Skip to main content

Advertisement

Log in

Hydrogen sulfide inhibits gene expression associated with aortic valve degeneration by inducing NRF2-related pro-autophagy effect in human aortic valve interstitial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Aortic valve stenosis (AS) is the most common valvular heart disease but there are currently no effective medical treatments that can delay disease progression due to a lack of knowledge of the precise pathophysiology. The expression of sulfide: quinone oxidoreductase (SQOR) and nuclear factor erythroid 2-related factor 2 (NRF2) was decreased in the aortic valve of AS patients. However, the role of SQOR and NRF2 in the pathophysiology of AS has not been found. We investigated the effects of hydrogen sulfide (H2S)-releasing compounds on diseased aortic valve interstitial cells (AVICs) to explain the cellular mechanism of SQOR and elucidate the medical value of H2S for AS treatment. Sodium hydrosulfide (NaHS) treatment increased the expression of SQOR and NRF2 gene and consequently induced the NRF2 target genes, such as NAD(P)H quinone dehydrogenase 1 and cystathionine γ-lyase. In addition, NaHS dose-dependently decreased the expression level of fibrosis and inflammation-related genes (MMP9, TNF-α, IL6) and calcification-related genes (ALP, osteocalcin, RUNX2, COL1A1) in human AVICs. Furthermore, NaHS activated the AMPK-mTOR pathway and inhibited the PI3K-AKT pathway, resulting in a pro-autophagy effect in human AVICs. An NRF2 inhibitor, brusatol, attenuated NaHS-induced AMPK activation and decreased the autophagy markers Beclin-1 and LC3AB, suggesting that the mechanism of action of H2S is related to NRF2. In conclusion, H2S decreased gene expression levels related to aortic valve degeneration and activated AMPK-mTOR-mediated pro-autophagy function associated with NRF2 in human AVICs. Therefore, H2S could be a potential therapeutic target for the development of AS treatment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available within the article and its supplementary material. Any additional information can be requested by contacting the corresponding author.

References

  1. Tribouilloy C, Bohbot Y, Rusinaru D, Belkhir K, Diouf M, Altes A, Delpierre Q, Serbout S, Kubala M, Levy F, Marechaux S, Enriquez Sarano M (2021) Excess mortality and undertreatment of women with severe aortic stenosis. J Am Heart Assoc 10:e018816. https://doi.org/10.1161/JAHA.120.018816

    Article  PubMed  Google Scholar 

  2. Carabello BA (2013) Introduction to aortic stenosis. Circ Res. https://doi.org/10.1161/CIRCRESAHA.113.300156. 113:179 – 85

    Article  PubMed  Google Scholar 

  3. Patel A, Kirtane AJ (2016) Aortic valve stenosis. JAMA Cardiol 1:623. https://doi.org/10.1001/jamacardio.2016.2060

    Article  PubMed  Google Scholar 

  4. Zheng KH, Tzolos E, Dweck MR (2020) Pathophysiology of aortic stenosis and future perspectives for medical therapy. Cardiol Clin 38:1–12. https://doi.org/10.1016/j.ccl.2019.09.010

    Article  PubMed  Google Scholar 

  5. Bevan GH, Zidar DA, Josephson RA, Al-Kindi SG (2019) Mortality due to aortic stenosis in the United States, 2008–2017. JAMA 321:2236. https://doi.org/10.1001/jama.2019.6292

    Article  PubMed  PubMed Central  Google Scholar 

  6. Goody PR, Hosen MR, Christmann D, Niepmann ST, Zietzer A, Adam M, Bönner F, Zimmer S, Nickenig G, Jansen F, Arteriosclerosis (2020) Thromb Vascular Biology 40:885–900. https://doi.org/10.1161/atvbaha.119.313067

    Article  CAS  Google Scholar 

  7. Jackson MR, Melideo SL, Jorns MS (2015) Role of human sulfide: quinone oxidoreductase in H2S metabolism. Methods Enzymol 554:255–270. https://doi.org/10.1016/bs.mie.2014.11.037

    Article  CAS  PubMed  Google Scholar 

  8. Baugh SDP, Jackson MR, Rashad AA, Reitz AB, Lam PYS, Jorns MS (2021) Synthesis and evaluation of potent novel inhibitors of human sulfide:quinone oxidoreductase. Bioorg Med Chem Lett 54:128443. https://doi.org/10.1016/j.bmcl.2021.128443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hourihan JM, Kenna JG, Hayes JD (2013) The Gasotransmitter Hydrogen Sulfide induces Nrf2-Target genes by inactivating the Keap1 ubiquitin ligase substrate adaptor through formation of a Disulfide Bond between Cys-226 and Cys-613. Antioxid Redox Signal 19:465–481. https://doi.org/10.1089/ars.2012.4944

