Skip to main content

Advertisement

Log in

Inhibition of STIM1 alleviates high glucose-induced proliferation and fibrosis by inducing autophagy in mesangial cells

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Diabetic nephropathy (DN) is a renal microvascular complication caused by diabetes mellitus. One of the most typical characteristics of DN is glomerular mesangial cells (GMCs) proliferation. Stromal interaction molecule 1 (STIM1), a Ca2+ channel, is involved in many diseases. In this study, we investigated the role of STIM1 in the proliferation and fibrosis in high glucose (HG)-induced HBZY-1 cells. We found that the expression of STIM1 was increased in renal tissues of diabetic rat and HBZY-1 cells stimulated by HG. Downregulation of STIM1-mediated SOCE suppressed hyperglycemic cell proliferation and fibrosis by activating autophagy. In addition, the inhibitory effect of downregulating STIM1 on cells was blocked by autophagy inhibitor Bafilomycin A1 (BafA1). Moreover, this experiment also showed that STIM1 regulated autophagy, cell proliferation and fibrosis via PI3K/AKT/mTOR signal pathway. These results clarify the role of STIM1 in HBZY-1 cells and its mechanism, and provide a new target for the treatment of DN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

DN:

Diabetic nephropathy

GMCs:

Glomerular mesangial cells

STIM1:

Stromal interaction molecule 1

TRPC3:

Transient receptor potential channel 3

TRPC6:

Transient receptor potential channel 6

HG:

High glucose

BafA1:

Bafilomycin A1

ECM:

Extracellular matrix

SOCE:

Stored-operated calcium entry

ASMCs:

Airway smooth muscle cells

References

  1. Testa R, Bonfigli AR, Prattichizzo F, La Sala L, De Nigris V, Ceriello A (2017) The “metabolic memory” theory and the early treatment of hyperglycemia in prevention of diabetic complications. Nutrients 9(5):437

    Article  PubMed  PubMed Central  Google Scholar 

  2. Qi C, Mao X, Zhang Z, Wu H (2017) Classification and differential diagnosis of diabetic nephropathy. J Diabetes Res 2017:1–7

    Google Scholar 

  3. Xiong Y, Zhou L (2019) The signaling of cellular senescence in diabetic nephropathy. Oxidative Med Cell Longev 2019:1–16

    Google Scholar 

  4. Hu Q, Chen Y, Deng X, Li Y, Ma X, Zeng J, Zhao Y (2023) Diabetic nephropathy: focusing on pathological signals, clinical treatment, and dietary regulation. Biomed Pharmacother 159:114252

    Article  PubMed  Google Scholar 

  5. Baird GS (2011) Ionized calcium. Int J Clin Chem 412(9–10):696–701

    CAS  Google Scholar 

  6. Hann J, Bueb JL, Tolle F, Bréchard S (2020) Calcium signaling and regulation of neutrophil functions: still a long way to go. J Leukoc Biol 107(2):285–297

    Article  CAS  PubMed  Google Scholar 

  7. Ambudkar IS, de Souza LB, Ong HL (2017) Trpc1, orai1, and stim1 in soce: friends in tight spaces. Cell Calcium 63:33–39

    Article  CAS  PubMed  Google Scholar 

  8. Chaudhari S, Wu P, Wang Y, Ding Y, Yuan J, Begg M, Ma R (2014) High glucose and diabetes enhanced store-operated ca(2+) entry and increased expression of its signaling proteins in mesangial cells. Am J Physiol Renal Physiol 306(9):F1069-1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sours-Brothers S, Ding M, Graham S, Ma R (2009) Interaction between trpc1/trpc4 assembly and stim1 contributes to store-operated ca2+ entry in mesangial cells. Exp Biol Med (Maywood) 234(6):673–682

    Article  CAS  PubMed  Google Scholar 

  10. Lu T, Zhou D, Gao P, Si L, Xu Q (2018) Resveratrol attenuates high glucose-induced endothelial cell apoptosis via mediation of store-operated calcium entry. Mol Cell Biochem 442(1–2):73–80

    Article  CAS  PubMed  Google Scholar 

  11. Ge C, Zeng B, Li R, Li Z, Fu Q, Wang W, Wang Z, Dong S, Lai Z, Wang Y, Xue Y et al (2019) Knockdown of stim1 expression inhibits non-small-cell lung cancer cell proliferation in vitro and in nude mouse xenografts. Bioengineered 10(1):425–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zou JJ, Gao YD, Geng S, Yang J (2011) Role of stim1/orai1-mediated store-operated ca2+ entry in airway smooth muscle cell proliferation. J Appl Physiol 110(5):1256–1263

