Skip to main content
Log in

MiR-29c alleviates hyperglycemia-induced inflammation via targeting TGF-β in cardiomyocytes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

This study aims to investigate whether miR-29c is involved in regulating transforming growth factor-β (TGF-β) mediated inflammation in diabetic cardiomyopathy (DCM). Our data showed increased inflammation and oxidative stress in diabetic myocardium together with decrease of miR-29c and elevation of TGF-β expression. In vitro experiments, we transfected miR-29c mimic and antagomir into HL-1 cells to explore the effect of miR-29c on inflammation in hyperglycemic conditions. Overexpression of miR-29c down-regulated the elevated TNF-α level, ROS production and NADPH oxidase activity which caused by high glucose. However, above changes were reversed by miR-29c antagomir. Interestingly, TGF-β protein rather than mRNA expression was changed significantly after transfection with miR-29c mimic, indicating that the modulation of TGF-β mediated by miR-29c was at the posttranslational level. Meanwhile, we found that 3′-UTR of TGF-β was the direct target of miR-29c confirmed by dual-luciferase assay. In conclusion, our study revealed that miR-29c could alleviate hyperglycemic-induced inflammation and ROS production via targeting TGF-β in cardiomyocytes, which provides a potential target for the treatment of DCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

References

  1. Dillmann WH (2019) Diabetic Cardiomyopathy. Circ Res 124(8):1160–1162. https://doi.org/10.1161/CIRCRESAHA.118.314665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Amiel SA, Aschner P, Childs B et al (2019) Hypoglycaemia, cardiovascular disease, and mortality in diabetes: epidemiology, pathogenesis, and management. Lancet Diabet Endocrinol 7(5):385–396. https://doi.org/10.1016/S2213-8587(18)30315-2

    Article  Google Scholar 

  3. Strain WD, Paldánius PM (2018) Diabetes, cardiovascular disease and the microcirculation. Cardiovasc Diabetol 17(1):57. https://doi.org/10.1186/s12933-018-0703-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Murtaza G, Virk HUH, Khalid M et al (2019) Diabetic cardiomyopathy—a comprehensive updated review. Prog Cardiovasc Dis 62(4):315–326. https://doi.org/10.1016/j.pcad.2019.03.003

    Article  PubMed  Google Scholar 

  5. Abukhalil MH, Althunibat OY, Aladaileh SH et al (2021) Galangin attenuates diabetic cardiomyopathy through modulating oxidative stress, inflammation and apoptosis in rats. Biomed Pharmacother 138:111410. https://doi.org/10.1016/j.biopha.2021.111410

    Article  CAS  PubMed  Google Scholar 

  6. Jubaidi FF, Zainalabidin S, Taib IS et al (2021) The potential role of flavonoids in ameliorating diabetic cardiomyopathy via alleviation of cardiac oxidative stress, inflammation and apoptosis. Int J Mol Sci 22(10):5094. https://doi.org/10.3390/ijms22105094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kaur N, Guan Y, Raja R et al (2021) Mechanisms and therapeutic prospects of diabetic cardiomyopathy through the inflammatory response. Front Physiol. https://doi.org/10.3389/fphys.2021.694864

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sharma A, Tate M, Mathew G et al (2018) Oxidative stress and NLRP3-Inflammasome activity as significant drivers of diabetic cardiovascular complications: therapeutic implications. Front Physiol. https://doi.org/10.3389/fphys.2018.00114

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ke X, Hao Y, Li B et al (2018) Vaspin prevents tumor necrosis factor-alpha-induced apoptosis in cardiomyocytes by promoting autophagy. J Cardiovasc Pharmacol 77(5):257–267. https://doi.org/10.1097/FJC.0000000000000562

    Article  CAS  PubMed  Google Scholar 

  10. Saklani R, Gupta SK, Mohanty IR et al (2016) Cardioprotective effects of rutin via alteration in TNF-α, CRP, and BNP levels coupled with antioxidant effect in STZ-induced diabetic rats. Mol Cell Biochem 420(1–2):65–72. https://doi.org/10.1007/s11010-016-2767-1

    Article  CAS  PubMed  Google Scholar 

  11. Lehrskov LL, Christensen RH (2019) The role of interleukin-6 in glucose homeostasis and lipid metabolism. Semin Immunopathol 41(4):491–499. https://doi.org/10.1007/s00281-019-00747-2

    Article  PubMed  Google Scholar 

  12. Huo S, Shi W, Ma H et al (2021) Alleviation of inflammation and oxidative stress in pressure overload-induced cardiac remodeling and heart failure via IL-6/STAT3 inhibition by raloxifene. Oxid Med Cell Longev 2021:1–15. https://doi.org/10.1155/2021/6699054

    Article  CAS  Google Scholar 

  13. Goumans MJ, Ten Dijke P (2018) TGF-β signaling in control of cardiovascular function. Cold Spring Harb Perspect Biol 10(2):a022210. https://doi.org/10.1101/cshperspect.a022210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen PY, Qin L, Li G et al (2019) Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nat Metab 1(9):912–926. https://doi.org/10.1038/s42255-019-0102-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yue Y, Meng K, Pu Y et al (2017) Transforming growth factor beta (TGF-β) mediates cardiac fibrosis and induces diabetic cardiomyopathy. Diabetes Res Clin Pr 133:124–130. https://doi.org/10.1016/j.diabres.2017.08.018