    Article  CAS  PubMed  Google Scholar 

  10. Jin HS, Kim J, Park S, Park E, Kim BY, Choi VN, Yoo YH, Kim BT, Jeong SY (2015) Association of the I264T variant in the sulfide quinone reductase-like (SQRDL) gene with osteoporosis in Korean postmenopausal women. PLoS ONE 10:e0135285. https://doi.org/10.1371/journal.pone.0135285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Goto S, Rogers MA, Blaser MC, Higashi H, Lee LH, Schlotter F, Body SC, Aikawa M, Singh SA, Aikawa E (2019) Standardization of human calcific aortic valve Disease in vitro modeling reveals passage-dependent calcification. Front Cardiovasc Med 6:49. https://doi.org/10.3389/fcvm.2019.00049

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798. https://doi.org/10.1096/fj.02-0211hyp

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L, Wang Y, Li Y, Li L, Xu S, Feng X, Liu S (2018) Hydrogen sulfide (H2S)-Releasing compounds: therapeutic potential in Cardiovascular Diseases. Front Pharmacol 9:1066. https://doi.org/10.3389/fphar.2018.01066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kimura H (2010) Hydrogen sulfide: from brain to gut. Antioxid Redox Signal 12:1111–1123. https://doi.org/10.1089/ars.2009.2919

    Article  CAS  PubMed  Google Scholar 

  15. Martin GR, McKnight GW, Dicay MS, Coffin CS, Ferraz JG, Wallace JL (2010) Hydrogen sulphide synthesis in the rat and mouse gastrointestinal tract. Dig Liver Dis 42:103–109. https://doi.org/10.1016/j.dld.2009.05.016

    Article  CAS  PubMed  Google Scholar 

  16. Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92:791–896. https://doi.org/10.1152/physrev.00017.2011

    Article  CAS  PubMed  Google Scholar 

  17. Chen CQ, Xin H, Zhu YZ (2007) Hydrogen sulfide: third gaseous transmitter, but with great pharmacological potential. Acta Pharmacol Sin 28:1709–1716. https://doi.org/10.1111/j.1745-7254.2007.00629.x

    Article  CAS  PubMed  Google Scholar 

  18. Yarmohammadi F, Hayes AW, Karimi G (2021) The cardioprotective effects of hydrogen sulfide by targeting endoplasmic reticulum stress and the Nrf2 signaling pathway: a review. BioFactors 47:701–712. https://doi.org/10.1002/biof.1763

    Article  CAS  PubMed  Google Scholar 

  19. Xu W, Zhao T, Xiao H (2020) The implication of oxidative stress and AMPK-Nrf2 antioxidative signaling in pneumonia pathogenesis. Front Endocrinol  11:400. https://doi.org/10.3389/fendo.2020.00400

    Article  Google Scholar 

  20. Yang B, Bai Y, Yin C, Qian H, Xing G, Wang S, Li F, Bian J, Aschner M, Lu R (2018) Activation of autophagic flux and the Nrf2/ARE signaling pathway by hydrogen sulfide protects against acrylonitrile-induced neurotoxicity in primary rat astrocytes. Arch Toxicol 92:2093–2108. https://doi.org/10.1007/s00204-018-2208-x

    Article  CAS  PubMed  Google Scholar 

  21. Mani S, Li H, Untereiner A, Wu L, Yang G, Austin RC, Dickhout JG, Lhotak S, Meng QH, Wang R (2013) Decreased endogenous production of hydrogen sulfide accelerates Atherosclerosis. Circulation 127:2523–2534. https://doi.org/10.1161/CIRCULATIONAHA.113.002208

    Article  CAS  PubMed  Google Scholar 

  22. Hackfort BT, Mishra PK (2016) Emerging role of hydrogen sulfide-microRNA crosstalk in cardiovascular diseases. Am J Physiol Heart Circ Physiol 310:H802–H812. https://doi.org/10.1152/ajpheart.00660.2015

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yang GD, Wu LY, Jiang B, Yang W, Qi JS, Cao K, Meng QH, Mustafa AK, Mu WT, Zhang SM, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590. https://doi.org/10.1126/science.1162667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wu YC, Wang XJ, Yu L, Chan FK, Cheng AS, Yu J, Sung JJ, Wu WK, Cho CH (2012) Hydrogen sulfide lowers proliferation and induces protective autophagy in colon epithelial cells. PLoS ONE 7:e37572. https://doi.org/10.1371/journal.pone.0037572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kundu S, Pushpakumar S, Khundmiri SJ, Sen U (2014) Hydrogen sulfide mitigates hyperglycemic remodeling via liver kinase B1-adenosine monophosphate-activated protein kinase signaling. Biochim Biophys Acta 1843:2816–2826. https://doi.org/10.1016/j.bbamcr.2014.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang SSS, Chen YHH, Chen N, Wang LJJ, Chen DXX, Weng HLL, Dooley S, Ding HGG (2017) Hydrogen sulfide promotes autophagy of hepatocellular carcinoma cells through the PI3K/Akt/mTOR signaling pathway. Cell Death Dis. https://doi.org/10.1038/cddis.2017.18

