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Abstract
Non-coding RNA appears to be involved in wound repair. Competing endogenous RNA (ceRNA) appears to be an important 
post-transcriptional mechanism, it means that long noncoding RNA (lncRNA) or circular RNA (circRNA) acts as a micro-
RNA (miRNA) sponge to further regulate mRNA. However, ceRNA network related to wound repair after prostatectomy 
has yet been constructed. TULP is the main surgical method of prostatectomy, but there have been no reports of TULP rat 
models in the past. We simulated TULP on rats, and observed the whole process of wound injury and repair after operation 
through pathological examination of wound tissue. Next, we discovered 732 differentially expressed lncRNAs (DElncR-
NAs), 47 differentially expressed circRNAs (DEcircRNAs), 17 differentially expressed miRNAs (DEmiRNAs), and 1892 
differentially expressed mRNAs (DEmRNAs) related to wound repair after TULP through full transcriptome microarray 
and bioinformatics methods, and confirmed the reliability of transcriptome data by quantitative Reverse Transcription PCR 
(qRT-PCR), and immunohistochemistry. Then, we constructed the lncRNA- and circRNA-associated ceRNA regulatory 
networks related to wound repair after TULP in rats. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analyses showed that molecules in these networks were mainly involved in inflammatory 
infiltration, cell differentiation, and intercellular interactions and involved signal pathways such as the PI3K-Akt signaling 
pathway. Thus, this study successfully established the TULP model in rats, revealed potentially important biomarkers and 
ceRNA networks after prostatectomy in rats, and provided theoretical support for the repair of post-prostatectomy wound.
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Introduction

Benign prostatic hyperplasia (BPH) is a common disease in 
older men [1], and its incidence increases with age. Approxi-
mately 50% of men > 50 years of age have pathological 

evidence of BPH, increasing to 80% by age 80 [2]. BPH is 
associated with lower urinary tract symptoms (LUTS), such 
as dysuria, frequent urination, and urgency [3]. Progression 
of the disease may lead to urinary tract infections [4], sec-
ondary bladder calculi [5], hydronephrosis or renal failure 
[6], which could adversely affect the patient’s quality of life. 
Approximately 10% of patients undergo surgery due to dis-
ease progression and ineffective medication [7]. Although 
the gold standard for prostate surgery, transurethral resec-
tion of the prostate, has the advantages of less bleeding and 
higher efficiency [8], the same effect is observed with new 
technologies such as thulium laser transurethral vaporesec-
tion and holmium laser enucleation of the prostate [9, 10]. 
Some patients still experience urinary tract infection [11], 
increased urinary frequency [12] and bladder neck contrac-
ture [13] after surgery. However, we found that the healing 
of the post-prostate surgery wound effectively reduced the 
above complications [14]. We previously found through a 
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dog model of transurethral two-micron laser resection of the 
prostate (TmLRP) that the repair process after prostatectomy 
involves re-epithelialization of the wound, infiltration and 
regression of inflammation [15]. In short, the repair process 
is complex. We also found some clinical phenomena affected 
the repair process after TmLRP using dog model, such as 
inflammation [16], the molecular mechanisms underlying 
these phenomena have not been fully elucidated. Thus, the 
construction of molecular regulatory networks to identify 
potential biomarkers and regulatory targets is essential to 
reduce complications and guide clinical treatment.

With the advancement of laser surgical equipment, 
transurethral laser prostatectomy TULP is widely used in 
minimally invasive treatment of the prostate. However, 
there were not many studies of molecular mechanisms on 
wound repair after prostatectomy, and the research mainly 
focused on the coding genes. Our previous studies in dog 
models of TULP indicated that inhibiting reactive oxygen 
species NF-κB pathway regulates macrophage polarization 
accelerated prostate urethral wound healing [17], improving 
oxidative stress levels may delay wound repair after TULP 
through MAPK signaling [18], urine promote re-epitheli-
alization of prostate wounds may through stimulating the 
expression of TGF-β1 in prostate stromal cells[19], and the 
lack of scar tissue after repair of prostate urethral wounds 
may be related to the high expression of CKIP-1 in a large 
number of prostate epithelial cells in the wound [20]. How-
ever, the vast majority of the molecular mechanisms research 
underlying wound repair after TULP has focused on the cod-
ing genes, and these studies can’t reveal the comprehensive 
molecular characteristics behind the wonder repair after 
TULP. Transcriptomic analyses revealed that less than 2% 
of the molecules involved encoded proteins [21]. Most of 
the transcripts were noncoding RNAs, including lncRNAs, 
circRNAs, and miRNAs, which play important roles in the 
occurrence and development of diseases, and are expected to 
become biomarkers and treatment targets. For instance, the 
lncRNA LIPE-AS1 is a potential regulator of adipogenesis 
[22], plasma-derived exosomal miR-15a-5p is a promising 
and effective diagnostic biomarker for the early detection of 
endometrial cancer [23], and circRNA vgll3 promotes osteo-
genic differentiation of adipose-derived mesenchymal stem 
cells [24]. Competing endogenous RNAs (ceRNAs) have 
been demonstrated to be important in molecular regulatory 
networks. Based on ceRNA theory [25], lncRNAs or circR-
NAs contain miRNA binding sites, and can act as sponges 
to adsorb miRNAs and indirectly regulate mRNAs. CeR-
NAs play an important role in cancer development [26–28] 
and tissue repair [29–31]. However, the regulatory role of 
ceRNA mechanisms in the wound repair process after resec-
tion of the prostate has not been fully explored.

