Skip to main content

Advertisement

Log in

Mitochondria and NLRP3 inflammasome in cardiac hypertrophy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cardiac hypertrophy is the main adaptive response of the heart to chronic loads; however, prolonged or excessive hypertrophy promotes myocardial interstitial fibrosis, systolic dysfunction, and cardiomyocyte death, especially aseptic inflammation mediated by NLRP3 inflammasome, which can aggravate ventricular remodeling and myocardial damage, which is an important mechanism for the progression of heart failure. Various cardiac overloads can cause mitochondrial damage. In recent years, the mitochondria have been demonstrated to be involved in the inflammatory response during the development of cardiac hypertrophy in vitro and in vivo. As the NLRP3 inflammasome and mitochondria are regulators of inflammation and cardiac hypertrophy, we explored the potential functions of the NLRP3 inflammasome and mitochondrial dysfunction in cardiac hypertrophy. In particular, we proposed that the induction of mitochondrial dysfunction in cardiomyocytes may promote NLRP3-dependent inflammation during myocardial hypertrophy. Further in-depth studies could prompt valuable discoveries regarding the underlying molecular mechanisms of cardiac hypertrophy, reveal novel anti-inflammatory therapies for cardiac hypertrophy, and provide more desirable therapeutic outcomes for patients with cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Enquiries about data availability should be directed to the authors.

Abbreviations

ACEI:

Angiotensin-converting enzyme

ASC:

Apoptosis-associated speck-like protein containing a CARD

ATP:

Adenosine triphosphate

DAMPs:

Danger-associated molecular patterns

GSDMD:

Gasdermin D

GSDMD-NT:

GSDMD-N-terminal

IF1:

Inhibitory factor 1

IL-1β:

Interleukin-1β

IL-1R1:

IL-1 receptor type 1

IL-18:

Interleukin-18

IRI:

Ischemia-reperfusion injury

mtDNA:

Mitochondrial DNA

mt-dynamics:

Mitochondrial dynamics

NF-κB:

Nuclear factor-κB

NLRP3:

The pyridine domain-containing 3

NLRs:

Nucleotide-binding and oligomerization domain (NOD)-like receptor

NOX:

Nicotinamide adenine dinucleotide phosphate oxidase

Ox-mtDNA:

Oxidation of mtDNA

PPQ:

Pyrroloquinoline quinone

ROS:

Reactive oxygen species

SiNP:

Silica nanoparticle

SUMO:

Small ubiquitin-related modifier

TNF:

Tumor necrosis factor

TNFR:

Tumor necrosis factor receptor

TLR4:

Toll-like receptor 4

YLLs:

Years of life lost

References

  1. Joseph P et al (2017) Reducing the global burden of cardiovascular disease, Part 1: the epidemiology and risk factors. Circ Res 121(6):677–694

    Article  CAS  PubMed  Google Scholar 

  2. Gregory AR et al (2017) Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: a systematic analysis for the Global Burden of Disease Study. Lancet 392(10159):1736–1788

    Google Scholar 

  3. Yu W, Chen C, Cheng J (2020) The role and molecular mechanism of FoxO1 in mediating cardiac hypertrophy. ESC Heart Fail 7(6):3497–3504

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mele M et al (2021) Diagnosis of acute myocardial infarction in the time of the COVID-19 pandemic. Eur Heart J 42(3):286

    Article  CAS  PubMed  Google Scholar 

  5. Shah AK et al (2021) Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants (Basel) 10(6):931

    Article  CAS  PubMed  Google Scholar 

  6. Verma SK et al (2012) Interleukin-10 treatment attenuates pressure overload-induced hypertrophic remodeling and improves heart function via signal transducers and activators of transcription 3-dependent inhibition of nuclear factor-κB. Circulation 126(4):418–429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Hout GP et al (2017) The selective NLRP3-inflammasome inhibitor MCC950 reduces infarct size and preserves cardiac function in a pig model of myocardial infarction. Eur Heart J 38(11):828–836

    PubMed  Google Scholar 

  8. van Hout GPJ, Bosch L (2018) The inflammasomes in cardiovascular disease. Exp Suppl 108:9–40

    PubMed  Google Scholar 

  9. Dorn GW 2nd, Vega RB, Kelly DP (2015) Mitochondrial biogenesis and dynamics in the developing and diseased heart. Genes Dev 29(19):1981–1991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oldfield CJ, Duhamel TA, Dhalla NS (2020) Mechanisms for the transition from physiological to pathological cardiac hypertrophy. Can J Physiol Pharmacol 98(2):74–84