    Article  CAS  Google Scholar 

  16. Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immun 141(4):1202–1207. https://doi.org/10.1016/j.jaci.2017.08.034

    Article  CAS  PubMed  Google Scholar 

  17. Fasolo F, Di Gregoli K, Maegdefessel L et al (2019) Non-coding RNAs in cardiovascular cell biology and atherosclerosis. Cardiovasc Res 115(12):1732–1756. https://doi.org/10.1093/cvr/cvz203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Barwari T, Joshi A, Mayr M (2016) MicroRNAs in cardiovascular disease. J Am Coll Cardiol 68(23):2577–2584. https://doi.org/10.1016/j.jacc.2016.09.945

    Article  CAS  PubMed  Google Scholar 

  19. Che H, Wang Y, Li Y et al (2020) Inhibition of microRNA-150‐5p alleviates cardiac inflammation and fibrosis via targeting Smad7 in high glucose‐treated cardiac fibroblasts. J Cell Physiol 235(11):7769–7779. https://doi.org/10.1002/jcp.29386

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Guo B, Zhang W et al (2021) MiR-20a-5p overexpression prevented diabetic cardiomyopathy via inhibition of cardiomyocyte apoptosis, hypertrophy, fibrosis and JNK/NF-κB signalling pathway. J Biochem 170(3):349–362. https://doi.org/10.1093/jb/mvab047

    Article  CAS  PubMed  Google Scholar 

  21. Horita M, Farquharson C, Stephen LA (2021) The role of miR-29 family in disease. J Cell Biochem 122(7):696–715. https://doi.org/10.1002/jcb.29896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hu Y, Deng F, Song J et al (2015) Evaluation of miR-29c inhibits endotheliocyte migration and angiogenesis of human endothelial cells by suppressing the insulin like growth factor 1. Am J Transl Res 7:489–501

    PubMed  PubMed Central  Google Scholar 

  23. Li T, Gu J, Yang O et al (2020) Bone marrow mesenchymal stem cell-derived exosomal miRNA-29c decreases cardiac ischemia/reperfusion injury through inhibition of excessive autophagy via the PTEN/Akt/mTOR signaling pathway. Circ J 84(8):1304–1311. https://doi.org/10.1253/circj.CJ-19-1060

    Article  CAS  PubMed  Google Scholar 

  24. Lu D, Thum T (2019) RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nat Rev Cardiol 16(11):661–674. https://doi.org/10.1038/s41569-019-0218-x

    Article  PubMed  Google Scholar 

  25. Liu Y, Zhu Y, Liu S et al (2021) NORAD lentivirus shRNA mitigates fibrosis and inflammatory responses in diabetic cardiomyopathy via the ceRNA network of NORAD/miR-125a-3p/Fyn. Inflamm Res 70(10–12):1113–1127. https://doi.org/10.1007/s00011-021-01500-y

    Article  CAS  PubMed  Google Scholar 

  26. Liu M, Luo G, Gao W et al (2021) miR-29 family: a potential therapeutic target for cardiovascular disease. Pharmacol Res 166:105510. https://doi.org/10.1016/j.phrs.2021.105510

    Article  CAS  PubMed  Google Scholar 

  27. Tian J, Zhang M, Suo M et al (2021) Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic rats. J Cell Mol Med 25(16):7642–7659. https://doi.org/10.1111/jcmm.16601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morikawa M, Derynck R, Miyazono K (2016) TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Csh Perspect Biol 8(5):a21873. https://doi.org/10.1101/cshperspect.a021873

    Article  CAS  Google Scholar 

  29. Goumans MJ, Ten DP (2018) TGF-beta signaling in control of cardiovascular function. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a022210

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yan X, Wang Y, Yu Z et al (2018) Peroxisome proliferator-activated receptor-gamma activation attenuates diabetic cardiomyopathy via regulation of the TGF-β/ERK pathway and epithelial-to-mesenchymal transition. Life Sci 213:269–278. https://doi.org/10.1016/j.lfs.2018.09.004

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (No. 82170484 and No. 82270884), Key Research and Development Project in Anhui Province (No. 202004b11020025), Special Support Program for Innovative and Entrepreneurial Talents of Anhui Province, and the University Science Research Project of Anhui Province (No. KJ2021A0247).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, HZ, and ST; formal analysis, HZ and HT; funding acquisition, HZ, ST and YW; methodology, HZ and HT; project administration, ST and HZ; validation, HZ and HT; writing—original draft, HT and ST; writing—review and editing, YW. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Songtao Tang or Huaqing Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The study was conducted according to the Guide for the Care and Use of Laboratory Animals, and approved by the Ethics Committee of Anhui Medical University (Permission Number: LLSC20210825).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, H., Tang, H., Wang, Y. et al. MiR-29c alleviates hyperglycemia-induced inflammation via targeting TGF-β in cardiomyocytes. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04813-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04813-0

Keywords

Navigation