In this study, we successfully constructed a rat model of 
TULP, and observed the repair process of prostatic urethral 

wound in rats. Then, we performed a transcriptome analysis 
of trauma tissues, and corresponding control tissues using 
microarray sequencing technology to identify differentially 
expressed lncRNAs, circRNAs, miRNAs, and mRNAs in 
the repair. Subsequently, ceRNA networks associated with 
DElncRNAs or DEcircRNAs were constructed. We used a 
series of bioinformatics analyses, including protein–protein 
interaction analysis and functional enrichment analysis. In 
addition, the microarray results were validated by qRT-PCR, 
and immunohistochemistry. These studies could provide new 
insights for theoretical and clinical studies of repair after 
prostate resection.

Materials and methods

Animals and environmental conditions

In total, 23 healthy male Sprague Dawley (SD) rats 
(10–12 months old, body weight range of 450–480 g) were 
purchased from Tengxin Biotechnology Co.Ltd (Chongqing, 
China). They were reared under standard laboratory con-
ditions (12/12 h light/dark cycle, 22 ± 2 °C with a relative 
humidity of 55 ± 5%), and allowed to consume standard lab-
oratory food pellets and water ad libitum. This research fol-
lowed the Code of Ethics of the World Medical Association.

Surgical procedure and tissue collection

Fifteen SD rats were randomly selected to establish the rat 
model of TULP. The rats were fasted from food and water 
for 6 h before the procedure, and anesthetized with intra-
peritoneally injected 1% pentobarbital sodium (40 mg/kg). 
The rats were placed in the supine position, and the limbs 
were fixed. cystoscope display and light soure system (Karl 
Storz Endoskope, Tuttlingen, Germany), thulium laser sys-
tem (1940 nm thulium laser, Raykeen, Shanghai, China), 
microcystoscope system (PD-D-1083, PolyDiagnost, Ber-
lin, Germany), three-way tube which simultaneously connect 
syringe, microcystoscope, and laser fiber, and homemade 
microcystoscope working stent were prepared for the sur-
gery (Fig. 1A). A small incision was made longitudinally 
in the lower abdomen. After entering the abdominal cav-
ity, the bladder was exposed outside the abdominal cavity. 
The bladder was incised, and the working sheath was placed 
inside and ligated for fixation, and suture for ligation of 
bladder can be used for traction of bladder during operation 
(Fig. 1B). The bladder was manually irrigated with normal 
saline under low pressure, and checked for complete bladder 
closure. The microcystoscope was inserted into the urethra 
through the bladder neck (Fig. 1C). The thulium laser with 
a power of 10 W was used to vaporize the uroepithelium of 
the prostate until the initial carbonized layer appeared on 
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the wound surface (Fig. 1D). After confirming the absence 
of bleeding on the wound surface, the working sheath was 
removed, and the bladder and abdominal incision were 
sutured. Three rats were randomly sacrificed on 1, 3, 5, 7, 
and 9 days after surgery. The prostate containing the ure-
thra was collected, and fixed in 10% formalin for subsequent 
pathological examination.

By observing the repair process of urethral wound in rat 
prostate, 5 days after trauma was the middle stage of wound 
repair. During this period, new urothelium appeared on the 
prostate urethral wound, which was the key period of repair. 
We decided to conduct a follow-up study on the molecular 
characteristics of the wound at this time point. The other 8 
rats were randomly divided into the TULP and sham groups, 
with 4 rats in each group. The surgical model was estab-
lished in the TULP group according to the above methods. 
In the sham group, only an abdominal median incision was 
performed, without performing the laser vaporization proce-
dure. On the 5 days after the surgery, the wound tissue from 
the TULP group and the tissue from the same location in the 
sham group were collected, and placed in liquid nitrogen for 

subsequent RNA sequencing, thus, experiments were per-
formed four biological replicates for each group.