    Article  CAS  PubMed  Google Scholar 

  11. Fioranelli M et al (2021) Regulation of inflammatory reaction in health and disease. Int J Mol Sci 22(10):5277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shen H, Kreisel D, Goldstein DR (2013) Processes of sterile inflammation. J Immunol 191(6):2857–2863

    Article  CAS  PubMed  Google Scholar 

  13. Man SM, Kanneganti TD (2015) Regulation of inflammasome activation. Immunol Rev 265(1):6–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Patel MN et al (2017) Inflammasome priming in sterile inflammatory disease. Trends Mol Med 23(2):165–180

    Article  CAS  PubMed  Google Scholar 

  15. Bauernfeind FG et al (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183(2):787–791

    Article  CAS  PubMed  Google Scholar 

  16. Swanson KV, Deng M, Ting JP (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19(8):477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Muñoz-Planillo R et al (2013) K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38(6):1142–1153

    Article  PubMed  PubMed Central  Google Scholar 

  18. Murakami T et al (2012) Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci U S A 109(28):11282–11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Verhoef PA et al (2005) Inhibitory effects of chloride on the activation of caspase-1, IL-1beta secretion, and cytolysis by the P2X7 receptor. J Immunol 175(11):7623–7634

    Article  CAS  PubMed  Google Scholar 

  20. Liu Z et al (2018) Silymarin attenuated paraquat-induced cytotoxicity in macrophage by regulating Trx/TXNIP complex, inhibiting NLRP3 inflammasome activation and apoptosis. Toxicol In Vitro 46:265–272

    Article  PubMed  Google Scholar 

  21. Shimada K et al (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36(3):401–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Iyer SS et al (2013) Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 39(2):311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hornung V et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9(8):847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Grebe A, Hoss F, Latz E (2018) NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ Res 122(12):1722–1740

    Article  CAS  PubMed  Google Scholar 

  25. Weber ANR et al (2020) Recent insights into the regulatory networks of NLRP3 inflammasome activation. J Cell Sci. https://doi.org/10.1242/jcs.248344

    Article  PubMed  Google Scholar 

  26. Elliott EI, Sutterwala FS (2015) Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev 265(1):35–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhou LY et al (2013) Mitochondrial function in cardiac hypertrophy. Int J Cardiol 167(4):1118–1125

    Article  PubMed  Google Scholar 

  28. Bergmann O et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heallen TR et al (2020) Determinants of cardiac growth and size. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a037150

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tang X et al (2020) SNO-MLP (S-Nitrosylation of Muscle LIM Protein) facilitates myocardial hypertrophy through TLR3 (Toll-Like Receptor 3)-mediated RIP3 (Receptor-Interacting Protein Kinase 3) and NLRP3 (NOD-Like Receptor Pyrin Domain Containing 3) inflammasome activation. Circulation 141(12):984–1000

    Article  CAS  PubMed  Google Scholar 

  31. Dong Y et al (2018) Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy. Int J Biol Sci 14(9):1133–1141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Stafford N et al (2020) Signaling via the Interleukin-10 receptor attenuates cardiac hypertrophy in mice during pressure overload, but not isoproterenol infusion. Front Pharmacol 11:559220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Suetomi T et al (2018) Inflammation and NLRP3 inflammasome activation initiated in response to pressure overload by Ca(2+)/Calmodulin-dependent protein kinase II δ signaling in cardiomyocytes are essential for adverse cardiac remodeling. Circulation 138(22):2530–2544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li F et al (2018) NLRP3 deficiency accelerates pressure overload-induced cardiac remodeling via increased TLR4 expression. J Mol Med (Berl) 96(11):1189–1202

    Article  CAS  PubMed  Google Scholar 

  35. Pan XC et al (2019) Dual role of triptolide in interrupting the NLRP3 inflammasome pathway to attenuate cardiac fibrosis. Int J Mol Sci 20(2):360

    Article  PubMed  PubMed Central  Google Scholar 

  36. Zhang T et al (2020) Astragaloside IV prevents myocardial hypertrophy induced by mechanical stress by activating autophagy and reducing inflammation. Am J Transl Res 12(9):5332–5342

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kubota T et al (1997) Dilated cardiomyopathy in transgenic mice with cardiac-specific overexpression of tumor necrosis factor-alpha. Circ Res 81(4):627–635

    Article  CAS  PubMed  Google Scholar 

  38. Meléndez GC et al (2010) Interleukin 6 mediates myocardial fibrosis, concentric hypertrophy, and diastolic dysfunction in rats. Hypertension 56(2):225–231