    Article  CAS  PubMed  Google Scholar 

  13. Hou X, Chen J, Luo Y, Liu F, Xu G, Gao Y (2013) Silencing of stim1 attenuates hypoxia-induced pasmcs proliferation via inhibition of the soc/ca2+/nfat pathway. Respir Res 14(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Chaudhari S, Ren Y, Ma R (2015) Impairment of hepatic nuclear factor-4α binding to the stim1 promoter contributes to high glucose-induced upregulation of stim1 expression in glomerular mesangial cells. Am J Physiol Renal Physiol 308(10):F1135-1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Parmar UM, Jalgaonkar MP, Kulkarni YA, Oza MJ (2022) Autophagy-nutrient sensing pathways in diabetic complications. Pharmacol Res 184:106408

    Article  CAS  PubMed  Google Scholar 

  16. Liang Q, Liu T, Guo T, Tao W, Chen X, Chen W, Chen L, Xiao Y (2021) Atf4 promotes renal tubulointerstitial fibrosis by suppressing autophagy in diabetic nephropathy. Life Sci 264:118686

    Article  CAS  PubMed  Google Scholar 

  17. Zhu L, Yuan Y, Yuan L, Li L, Liu F, Liu J, Chen Y, Lu Y, Cheng J (2020) Activation of tfeb-mediated autophagy by trehalose attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Theranostics 10(13):5829–5844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kimura T, Takabatake Y, Takahashi A, Kaimori JY, Matsui I, Namba T, Kitamura H, Niimura F, Matsusaka T, Soga T, Rakugi H et al (2011) Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol 22(5):902–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hartleben B, Gödel M, Meyer-Schwesinger C, Liu S, Ulrich T, Köbler S, Wiech T, Grahammer F, Arnold SJ, Lindenmeyer MT, Cohen CD et al (2010) Autophagy influences glomerular disease susceptibility and maintains podocyte homeostasis in aging mice. J Clin Investig 120(4):1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barbosa Júnior Ade A, Zhou H, Hültenschmidt D, Totovic V, Jurilj N, Pfeifer U (1992) Inhibition of cellular autophagy in proximal tubular cells of the kidney in streptozotocin-diabetic and uninephrectomized rats. Virchows Archiv B Cell Pathol Incl Mol Pathol 61(6):359–366

    Article  Google Scholar 

  21. Vallon V, Rose M, Gerasimova M, Satriano J, Platt KA, Koepsell H, Cunard R, Sharma K, Thomson SC, Rieg T (2013) Knockout of na-glucose transporter sglt2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol 304(2):F156-167

    Article  CAS  PubMed  Google Scholar 

  22. Kim SI, Na HJ, Ding Y, Wang Z, Lee SJ, Choi ME (2012) Autophagy promotes intracellular degradation of type i collagen induced by transforming growth factor (tgf)-β1. J Biol Chem 287(15):11677–11688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao L, Lan Z, Peng L, Wan L, Liu D, Tan X, Tang C, Chen G, Liu H (2022) Triptolide promotes autophagy to inhibit mesangial cell proliferation in iga nephropathy via the card9/p38 mapk pathway. Cell Prolif 55(9):e13278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen J, Hu Q, Luo Y, Luo L, Lin H, Chen D, Xu Y, Liu B, He Y, Liang C, Liu Y et al (2022) Salvianolic acid b attenuates membranous nephropathy by activating renal autophagy via microrna-145-5p/phosphatidylinositol 3-kinase/akt pathway. Bioengineered 13(5):13956–13969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kondratskyi A, Yassine M, Slomianny C, Kondratska K, Gordienko D, Dewailly E, Lehen’kyi V, Skryma R, Prevarskaya N (2014) Identification of ml-9 as a lysosomotropic agent targeting autophagy and cell death. Cell Death Dis 5(4):e1193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang J, Yu J, Li D, Yu S, Ke J, Wang L, Wang Y, Qiu Y, Gao X, Zhang J, Huang L (2017) Store-operated calcium entry-activated autophagy protects epc proliferation via the camkk2-mtor pathway in ox-ldl exposure. Autophagy 13(1):82–98