Histopathological examination 
and immunohistochemical staining

The fixed tissue embedded in paraffin was cut into 
5-μm-thick sections. After dewaxing and rehydration, sec-
tions were stained with hematoxylin and eosin (HE) accord-
ing to a standard procedure for routine histopathology and 
observed under Olympus BX53F microscope (Olympus Cor-
poration, Tokyo, Japan).

To determine CK7, UPIII, and ASPM expression, we 
cut the specimens into 5-μm-thick slices, which were then 
deparaffinized with xylene and rehydrated by graded etha-
nol washes. Next, the tissue specimens were incubated with 
antibodies against CK7 (1:100, ab181598, Abcam company, 
Washington, USA), UPIII (1:200, ab187299, Abcam com-
pany, Washington, USA), and ASPM (1:200, DF10064, 
Affinity Biosciences, Cincinnati, USA) at 4 °C overnight. 
Subsequently, the sections were washed with PBS and 

Fig. 1  Surgical procedure (The microcystoscope diameter is small, 
so the image resolution is lower than that of a normal cystoscope). A 
The surgical equipment: microcystoscope system, thulium laser sys-
tem, and cystoscope system; B A lower abdominal incision is made to 
expose the bladder, and ultramicroendoscope was inserted into blad-

der and closed the bladder; C Observation of the urethra in the pros-
tate direct vision endoscopically; D Carbonized layer on the wound 
surface after the thulium laser vaporized the uroepithelium of the 
prostate
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incubated with HRP-conjugated secondary antibody. The 
tissues were observed under a light microscope.

Microarray assay

Total RNA was quantified by a NanoDrop ND-2000 
(Thermo Scientific, Massachusetts, USA), and the RNA 
integrity was assessed using an Agilent Bioanalyzer 2100 
(Agilent Technologies, Santa Clara, USA). Sample labeling, 
microarray hybridization and washing were performed based 
on the manufacturer's standard protocols. Briefly, total RNA 
was transcribed to double-stranded cDNA, synthesized into 
cRNA and labeled with Cyanine-3-CTP. The labeled cRNAs 
were hybridized onto the microarray. After washing, the 
arrays were scanned by an Agilent Scanner G2505C (Agilent 
Technologies, Santa Clara, USA). The Agilent Rat ceRNA 
Microarray (Design ID: 086243) and miRNA Microarray 
(Design ID: 070154) were used for this experiment, and the 
microarray data included lncRNA, circRNA, miRNA, and 
mRNA. The data analysis of the 8 samples was conducted 
by OE Biotechnology Co., Ltd. (Shanghai, China). Feature 
Extraction software (version 10.7.1.1, Agilent Technolo-
gies, Santa Clara, USA) was used to analyze array images 
to obtain raw data, which were normalized with the quantile 
algorithm.

Differential expression analysis and hierarchical 
clustering

Differentially expressed genes were then identified through 
fold change, and the p values were calculated with a t test. 
The threshold set for up- and down-regulated genes was 
|FoldChange| > 2.0 and a p value < 0.05. Volcano plots of 
differentially expressed RNAs (DERNAs) were constructed 
by the “ggplot2” package in R software (version 4.1.2, Bos-
ton, Massachusetts, USA). Hierarchical clustering analysis 
was subsequently performed by the “pheatmap” package in 
R software (version 4.1.2, Boston, Massachusetts, USA).

Isolation of RNA and qRT‑PCR

Total RNA was isolated by TRIzol (Invitrogen) based 
on the manufacturer’s protocol. CDNA of lncRNA, cir-
cRNA, and mRNA were synthesized using a TAKARA 
reverse-transcriptase-PCR kit (Takara, Japan), while 
cDNA of miRNA was reversely transcribed miRNA First 
Strand cDNA Synthesis Kit (Sangon Biotech, China). 
According to manufacturer's instructions, qRT-PCR 
was performed using SYBR green (Takara, Japan) from 
Applied Biosystems. All qRT-PCR data were analyzed 
by the  2−△△CT method. GAPDH was used as an internal 
control for data normalization of lncRNA, circRNA, and 
mRNA, whereas U6 was used as an internal control for 

miRNA. Primer synthesis was performed by Sangon Bio-
tech. The sequences of the U6 RNA and the universal 
PCR reverse primer are proprietary information held by 
Sangon Biotech.  The qRT-PCR primer sequences are 
listed in Table S1. All experiments were performed in 
triplicate. Results of RT-PCR were analyzed using Graph-
pad Prism 9.3.0 (Graphpad Prism Inc., San Diego, USA).