    Article  PubMed  PubMed Central  Google Scholar 

  27. Morciano G, Patergnani S, Bonora M, Pedriali G, Tarocco A, Bouhamida E, Marchi S, Ancora G, Anania G, Wieckowski MR, Giorgi C, Pinton P (2020) Mitophagy in cardiovascular diseases. J Clin Med. https://doi.org/10.3390/jcm9030892

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J (2016) Aging and autophagy in the heart. Circ Res 118:1563–1576. https://doi.org/10.1161/CIRCRESAHA.116.307474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pedriali G, Morciano G, Patergnani S, Cimaglia P, Morelli C, Mikus E, Ferrari R, Gasbarro V, Giorgi C, Wieckowski MR, Pinton P (2020) Aortic Valve Stenosis and mitochondrial dysfunctions: clinical and molecular perspectives. Int J Mol Sci. https://doi.org/10.3390/ijms21144899

    Article  PubMed  PubMed Central  Google Scholar 

  30. Somers P, Knaapen M, Kockx M, van Cauwelaert P, Bortier H, Mistiaen W (2006) Histological evaluation of autophagic cell death in calcified aortic valve stenosis. J Heart Valve Dis 15(1):43–47

    PubMed  Google Scholar 

  31. Deng XS, Meng X, Venardos N, Song R, Yamanaka K, Fullerton D, Jaggers J (2017) Autophagy negatively regulates pro-osteogenic activity in human aortic valve interstitial cells. J Surg Res 218:285–291. https://doi.org/10.1016/j.jss.2017.05.088

    Article  PubMed  PubMed Central  Google Scholar 

  32. Li X, Lim J, Lu J, Pedego TM, Demer L, Tintut Y (2015) Protective role of Smad6 in inflammation-induced valvular cell calcification. J Cell Biochem 116:2354–2364. https://doi.org/10.1002/jcb.25186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Choi B, Lee S, Kim SM, Lee EJ, Lee SR, Kim DH, Jang JY, Kang SW, Lee KU, Chang EJ, Song JK (2017) Dipeptidyl Peptidase-4 induces aortic valve calcification by inhibiting insulin-like growth factor-1 signaling in valvular interstitial cells. Circulation 135:1935. https://doi.org/10.1161/Circulationaha.116.024270

    Article  CAS  PubMed  Google Scholar 

  34. Landry AP, Ballou DP, Banerjee R (2021) Hydrogen sulfide oxidation by sulfide quinone oxidoreductase. ChemBioChem 22:949–960. https://doi.org/10.1002/cbic.202000661

    Article  CAS  PubMed  Google Scholar 

  35. Marutani E, Morita M, Hirai S, Kai S, Grange RMH, Miyazaki Y, Nagashima F, Traeger L, Magliocca A, Ida T, Matsunaga T, Flicker DR, Corman B, Mori N, Yamazaki Y, Batten A, Li R, Tanaka T, Ikeda T, Nakagawa A, Atochin DN, Ihara H, Olenchock BA, Shen X, Nishida M, Hanaoka K, Kevil CG, Xian M, Bloch DB, Akaike T, Hindle AG, Motohashi H, Ichinose F (2021) Sulfide catabolism ameliorates hypoxic brain injury. Nat Commun 12:3108. https://doi.org/10.1038/s41467-021-23363-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jackson MR, Cox KD, Baugh SDP, Wakeen L, Rashad AA, Lam PYS, Polyak B, Jorns MS (2021) Discovery of a first-in-class inhibitor of sulfide:quinone oxidoreductase that protects against adverse cardiac remodeling and heart failure. Cardiovasc Res. https://doi.org/10.1093/cvr/cvab206

    Article  PubMed Central  Google Scholar 

  37. Zhang SF, Pan CL, Zhou FF, Yuan Z, Wang HY, Cui W, Zhang GS (2015) Hydrogen sulfide as a potential therapeutic target in fibrosis. Oxid Med Cell Longev. https://doi.org/10.1155/2015/593407