    Article  PubMed  Google Scholar 

  39. Palmer JN et al (1995) Interleukin-1 beta induces cardiac myocyte growth but inhibits cardiac fibroblast proliferation in culture. J Clin Invest 95(6):2555–2564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sun M et al (2007) Tumor necrosis factor-alpha mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation 115(11):1398–1407

    Article  CAS  PubMed  Google Scholar 

  41. Ma F et al (2012) Macrophage-stimulated cardiac fibroblast production of IL-6 is essential for TGF β/Smad activation and cardiac fibrosis induced by angiotensin II. PLoS ONE 7(5):e35144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Honsho S et al (2009) Pressure-mediated hypertrophy and mechanical stretch induces IL-1 release and subsequent IGF-1 generation to maintain compensative hypertrophy by affecting Akt and JNK pathways. Circ Res 105(11):1149–1158

    Article  CAS  PubMed  Google Scholar 

  43. Yu Q et al (2009) IL-18 induction of osteopontin mediates cardiac fibrosis and diastolic dysfunction in mice. Am J Physiol Heart Circ Physiol 297(1):H76-85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pinto AR et al (2016) Revisiting cardiac cellular composition. Circ Res 118(3):400–409

    Article  CAS  PubMed  Google Scholar 

  45. Hu Y et al (2021) The AMPK-MFN2 axis regulates MAM dynamics and autophagy induced by energy stresses. Autophagy 17(5):1142–1156

    Article  CAS  PubMed  Google Scholar 

  46. van der Bliek AM, Shen Q, Kawajiri S (2013) Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a011072

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chistiakov DA et al (2018) The role of mitochondrial dysfunction in cardiovascular disease: a brief review. Ann Med 50(2):121–127

    Article  CAS  PubMed  Google Scholar 

  48. Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85(3):1093–1129

    Article  CAS  PubMed  Google Scholar 

  49. Siasos G et al (2018) Mitochondria and cardiovascular diseases-from pathophysiology to treatment. Ann Transl Med 6(12):256

    Article  PubMed  PubMed Central  Google Scholar 

  50. Yu SB, Pekkurnaz G (2018) Mechanisms orchestrating mitochondrial dynamics for energy homeostasis. J Mol Biol 430(21):3922–3941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Jin JY et al (2021) Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol Sin 42(5):655–664

    Article  CAS  PubMed  Google Scholar 

  52. Fang L et al (2007) Down-regulation of mitofusin-2 expression in cardiac hypertrophy in vitro and in vivo. Life Sci 80(23):2154–2160

    Article  CAS  PubMed  Google Scholar 

  53. Yu H et al (2011) Mitofusin 2 inhibits angiotensin II-induced myocardial hypertrophy. J Cardiovasc Pharmacol Ther 16(2):205–211

    Article  CAS  PubMed  Google Scholar 

  54. Piquereau J et al (2012) Down-regulation of OPA1 alters mouse mitochondrial morphology, PTP function, and cardiac adaptation to pressure overload. Cardiovasc Res 94(3):408–417

    Article  CAS  PubMed  Google Scholar 

  55. Wai T et al (2015) Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350(6265):aad0116

    Article  PubMed  Google Scholar 

  56. Hasan P et al (2018) Mitochondrial fission protein, dynamin-related protein 1, contributes to the promotion of hypertensive cardiac hypertrophy and fibrosis in Dahl-salt sensitive rats. J Mol Cell Cardiol 121:103–106

    Article  CAS  PubMed  Google Scholar 

  57. Sandoval H et al (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature 454(7201):232–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Yang K et al (2017) Knockout of the ATPase inhibitory factor 1 protects the heart from pressure overload-induced cardiac hypertrophy. Sci Rep 7(1):10501

    Article  PubMed  PubMed Central  Google Scholar 

  59. Choubey V, Zeb A, Kaasik A (2021) Molecular mechanisms and regulation of mammalian mitophagy. Cells 11(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  60. Abudureyimu M et al (2020) Berberine promotes cardiac function by upregulating PINK1/Parkin-mediated mitophagy in heart failure. Front Physiol 11:565751

    Article  PubMed  PubMed Central  Google Scholar 

  61. Song M et al (2014) Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ Res 115(3):348–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tong M et al (2019) Mitophagy is essential for maintaining cardiac function during high fat diet-induced diabetic cardiomyopathy. Circ Res 124(9):1360–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart 93(8):903–907

    Article  CAS  PubMed  Google Scholar 

  64. Nakamura K et al (1998) Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-alpha and angiotensin II. Circulation 98(8):794–799