Construction and enrichment analysis 
of the DElncRNAs‑DEmiRNAs‑DEmRNAs 
and DEcircRNAs‑DEmiRNAs‑DEmRNAs regulatory 
networks

Based on ceRNA hypothesis, lncRNA (or circRNA), and 
mRNA are positively correlated, while lncRNA (or cir-
cRNA), and miRNA are negatively correlated. We calculate 
the correlation between DEmiRNAs-DElncRNAs, DEmiR-
NAs-DEcircRNAs, and DEmiRNAs-DEmRNAs by Pearson 
correlation test (Pearson correlation coefficients < −0.8, p 
value < 0.05). Subsequently, the targeting relationship of 
DElncRNAs-DEmiRNAs, DEcircRNAs-DEmiRNAs, and 
DEmiRNAs-DEmRNAs was predicted by miRanda soft-
ware, and the ceRNA pairs (p value < 0.05) were screened 
according to the ceRNA score analysis results [32, 33]. 
Then, we calculated the correlation between DElncRNA 
(or DEcircRNA) and mRNA using Pearson correlation test 
(Pearson correlation coefficient > 0.8, p value < 0.05), and 
the results intersected with the results obtained from ceRNA 
score screening. Using DElncRNAs, DEmiRNAs, and DEm-
RNAs screened according to the above threshold, we con-
structed the lncRNA-related ceRNA regulatory networks. 
Another circRNA-associated ceRNA network was com-
posed of DEcircRNAs, DEmiRNAs, and DEmRNAs. These 
ceRNA networks of ceRNA pairs were constructed and visu-
alized using Cytoscape (version 3.9.1, the Cytoscape Con-
sortium, San Diego, USA).

Protein–protein interaction (PPI) analysis and 
validation of the DEmRNAs in ceRNA networks

Based on the STRING database (https:// string- db. org/), 
PPI analysis was conducted for DEmRNAs in all lncRNA-
associated ceRNA networks, and all circRNA-associated 
ceRNA network. Based on the results of the STRING web-
site, we imported the PPI results into Cytoscape construct 
network. Based on the centrality and importance of genes 
in the PPI network, we selected the CytoHubba plug-in to 
calculate the top ten hub genes using the MCC algorithm. 
Then we selected the DEmRNA of interest to carry out 
immunohistochemical verification in normal tissues and 
trauma tissues.

https://string-db.org/
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Statistical analysis

Except for the qRT-PCR analysis described above, all sta-
tistical analyses were performed using R software (ver-
sion  4.1.2, Boston, Massachusetts,  USA). Continuous 
data were compared with an independent samples t test. 
p < 0.05 was considered to indicate a statistically signifi-
cant difference.

Results

Construction of the rat TULP model

CK7 is a marker of lumen epithelium and also considered 
as an early marker of urothelium epithelial cells [34, 35]. 
The new cells express CK7 on the wound surface indicated 
that they were epithelial cells, and it can also be considered 
as early urothelium epithelial cells. UPIII is a marker of 
the intermediate or terminal stages of urothelium epithelial 

cells [35]. The new epithelial cells on the wound express 
UPIII indicated that they have become mature urothelium 
epithelial cells. As shown in Fig. 2A, HE staining showed 
that the stroma and duct structures in the wound dem-
onstrated unclear demarcation and were replaced by sub-
stantial coagulative necrosis and inflammatory exudation 
on postoperative day 1, and original uroepithelial cells 
had disappeared. CK7 and UPIII staining confirmed the 
absence of epithelium on the wound.

HE staining suggested that no regenerated epithelial 
cells were present on the wound surface, and a large num-
ber of inflammatory cells were seen infiltrating the stroma 
closer to the wound surface on postoperative day 3, but 
coagulative necrosis was significantly reduced. Similarly, 
CK7 and UPIII staining confirmed that there was no regen-
erated epithelium on the wound surface.

HE indicated that the 1–3 layers of new epithelial 
cells lacked polarity on the wound surface on postopera-
tive day 5, and a large number of inflammatory cells were 
still seen infiltrating the wound. However, the regenerated 

Fig. 2  Pathological examination of wound tissues after prostatectomy 
in rats. A The prostatic urethra wound pathological  changes  were 
observed by  HE  staining and immunohistochemistry of CK7 and 
UPIII at 5 different time points; B Traumatic tissue of the prostatic 

urethra on the 5th postoperative day in the TULP group; C The nor-
mal tissue of the prostatic urethra on the 5th post-sham operation in 
the sham group. Black arrows: the trabecular surface or regenerating 
epithelium, red arrows: the stroma, blue arrows: the prostatic ducts
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epithelial cells expressed CK7 and partially expressed 
UPIII.

