. https://doi.org/10.1111/bcpt.13832

    Article  CAS  PubMed  Google Scholar 

  109. Hu Z, Zhao Y, Li L, Jiang J, Li W, Mang Y et al (2023) Metformin promotes ferroptosis and sensitivity to sorafenib in hepatocellular carcinoma cells via ATF4/STAT3. Mol Biol Rep 50:6399–6413. https://doi.org/10.1007/s11033-023-08492-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Zhang Y, Zhang H, Mu J, Han M, Cao Z, Dong F et al (2022) Eupalinolide B inhibits hepatic carcinoma by inducing ferroptosis and ROS-ER-JNK pathway. Acta Biochim Biophys Sin 54:974–986. https://doi.org/10.3724/abbs.2022082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lin PL, Tang HH, Wu SY, Shaw NS, Su CL (2020) Saponin formosanin C-induced ferritinophagy and ferroptosis in human hepatocellular carcinoma cells. Antioxidants. https://doi.org/10.3390/antiox9080682

    Article  PubMed  PubMed Central  Google Scholar 

  112. Huang D, Dong X, Li J, Chen Y, Zhou Y, Chen Q et al (2023) Steroidal saponin SSPH I induces ferroptosis in HepG2 cells via regulating iron metabolism. Med Oncol 40:132. https://doi.org/10.1007/s12032-023-02000-1

    Article  CAS  PubMed  Google Scholar 

  113. Chang WT, Bow YD, Fu PJ, Li CY, Wu CY, Chang YH et al (2021) A marine terpenoid, heteronemin, induces both the apoptosis and ferroptosis of hepatocellular carcinoma cells and involves the ROS and MAPK pathways. Oxid Med Cell Longev 2021:7689045. https://doi.org/10.1155/2021/7689045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yao L, Yan D, Jiang B, Xue Q, Chen X, Huang Q et al (2023) Plumbagin is a novel GPX4 protein degrader that induces apoptosis in hepatocellular carcinoma cells. Free Radic Biol Med 203:1–10. https://doi.org/10.1016/j.freeradbiomed.2023.03.263

    Article  CAS  PubMed  Google Scholar 

  115. Xiu Z, Zhu Y, Han J, Li Y, Yang X, Yang G et al (2022) Caryophyllene oxide induces ferritinophagy by regulating the NCOA4/FTH1/LC3 pathway in hepatocellular carcinoma. Front Pharmacol 13:930958. https://doi.org/10.3389/fphar.2022.930958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Li ZJ, Dai HQ, Huang XW, Feng J, Deng JH, Wang ZX et al (2021) Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma. Acta Pharmacol Sin 42:301–310. https://doi.org/10.1038/s41401-020-0478-3

    Article  CAS  PubMed  Google Scholar 

  117. Jin M, Shi C, Li T, Wu Y, Hu C, Huang G (2020) Solasonine promotes ferroptosis of hepatoma carcinoma cells via glutathione peroxidase 4-induced destruction of the glutathione redox system. Biomed Pharmacother 129:110282. https://doi.org/10.1016/j.biopha.2020.110282

    Article  CAS  PubMed  Google Scholar 

  118. Conche C, Finkelmeier F, Pešić M, Nicolas AM, Böttger TW, Kennel KB et al (2023) Combining ferroptosis induction with MDSC blockade renders primary tumours and metastases in liver sensitive to immune checkpoint blockade. Gut. https://doi.org/10.1136/gutjnl-2022-327909

    Article  PubMed  Google Scholar 

  119. Cheu JW, Lee D, Li Q, Goh CC, Bao MH, Yuen VW et al (2023) Ferroptosis suppressor protein 1 inhibition promotes tumor ferroptosis and anti-tumor immune responses in liver cancer. Cell Mol Gastroenterol Hepatol 16:133–159. https://doi.org/10.1016/j.jcmgh.2023.03.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Pardoll DM (2012) The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 12:252–264. https://doi.org/10.1038/nrc3239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Ringelhan M, Pfister D, O’Connor T, Pikarsky E, Heikenwalder M (2018) The immunology of hepatocellular carcinoma. Nat Immunol 19:222–232. https://doi.org/10.1038/s41590-018-0044-z

    Article  CAS  PubMed  Google Scholar 

  122. Xu J, Lin X, Han T, Zhou Q, Su Y, Jiang S et al (2022) Regulation mechanism of ferroptosis and its research progress in tumor immunotherapy. Front Mol Biosci 9:1045548. https://doi.org/10.3389/fmolb.2022.1045548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang W, Green M, Choi JE, Gijón M, Kennedy PD, Johnson JK et al (2019) CD8+ T cells regulate tumour ferroptosis during cancer immunotherapy. Nature 569:270–274. https://doi.org/10.1038/s41586-019-1170-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Hao X, Zheng Z, Liu H, Zhang Y, Kang J, Kong X et al (2022) Inhibition of APOC1 promotes the transformation of M2 into M1 macrophages via the ferroptosis pathway and enhances anti-PD1 immunotherapy in hepatocellular carcinoma based on single-cell RNA sequencing. Redox Biol 56:102463. https://doi.org/10.1016/j.redox.2022.102463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ferrara M, Chialli G, Ferreira LM, Ruggieri E, Careccia G, Preti A et al (2020) Oxidation of HMGB1 is a dynamically regulated process in physiological and pathological conditions. Front Immunol 11:1122. https://doi.org/10.3389/fimmu.2020.01122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen Q, Zheng W, Guan J, Liu H, Dan Y, Zhu L et al (2023) SOCS2-enhanced ubiquitination of SLC7A11 promotes ferroptosis and radiosensitization in hepatocellular carcinoma. Cell Death Differ 30:137–151. https://doi.org/10.1038/s41418-022-01051-7