    Article  CAS  PubMed  Google Scholar 

  65. Pimentel DR et al (2001) Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ Res 89(5):453–460

    Article  CAS  PubMed  Google Scholar 

  66. Zhang GX et al (2005) Cardiac oxidative stress in acute and chronic isoproterenol-infused rats. Cardiovasc Res 65(1):230–238

    Article  CAS  PubMed  Google Scholar 

  67. Li HL et al (2006) Epigallocathechin-3 gallate inhibits cardiac hypertrophy through blocking reactive oxidative species-dependent and -independent signal pathways. Free Radic Biol Med 40(10):1756–1775

    Article  CAS  PubMed  Google Scholar 

  68. Guo J et al (2009) p66Shc links alpha1-adrenergic receptors to a reactive oxygen species-dependent AKT-FOXO3A phosphorylation pathway in cardiomyocytes. Circ Res 104(5):660–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Okabe K et al (2020) DPP (Dipeptidyl Peptidase)-4 inhibitor attenuates Ang II (Angiotensin II)-induced cardiac hypertrophy via GLP (Glucagon-Like Peptide)-1-dependent suppression of Nox (Nicotinamide Adenine Dinucleotide Phosphate Oxidase) 4-HDAC (Histone Deacetylase) 4 pathway. Hypertension 75(4):991–1001

    Article  CAS  PubMed  Google Scholar 

  70. Novoa U et al (2017) High-intensity exercise reduces cardiac fibrosis and hypertrophy but does not restore the nitroso-redox imbalance in diabetic cardiomyopathy. Oxid Med Cell Longev 2017:7921363

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ma T et al (2019) TRPC3 deficiency attenuates high salt-induced cardiac hypertrophy by alleviating cardiac mitochondrial dysfunction. Biochem Biophys Res Commun 519(4):674–681

    Article  CAS  PubMed  Google Scholar 

  72. Xiong W et al (2018) PTEN induced putative kinase 1 (PINK1) alleviates angiotensin II-induced cardiac injury by ameliorating mitochondrial dysfunction. Int J Cardiol 266:198–205

    Article  PubMed  Google Scholar 

  73. Yu M et al (2012) Inhibitory effects of enalaprilat on rat cardiac fibroblast proliferation via ROS/P38MAPK/TGF-β1 signaling pathway. Molecules 17(3):2738–2751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yan C et al (2019) Mitochondrial DNA: distribution, mutations, and elimination. Cells 8(4):379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tsutsui H, Kinugawa S, Matsushima S (2009) Mitochondrial oxidative stress and dysfunction in myocardial remodelling. Cardiovasc Res 81(3):449–456

    Article  CAS  PubMed  Google Scholar 

  76. Dai DF, Rabinovitch P (2011) Mitochondrial oxidative stress mediates induction of autophagy and hypertrophy in angiotensin-II treated mouse hearts. Autophagy 7(8):917–918

    Article  PubMed  PubMed Central  Google Scholar 

  77. Suárez-Rivero JM et al (2021) From mitochondria to atherosclerosis: the inflammation path. Biomedicines 9(3):258

    Article  PubMed  PubMed Central  Google Scholar 

  78. Huang Y et al (2022) Brown adipose TRX2 deficiency activates mtDNA-NLRP3 to impair thermogenesis and protect against diet-induced insulin resistance. J Clin Invest. https://doi.org/10.1172/JCI148852

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nakahira K et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12(3):222–230

    Article  CAS  PubMed  Google Scholar 

  80. Liu Z et al (2022) XBP1 deficiency promotes hepatocyte pyroptosis by impairing mitophagy to activate mtDNA-cGAS-STING signaling in macrophages during acute liver injury. Redox Biol 52:102305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ichinohe T et al (2013) Mitochondrial protein mitofusin 2 is required for NLRP3 inflammasome activation after RNA virus infection. Proc Natl Acad Sci U S A 110(44):17963–17968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Park S et al (2015) Defective mitochondrial fission augments NLRP3 inflammasome activation. Sci Rep 5:15489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mahalanobish S et al (2020) Melatonin induced suppression of ER stress and mitochondrial dysfunction inhibited NLRP3 inflammasome activation in COPD mice. Food Chem Toxicol 144:111588

    Article  CAS  PubMed  Google Scholar 

  84. Zhang XL et al (2021) Anti-inflammatory and neuroprotective effects of natural cordycepin in rotenone-induced PD models through inhibiting Drp1-mediated mitochondrial fission. Neurotoxicology 84:1–13