HE revealed regenerated and thickened epithelial cells with 
polarity in the 4th–6th layers on postoperative day 7. The num-
ber of inflammatory cells in the stroma of the wound was sig-
nificantly reduced, and a large number of dilated blood vessels 
were distributed around the wound surface. The regenerated 
epithelial cells expressed CK7 and UPIII.

HE showed that the regenerated epithelial cells were polar-
ized with full cytoplasm, and the stroma and duct structure 
around the trauma were clear on postoperative day 9. The 
number of inflammatory cells was sparse, and the regener-
ated epithelium highly expressed CK7 and UPIII.

Compared to the sham group, the wound surface of the 
TULP group was covered with new epithelial cells on postop-
erative day 5, but the epithelial cells were not polarized, were 
disorganized, and the cytoplasm of the new epithelial cells 
was full, while the tissue structure of the trauma was blurred. 
Inflammatory cells infiltrated the stroma, and more new blood 
vessels were distributed in the wound with vasodilation and 
vascular congestion (Fig. 2B, C).

Differential expression profiles of lncRNA, circRNA, 
miRNA, and mRNA and functional enrichment 
analysis of DEmRNA

DElncRNAs, DEcircRNAs, DEmiRNAs, and DEmRNAs 
were screened under the conditions of |FoldChange|> 2 
and p value < 0.05. Overall, we identified 732 DElncR-
NAs (440 up-regulated and 292 down-regulated lncR-
NAs), 47 DEcircRNAs (30 up-regulated and 17 down-
regulated circRNAs), 17 DEcircRNAs (8 up-regulated 
and 9 down-regulated miRNAs), and 1892 DEmRNAs 
(1323 up-regulated and 569 down-regulated mRNAs) 
in the TULP group compared with the Sham group 
(Fig. 3A–H), and the top 10 up- or down-regulated DER-
NAs (DElncRNAs, DEcircRNAs, DEmiRNAs, and DEm-
RNAs) are shown in Table S2.

We used GO and KEGG pathway analysis to analyze 
the EDmRNAs. GO analysis demonstrated that inflamma-
tory response, neutrophil chemotaxis, response to lipopol-
ysaccharide, immune response and extracellular space of 
DEmRNAs were the most significant GO terms (Fig. 3I). 
KEGG pathway enrichment analysis revealed  that  the 
most highly enriched pathways were cytokine–cytokine 
receptor interaction, chemokine signaling pathway, PI3K-
Akt signaling pathway, ECM-receptor interaction and 
IL-17 signaling pathway (Fig. 3J).

Quantitative real‑time PCR (qRT–PCR) verification 
of differentially expressed lncRNAs, circRNAs, 
miRNAs and mRNAs

In order to verify the reliability of microarray data results 
and based on the evaluation of the total number of differ-
entially expressed genes in four different types, 5 DElncR-
NAs, 3 DEcircRNAs, 3 DEmiRNAs, and 10 DEmRNAs 
were randomly selected for qRT–PCR verification. As 
shown in Fig. 4, 3 lncRNAs, 3 circRNAs and 5 mRNAs 
were significantly up-regulated, and 1 lncRNA, 3 miR-
NAs and 5 mRNAs were significantly down-regulated ver-
sus the sham group, demonstrating the same trend as that 
seen in the microarray data. However, the difference in 
the LOC102551078 value was not statistically significant 
between the two groups.

Construction and enrichment analysis 
of the DElncRNA (DEcircRNA)‑DEmiRNA‑DEmRNA 
ceRNA regulatory networks

CeRNA network construction was established based on 
the theory that “miRNA sponges” (lncRNAs or circRNAs) 
can sponge miRNAs to regulate specific target mRNAs. 
Based on the ceRNA hypothesis, we constructed ceRNA 
pairs from the whole transcriptome data, and calculate 
ceRNA score of an lncRNA-mRNA pair targeted by miR-
NAs (Table S3). For better visualization, we selected ceRNA 
pairs with top 100 ceRNA scores to construct and display 
parts of lncRNA-related ceRNA network, including 9 lncR-
NAs, 13 miRNAs, and 63 mRNA from DERNAs (Fig. 5). 
At the same time, based on the whole transcriptome data, we 
constructed circRNA-related ceRNA networks, including 2 
circRNAs, 3 miRNAs and 60 mRNA from DERNAs (Fig. 6, 
Table S4). The scatter plots checking Pearson correlation for 
all significant pairs were shown in the Online Resource 1.