    Article  CAS  PubMed  Google Scholar 

  127. Zheng X, Liu B, Liu X, Li P, Zhang P, Ye F et al (2022) PERK regulates the sensitivity of hepatocellular carcinoma cells to high-LET carbon ions via either apoptosis or ferroptosis. J Cancer 13:669–680. https://doi.org/10.7150/jca.61622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Yuan Y, Cao W, Zhou H, Qian H, Wang H (2021) CLTRN, regulated by NRF1/RAN/DLD protein complex, enhances radiation sensitivity of hepatocellular carcinoma cells through ferroptosis pathway. Int J Radiat Oncol Biol Phys 110:859–871. https://doi.org/10.1016/j.ijrobp.2020.12.062

    Article  PubMed  Google Scholar 

  129. Xu M, Yang L, Lin Y, Lu Y, Bi X, Jiang T et al (2022) Emerging nanobiotechnology for precise theranostics of hepatocellular carcinoma. J Nanobiotechnol 20:427. https://doi.org/10.1186/s12951-022-01615-2

    Article  Google Scholar 

  130. Zhao S, Zheng W, Yu C, Xu G, Zhang X, Pan C et al (2022) The role of ferroptosis in the treatment and drug resistance of hepatocellular carcinoma. Front Cell Dev Biol 10:845232. https://doi.org/10.3389/fcell.2022.845232

    Article  PubMed  PubMed Central  Google Scholar 

  131. Xiao Y, Xu Z, Cheng Y, Huang R, Xie Y, Tsai HI et al (2023) Fe(3+)-binding transferrin nanovesicles encapsulating sorafenib induce ferroptosis in hepatocellular carcinoma. Biomater Res 27:63. https://doi.org/10.1186/s40824-023-00401-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Tang H, Chen D, Li C, Zheng C, Wu X, Zhang Y et al (2019) Dual GSH-exhausting sorafenib loaded manganese-silica nanodrugs for inducing the ferroptosis of hepatocellular carcinoma cells. Int J Pharm 572:118782. https://doi.org/10.1016/j.ijpharm.2019.118782

    Article  CAS  PubMed  Google Scholar 

  133. Liu X, Zhu X, Qi X, Meng X, Xu K (2021) Co-administration of iRGD with sorafenib-loaded iron-based metal-organic framework as a targeted ferroptosis agent for liver cancer therapy. Int J Nanomed 16:1037–1050. https://doi.org/10.2147/ijn.S292528

    Article  Google Scholar 

  134. Ou W, Mulik RS, Anwar A, McDonald JG, He X, Corbin IR (2017) Low-density lipoprotein docosahexaenoic acid nanoparticles induce ferroptotic cell death in hepatocellular carcinoma. Free Radic Biol Med 112:597–607. https://doi.org/10.1016/j.freeradbiomed.2017.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Hassannia B, Wiernicki B, Ingold I, Qu F, Van Herck S, Tyurina YY et al (2018) Nano-targeted induction of dual ferroptotic mechanisms eradicates high-risk neuroblastoma. J Clin Invest 128:3341–3355. https://doi.org/10.1172/JCI99032

    Article  PubMed  PubMed Central  Google Scholar 

  136. Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM et al (2019) Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol 26:623–633. https://doi.org/10.1016/j.chembiol.2019.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Yao X, Yang P, Jin Z, Jiang Q, Guo R, Xie R et al (2019) Multifunctional nanoplatform for photoacoustic imaging-guided combined therapy enhanced by CO induced ferroptosis. Biomaterials 197:268–283. https://doi.org/10.1016/j.biomaterials.2019.01.026

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Key Medical Discipline of Hangzhou City (2021–2021); Key Medical Discipline of Zhejiang Province (2018-2-3); Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province (2020E10021); Zhejiang Province Medical and Health Science and Technology Program (2023KY933); Zhejiang Traditional Chinese Medicine Science and Technology Project (2023ZL565).

Author information

Authors and Affiliations

Authors

Contributions

QX and LR drafted the manuscript. NR, JP, YY and YZ finalized the paper and provided suggestions to improve it. GW revised the paper and supervised the paper. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Gang Wang.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Q., Ren, L., Ren, N. et al. Ferroptosis: a new promising target for hepatocellular carcinoma therapy. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04893-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04893-y

Keywords

Navigation