    Article  CAS  PubMed  Google Scholar 

  27. Liu B, He X, Li S, Xu B, Birnbaumer L, Liao Y (2017) Deletion of diacylglycerol-responsive trpc genes attenuates diabetic nephropathy by inhibiting activation of the tgfβ1 signaling pathway. Am J Transl Res 9(12):5619–5630

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ding Y, Choi ME (2015) Autophagy in diabetic nephropathy. J Endocrinol 224(1):R15-30

    Article  CAS  PubMed  Google Scholar 

  29. Yang D, Livingston MJ, Liu Z, Dong G, Zhang M, Chen JK, Dong Z (2018) Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci CMLS 75(4):669–688

    Article  CAS  PubMed  Google Scholar 

  30. Selvaraj S, Sun Y, Sukumaran P, Singh BB (2016) Resveratrol activates autophagic cell death in prostate cancer cells via downregulation of stim1 and the mtor pathway. Mol Carcinog 55(5):818–831

    Article  CAS  PubMed  Google Scholar 

  31. Jing Z, Sui X, Yao J, Xie J, Jiang L, Zhou Y, Pan H, Han W (2016) Skf-96365 activates cytoprotective autophagy to delay apoptosis in colorectal cancer cells through inhibition of the calcium/camkiiγ/akt-mediated pathway. Cancer Lett 372(2):226–238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tang BD, Xia X, Lv XF, Yu BX, Yuan JN, Mai XY, Shang JY, Zhou JG, Liang SJ, Pang RP (2017) Inhibition of orai1-mediated ca(2+) entry enhances chemosensitivity of hepg2 hepatocarcinoma cells to 5-fluorouracil. J Cell Mol Med 21(5):904–915

    Article  CAS  PubMed  Google Scholar 

  33. Wang YJ, Chen YY, Hsiao CM, Pan MH, Wang BJ, Chen YC, Ho CT, Huang KC, Chen RJ (2020) Induction of autophagy by pterostilbene contributes to the prevention of renal fibrosis via attenuating nlrp3 inflammasome activation and epithelial-mesenchymal transition. Front Cell Dev Biol 8:436

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nam SA, Kim WY, Kim JW, Park SH, Kim HL, Lee MS, Komatsu M, Ha H, Lim JH, Park CW, Yang CW et al (2019) Autophagy attenuates tubulointerstital fibrosis through regulating transforming growth factor-β and nlrp3 inflammasome signaling pathway. Cell Death Dis 10(2):78

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S, Chugh S, Danesh FR (2008) Diabetic nephropathy: Mechanisms of renal disease progression. Exp Biol Med (Maywood) 233(1):4–11

    Article  CAS  PubMed  Google Scholar 

  36. Lei D, Chengcheng L, Xuan Q, Yibing C, Lei W, Hao Y, Xizhi L, Yuan L, Xiaoxing Y, Qian L (2019) Quercetin inhibited mesangial cell proliferation of early diabetic nephropathy through the hippo pathway. Pharmacol Res 146:104320

    Article  CAS  PubMed  Google Scholar 

  37. Chen L, Cao R, Wang G, Yuan L, Qian G, Guo Z, Wu CL, Wang X, Xiao Y (2017) Downregulation of trpm7 suppressed migration and invasion by regulating epithelial-mesenchymal transition in prostate cancer cells. Med Oncol (Northwood, London, England) 34(7):127

    Article  Google Scholar 

  38. Su F, Wang BF, Zhang T, Hou XM, Feng MH (2019) Trpm7 deficiency suppresses cell proliferation, migration, and invasion in human colorectal cancer via regulation of epithelial-mesenchymal transition. Cancer Biomark Sect A Dis Markers 26(4):451–460

    CAS  Google Scholar 

  39. Zang J, Zuo D, Shogren KL, Gustafson CT, Zhou Z, Thompson MA, Guo R, Prakash YS, Lu L, Guo W, Maran A et al (2019) Stim1 expression is associated with osteosarcoma cell survival. Chin J Cancer Res 31(1):203–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yi M, Zhang L, Liu Y, Livingston MJ, Chen JK, Nahman NS Jr, Liu F, Dong Z (2017) Autophagy is activated to protect against podocyte injury in adriamycin-induced nephropathy. Am J Physiol Renal Physiol 313(1):F74-f84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen Y, Liu Q, Shan Z, Mi W, Zhao Y, Li M, Wang B, Zheng X, Feng W (2019) Catalpol ameliorates podocyte injury by stabilizing cytoskeleton and enhancing autophagy in diabetic nephropathy. Front Pharmacol 10:1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Su PP, Liu DW, Zhou SJ, Chen H, Wu XM, Liu ZS (2022) Down-regulation of risa improves podocyte injury by enhancing autophagy in diabetic nephropathy. Mil Med Res 9(1):23