Furthermore, DEmRNAs from lncRNA-and cir-
cRNA-associated ceRNA networks were selected 
for  GO  and  KEGG  pathway enrichment analyses, 
respectively. The significantly enriched GO terms asso-
ciated  with lncRNA–miRNA-mRNA networks were 
leukocyte cell–cell adhesion, endodermal cell differen-
tiation, neutrophil chemotaxis, inflammatory response 
and positive regulation of T-cell proliferation (Fig. 7A). 
Subsequently, KEGG pathways related to the mRNAs of 
LncRNA-miRNA–mRNA networks included the ECM-
receptor interaction, hematopoietic cell lineage, PI3K-
Akt signaling pathway, amoebiasis and focal adhesion 
(Fig. 7B). We carried out GO enrichment analysis of 
mRNAs in the circRNA-miRNA–mRNA network, and 
the results indicated that the DEmRNAs were enriched in 
endodermal cell differentiation, craniofacial suture mor-
phogenesis, embryonic eye morphogenesis, hyaluronan 
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metabolic process and mitotic chromosome condensation 
(Fig. 7C). Moreover, the coding genes from the circRNA-
miRNA–mRNA network were significantly enriched in 
the PI3K-Akt signaling pathway, cytokine–cytokine 
receptor interaction, hematopoietic cell lineage, amoe-
biasis and focal adhesion (Fig. 7D).

PPI and immunohistochemistry analysis

According to the online STRING datavase (https:// string- db. 
org/), the lncRNA–miRNA-mRNA networks-associated PPI 
network contained 1204 edges involving 347 nodes. Then, 
we used the Cytoscape plugin cytoHubba to identify 10 hub 

Fig. 3  Identification and functional enrichment analyses of dif-
ferentially expressed genes. Volcano map and heat map of differ-
entially expressed lncRNAs (A, B), circRNAs (C, D), miRNAs (E, 
F), and mRNA (G, H). Volcano  plot (A, C, E, G) show up-regu-
lated (red arrow) and down-regulated (blue arrow) genes with the 
numbers, respectively. Columns clustering of the heatmap (B, D, 
F, H) indicated different group by colour (sham group = red, TULP 

group = blue), and the gene expression across rows in the heatmap are 
coloured according to the z-score. Red arrow: higher than the mean 
expression, blue arrow: lower than the mean expression, white arrow: 
the mean expression; I The  top  10  significant terms of  GO  analy-
sis  (MF/CC/BP) of EDmRNAs; J The  top  30  significant terms of 
KEGG pathway analysis of DEmRNAs. MF: molecular function, CC: 
cellular component, BP: biological process

https://string-db.org/
https://string-db.org/
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genes in the PPI network (Fig. 8A). The circRNA-miRNA-
mRNA network-associated PPI network with 55 nodes and 
77 edges was similarly established. The top 10 hub genes 
were identified from PPI network by CytoHubba (Fig. 8B). 
Interestingly, ASPM is the top 3 hub gene in both lncRNA- 
and circRNA-associated ceRNA networks-related PPI net-
works. ASPM is an important gene involved in the mitotic 
spindle [36]. ASPM is also considered to be the progenitor 
cell of urothelium [37]. The expression of ASPM in new 
epithelial cells means that its mitotic activity may increase, 
and it also suggests that new epithelial cells may have a 
close relationship with urinary tract epithelial progenitor 
cells. ASPM was validated using immunohistochemistry, 
and we found that ASPM was weakly expressed in the 
normal urothelial cells and prostate gland epithelial cells 
(Fig. 8C, left), but strongly expressed in the new prostate 

gland epithelial cells and stroma cells near the wound sur-
face 5 days after surgery (Fig. 8C, middle), and this was con-
sistent with the chip sequencing results. Interestingly, there 
was no significant expression of ASPM in the prostate gland 
epithelial cells and stroma cells of the wound 9 days after 
surgery, but ASPM was highly expressed in the newborn 
urothelial cells covering the wound surface (Fig. 8C, right).