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sikura KE, Potor L, Szerafin T, Oros M, Nagy P, Mehes G, Hendrik Z, Zarjou A, Agarwal A, Posta N, Torregrossa R, Whiteman M, Furtos I, Balla G, Balla J (2020) Hydrogen sulfide inhibits calcification of heart valves; implications for calcific aortic valve disease. Br J Pharmacol 177:793–809. https://doi.org/10.1111/bph.14691

    Article  CAS  PubMed  Google Scholar 

  39. Corsello T, Komaravelli N, Casola A (2018) Role of hydrogen sulfide in NRF2- and sirtuin-dependent maintenance of cellular redox balance. Antioxidants 7:129. https://doi.org/10.3390/antiox7100129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cui W, Chen J, Yu F, Liu W, He M (2021) GYY4137 protected the integrity of the blood-brain barrier via activation of the Nrf2/ARE pathway in mice with sepsis. FASEB J 35:e21710. https://doi.org/10.1096/fj.202100074R

    Article  CAS  PubMed  Google Scholar 

  41. Xie L, Gu Y, Wen M, Zhao S, Wang W, Ma Y, Meng G, Han Y, Wang Y, Liu G, Moore PK, Wang X, Wang H, Zhang Z, Yu Y, Ferro A, Huang Z, Ji Y (2016) Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation. Diabetes 65:3171–3184. https://doi.org/10.2337/db16-0020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bhatia M (2015) H2S and inflammation: an overview. Handb Exp Pharmacol 230:165–180. https://doi.org/10.1007/978-3-319-18144-8_8

    Article  CAS  PubMed  Google Scholar 

  43. Eva Sikura K, Combi Z, Potor L, Szerafin T, Hendrik Z, Mehes G, Gergely P, Whiteman M, Beke L, Furtos I, Balla G, Balla J (2021) Hydrogen sulfide inhibits aortic valve calcification in heart via regulating RUNX2 by NF-kappaB, a link between inflammation and mineralization. J Adv Res 27:165–176. https://doi.org/10.1016/j.jare.2020.07.005

    Article  CAS  PubMed  Google Scholar 

  44. Yang F, Zhang L, Gao Z, Sun X, Yu M, Dong S, Wu J, Zhao Y, Xu C, Zhang W, Lu F (2017) Exogenous H2S protects against diabetic cardiomyopathy by activating autophagy via the AMPK/mTOR pathway. Cell Physiol Biochem 43:1168–1187. https://doi.org/10.1159/000481758

    Article  CAS  PubMed  Google Scholar 

  45. Xie H, Xu Q, Jia J, Ao G, Sun Y, Hu L, Alkayed NJ, Wang C, Cheng J (2015) Hydrogen sulfide protects against myocardial ischemia and reperfusion injury by activating AMP-activated protein kinase to restore autophagic flux. Biochem Biophys Res Commun 458:632–638. https://doi.org/10.1016/j.bbrc.2015.02.017

    Article  CAS  PubMed  Google Scholar 

  46. Wang M, Tang W, Zhu YZ (2017) An update on AMPK in hydrogen sulfide pharmacology. Front Pharmacol 8:810. https://doi.org/10.3389/fphar.2017.00810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu DD, Wang HG, Teng TS, Duan SF, Ji AL, Li YZ (2018) Hydrogen sulfide and autophagy: a double edged sword. Pharmacol Res 131:120–127. https://doi.org/10.1016/j.phrs.2018.03.002

    Article  CAS  PubMed  Google Scholar 

  48. Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–473. https://doi.org/10.1089/ars.2013.5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176:11–42. https://doi.org/10.1016/j.cell.2018.09.048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang J, Wu D, Wang H (2019) Hydrogen sulfide plays an important protective role by influencing autophagy in diseases. Physiol Res 68:335–345. https://doi.org/10.33549/physiolres.933996

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2019R1I1A2A01060702). It was also supported by a grant (2022IF-0004) from the Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea.

Author information

Authors and Affiliations

Authors

Contributions

SL contributed to the study conception and design as a corresponding author. Material preparation was performed by NS, JEY, EJ, KHC. Data collection and analysis were performed by NS. The first draft of the manuscript was written by NS and SL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sahmin Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study was performed in accordance with the ethical standards laid down in 1964 Declaration of Helsinki and its later amendments, and the Institutional Review Board (IRB) of Asan Medical Center (Seoul, Korea) approved the study protocol for the collection of human samples (IRB No. 2017 − 0556) and all patients gave their informed consent prior to their inclusion in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, N., Yu, J.E., Ji, E. et al. Hydrogen sulfide inhibits gene expression associated with aortic valve degeneration by inducing NRF2-related pro-autophagy effect in human aortic valve interstitial cells. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04881-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04881-2

Keywords

Navigation