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Li XY, Wang SS, Han Z, Han F, Chang YP, Yang Y, Xue M, Sun B, Chen LM (2017) Triptolide restores autophagy to alleviate diabetic renal fibrosis through the mir-141–3p/pten/akt/mtor pathway. Mol Ther Nucleic acids 9:48–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang Q, Guo W, Hao B, Shi X, Lu Y, Wong CW, Ma VW, Yip TT, Au JS, Hao Q, Cheung KH et al (2016) Mechanistic study of trpm2-ca(2+)-camk2-becn1 signaling in oxidative stress-induced autophagy inhibition. Autophagy 12(8):1340–1354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hou X, Xiao H, Zhang Y, Zeng X, Huang M, Chen X, Birnbaumer L, Liao Y (2018) Transient receptor potential channel 6 knockdown prevents apoptosis of renal tubular epithelial cells upon oxidative stress via autophagy activation. Cell Death Dis 9(10):1015

    Article  PubMed  PubMed Central  Google Scholar 

  46. Meijer AJ, Codogno P (2004) Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol 36(12):2445–2462

    Article  CAS  PubMed  Google Scholar 

  47. Xue JF, Shi ZM, Zou J, Li XL (2017) Inhibition of pi3k/akt/mtor signaling pathway promotes autophagy of articular chondrocytes and attenuates inflammatory response in rats with osteoarthritis. Biomed Pharmacother 89:1252–1261

    Article  CAS  PubMed  Google Scholar 

  48. Heras-Sandoval D, Pérez-Rojas JM, Hernández-Damián J, Pedraza-Chaverri J (2014) The role of pi3k/akt/mtor pathway in the modulation of autophagy and the clearance of protein aggregates in neurodegeneration. Cell Signal 26(12):2694–2701

    Article  CAS  PubMed  Google Scholar 

  49. Zhou Y, Gu P, Li J, Li F, Zhu J, Gao P, Zang Y, Wang Y, Shan Y, Yang D (2017) Suppression of stim1 inhibits the migration and invasion of human prostate cancer cells and is associated with pi3k/akt signaling inactivation. Oncol Rep 38(5):2629–2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chagnac A, Zingerman B, Rozen-Zvi B, Herman-Edelstein M (2019) Consequences of glomerular hyperfiltration: the role of physical forces in the pathogenesis of chronic kidney disease in diabetes and obesity. Nephron 143(1):38–42

    Article  CAS  PubMed  Google Scholar 

  51. Ishida T, Haneda M, Maeda S, Koya D, Kikkawa R (1999) Stretch-induced overproduction of fibronectin in mesangial cells is mediated by the activation of mitogen-activated protein kinase. Diabetes 48(3):595–602

    Article  CAS  PubMed  Google Scholar 

  52. Cheng CK, Shang W, Liu J, Cheang WS, Wang Y, Xiang L, Lau CW, Luo JY, Ng CF, Huang Y, Wang L (2022) Activation of ampk/mir-181b axis alleviates endothelial dysfunction and vascular inflammation in diabetic mice. Antioxidants (Basel, Switzerland) 11(6):1137

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China Grants 31171087 and 30970662 (to Y.L.), the National Natural Science Foundation of China Grants 81172786, Health Committee of Hubei Province of China Grants WJ2019M146 and Chen Xiao-Ping Foundation CXPJJH11900018-06 (to M.Z.).

Author information

Authors and Affiliations

Authors

Contributions

YL, MZ and XZ conceived and designed research. XZ and AS drafted the manuscript and performed experiments. WC and XH contributed to the interpretation of the results. YL and MZ contributed to analyze data and prepare the manuscript. All authors contributed to revise the article and approved the submitted version.

Corresponding authors

Correspondence to Min Zhu or Yanhong Liao.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Sun, A., Cheng, W. et al. Inhibition of STIM1 alleviates high glucose-induced proliferation and fibrosis by inducing autophagy in mesangial cells. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04844-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04844-7

Keywords

Navigation