Discussion

Because BPH is a common disease of older men with high 
morbidity rates, the number of patients undergoing pros-
tatectomy is large, and BPH is associated with substantial 
social and medical challenges. While surgery can resolve 
a patient's bladder outlet obstruction, complications can 
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subsequently arise. With the advancement of technology, 
urinary incontinence, urethral perforation and other serious 
complications rarely occur. However, some complications 
cannot be significantly reduced with the advancement of 
technology or equipment, such as hematuria [8] and symp-
toms of urethral irritation [38]. Post-prostatectomy tissue 
repair reversed these complications in our previous study 
[39]. Although the prostate anatomy in rats is not identical to 
that in dogs and humans, the wound remaining after prosta-
tectomy essentially represents resection of the uroepithelium 
and exposure of the prostatic ducts [40]. In the present study, 
we found that the early stages of repair mainly involved 
the removal of necrotic material from the wound and the 
recruitment of inflammatory cells to create a favorable repair 
microenvironment for wound repair, while there were no 
regenerating uroepithelial cells on the wound. At this point, 
the prostate duct near the trauma site is severely damaged, 
and the stroma contains many inflammatory cells. Regener-
ated epithelium appeared on the wound surface in the middle 
of the repair period, with high expression of CK7 but weak 
expression of uroepithelium-specific markers, suggesting a 
low probability of mature uroepithelial cells regenerating 
the uroepithelium in the prostatic duct. Our previous study 
revealed that regenerated uroepithelium after prostate trauma 
is more likely to originate from residual prostate tissue [39], 
and such cells with high expression of CK7 at the early stage 
of repair may be the important cells involved in nascent 
uroepithelium repair. By this stage of repair, the damaged 

prostatic ducts are largely repaired, because this repair pro-
cess occurs rapidly. At the later stage of repair, the nascent 
uroepithelium is rapidly repaired and mature uroepithelial 
cells with high expression of the specific marker UPIII are 
present. Interstitial cells in the wound are also repairing rap-
idly, inducing the neovascularization and reconstruction of 
prostatic ducts. During the wound repair process, the cells 
in the wound cooperate with each other. For example, the 
new uroepithelium covering the wound reduces the stimula-
tion of interstitial cells by urine, the neovascularization of 
abundant blood plasma facilitates the repair of uroepithelium 
and nonurethral epithelium, and the infiltration of inflamma-
tory cells may participate in all the cellular repair processes. 
Overall, the animal model established in this study dem-
onstrated the whole process of post-prostatectomy trauma 
repair, similar to our previous model established in dogs and 
mice [20, 41]. The repair time of prostate urethral wounds 
in rats and mice is similar, but the repair time of wounds 
in dogs is slower than that in rats and mice, which may 
be related to species. Our previous studies have primarily 
focused on TULP mouse models, but there are limitations 
in obtaining mouse wound tissue. Therefore, we constructed 
a rat TULP model for our research, which also provides a 
new perspective for TUPL-related research. This study 
established the first TULP model in rats, which will benefit 
further scientific research.

Past studies on the repair mechanism after prostatectomy 
have focused on the coding genes. For example, prostate 
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epithelial cells and their high expression of CKIP-1 might 
reduce scar formation after prostate wound repair [20]. 
However, the overall study of the trauma repair microenvi-
ronment remains limited, and there is a lack of large-scale 
transcriptomic studies, complicating the study of molecular 
mechanisms in the prostate repair microenvironment and the 
search for new biomarkers to improve treatment. In the pre-
sent study, we report transcriptome data involving lncRNAs, 
circRNAs, miRNAs and mRNAs after prostatectomy in rats 
for the first time. These differentially expressed RNAs might 
be closely associated with wound repair of after TULP. 
For example, Jimmy Lee et al. [42] suggested that lncRNA 
Pvt1 is involved in skin tissue homeostasis and wound repair. 
Takeshi Okada et al. [43] found that TNC promotes fibrosis 
and exerts reparative effects in an experimental aneurysm 
model via macrophage-induced migration and proliferation 
of smooth muscle cells. Chao Shi et al. [44] indicated that 
endothelial progenitor cell abdominal aortic aneurysm repair 
can be promoted by down-regulating miR-204-5p. Yun-Jie 
Shi et al. [45] found that IL6 can effectively improve the 
repair of intestinal epithelial injury. In addition, we validated 
the identified differential genes by qRT–PCR, confirming 

that the sequencing results are reliable. According to the 
GO enrichment analysis, DERNAs were mainly involved 
in Inflammation and immune response and were primarily 
located in the extracellular space and external side of the 
plasma membrane. In addition, based on the KEGG enrich-
ment analysis, DERNAs were mostly enriched in Pathways 
related to cytokines and inflammation, which are involved in 
the repair process of post-prostatectomy wounds. Previous 
research identified that these pathways are related to tissue 
cell repair, such as repair of pulmonary artery endothelial 
cells [46], promoting cardiac repair postmyocardial infarc-
tion [47], and functional repair of spinal cord injury [48]. 
Interestingly, the pathways associated with prostate repair 
found in our previous studies in dogs were not significant 
in the present study, and we speculated that the differences 
might be due to species specificity as we used rats in the 
current study. Therefore, we believe that the translation from 
animal experiments to clinical applications requires further 
exploration and validation.