    Article  CAS  PubMed  Google Scholar 

  85. Chen Y et al (2021) Nlrp3 deficiency alleviates angiotensin II-induced cardiomyopathy by inhibiting mitochondrial dysfunction. Oxid Med Cell Longev 2021:6679100

    PubMed  PubMed Central  Google Scholar 

  86. Alves JV et al (2020) Supraphysiological levels of testosterone induce vascular dysfunction via activation of the NLRP3 inflammasome. Front Immunol 11:1647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Papamitsou T et al (2011) Testosterone-induced hypertrophy, fibrosis and apoptosis of cardiac cells–an ultrastructural and immunohistochemical study. Med Sci Monit 17(9):Br266–Br273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Guo H et al (2017) NLRP3 deficiency attenuates renal fibrosis and ameliorates mitochondrial dysfunction in a mouse unilateral ureteral obstruction model of chronic kidney disease. Mediators Inflamm 2017:8316560

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ding W et al (2016) Mitochondrial reactive oxygen species-mediated NLRP3 inflammasome activation contributes to aldosterone-induced renal tubular cells injury. Oncotarget 7(14):17479–17491

    Article  PubMed  PubMed Central  Google Scholar 

  90. Zhao M et al (2021) Selective inhibition of NLRP3 inflammasome reverses pressure overload-induced pathological cardiac remodeling by attenuating hypertrophy, fibrosis, and inflammation. Int Immunopharmacol 99:108046

    Article  CAS  PubMed  Google Scholar 

  91. Wang M et al (2022) MCC950, a selective NLRP3 inhibitor, attenuates adverse cardiac remodeling following heart failure through improving the cardiometabolic dysfunction in obese mice. Front Cardiovasc Med 9:727474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shi Y et al (2022) The selective NLRP3 inflammasome inhibitor MCC950 improves isoproterenol-induced cardiac dysfunction by inhibiting cardiomyocyte senescence. Eur J Pharmacol 937:175364

    Article  CAS  PubMed  Google Scholar 

  93. Yue R et al (2021) NLRP3-mediated pyroptosis aggravates pressure overload-induced cardiac hypertrophy, fibrosis, and dysfunction in mice: cardioprotective role of irisin. Cell Death Discov 7(1):50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Li R et al (2017) Triptolide attenuates pressure overload-induced myocardial remodeling in mice via the inhibition of NLRP3 inflammasome expression. Biochem Biophys Res Commun 485(1):69–75

    Article  CAS  PubMed  Google Scholar 

  95. Ren B et al (2021) Ginsenoside Rg3 attenuates angiotensin II-induced myocardial hypertrophy through repressing NLRP3 inflammasome and oxidative stress via modulating SIRT1/NF-κB pathway. Int Immunopharmacol 98:107841

    Article  CAS  PubMed  Google Scholar 

  96. Lv SL et al (2021) Lp-PLA2 inhibition prevents Ang II-induced cardiac inflammation and fibrosis by blocking macrophage NLRP3 inflammasome activation. Acta Pharmacol Sin 42(12):2016–2032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yan M et al (2022) The Chinese herbal medicine Fufang Zhenzhu Tiaozhi protects against diabetic cardiomyopathy by alleviating cardiac lipotoxicity-induced oxidative stress and NLRP3-dependent inflammasome activation. Biomed Pharmacother 148:112709

    Article  CAS  PubMed  Google Scholar 

  98. Wang F et al (2022) Silica nanoparticles induce pyroptosis and cardiac hypertrophy via ROS/NLRP3/Caspase-1 pathway. Free Radic Biol Med 182:171–181

    Article  CAS  PubMed  Google Scholar 

  99. Qu XF et al (2022) Pyrroloquinoline quinone ameliorates diabetic cardiomyopathy by inhibiting the pyroptosis signaling pathway in C57BL/6 mice and AC16 cells. Eur J Nutr 61(4):1823–1836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Jilin Provincial Science and Technology Commission International Science and Technology Cooperation (Grant No. 20230402015GH), Jilin Provincial Department of Finance (Grant No. 2021SCZ24), and Jilin Provincial Science and Technology Development Plan Project (Grant No. 20210101258JC).

Author information

Authors and Affiliations

Authors

Contributions

YM proposed conceptualization. RY drafted the manuscript. YS and YY assisted RY in screening articles. YJ and RZ created computer graphics and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yan Meng.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, R., Sun, Y., Yang, Y. et al. Mitochondria and NLRP3 inflammasome in cardiac hypertrophy. Mol Cell Biochem (2023). https://doi.org/10.1007/s11010-023-04812-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11010-023-04812-1

Keywords

Navigation