The ceRNA mechanism plays an important role in tissue 
regeneration and wound repair [49, 50]. However, up to now, 
there is no report on ceRNA research related to prostate 
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wound repair. Our results showed that several ceRNA net-
works may be involved in the repair of the prostatic ure-
thra after TULP, for example, in the ceRNA network with 
rno-miR-101a-3p as the core, the DElncRNAs (such as 
LOC102546759, and LOC108350774) and DEcircRNAs 
(RNO_CIRCpedia_4632) can regulate HGF through rno-
miR-101a-3p. Hepatocyte growth factor (HGF) is a pleio-
tropic cytokine that has been extensively studied in wound 
repair. For instance, HGF can accelerated wound closure by 
promoting the growth of fibroblasts and promoted epithe-
lial wound healing following mechanical corneal injury [51, 
52]. Despite the above findings, more studies are needed to 
explore the role of ceRNAs mechanism in prostate wound 
repair.

In the lncRNA- and circRNA-associated ceRNA regu-
latory network, we found that the DEmRNAs in ceRNA 
network were associated with wound repair in the GO and 
KEGG analysis, such as leukocyte cell–cell adhesion, neu-
trophil chemotaxis, inflammatory response, Pl3K-Akt sign-
aling pathway, and endodermal cell differentiation. Numer-
ous studies have shown that almost all injuries, including 
minor injuries, cause an inflammatory response and immune 
infiltration, protecting tissue cells from microorganisms and 
activating regenerative signals for repair, the acute inflam-
mation of the wound could usually promote the repair of the 
wound in an orderly manner [53–58]. Previous study proved 
that the PI3K-AKT pathway was a key factor in re-epitheli-
alization, and played an important role in wound repair [59, 
60]. Our previous studies have found that the urothelial epi-
thelium of the prostate was completely loss after surgery, 
and the seed cells of re-epithelialization may be derived 
from certain types of cell in the prostate duct [39], while the 
human uroepithelium was differentiated from the endoderm 
[61], so the endodermal cell differentiation may be of great 
significance for re-epithelialization of prostatic urothelium 
after surgery.

ASPM,which encodes a centrosomal protein, plays a cru-
cial role in the mitotic spindle during cell replication. As the 
hub gene of PPI network related to ceRNA network, ASPM 
may play an important role in the repair of prostate urothe-
lial injury. Yan Li et al. [37] performed single-cell sequenc-
ing and found that ASPM-labeled basal cells might be the 
bladder uroepithelium progenitor cells. However, there is 
no report on ASPM in the repair of urinary tract epithelium 
in the prostate. In the past, we found that the new urinary 
tract epithelium after prostate trauma may come from some 
cells in the prostate duct, including prostate gland epithelial 
cells [40]. Interestingly, this study found that the expres-
sion of ASPM in the prostatic gland epithelial cells near 
the wound in the middle stage of repair was significantly 
higher than that in the normal prostatic gland epithelial cells, 
while the expression of ASPM in the neonatal urinary tract 
epithelial cells was significantly elevated in the late stage 

of repair, but there was no significant expression in other 
cells of the wound surface. In addition, the prostatic gland 
epithelial cells in the prostatic duct in the wound were close 
to the wound surface in anatomical position, therefore, we 
speculated that the prostate gland epithelial cells with high 
expression of ASPM may differentiate into urothelial cells 
and migrate to the wound surface to repair the adjacent 
urothelial cells after prostate trauma, but it is also possible 
that the repair of the prostate gland epithelial cells is earlier 
than the repair of the urothelial cells in the repair process, 
which is manifested by the high expression of ASPM in 
these two cells successively.

Molecular regulation, as a precise therapeutic strategy, 
can influence the development and progression of diseases 
by intervening in gene expression, regulating signaling 
pathways, or regulating intracellular metabolic processes 
[62–64]. These studies provide the foundation for develop-
ing treatment strategies targeting specific molecules and 
promote the implementation of personalized therapies. This 
study provides us with a deeper understanding of the molec-
ular mechanisms of ceRNA related to prostate and urethral 
repair, which can be explored through the development of 
new drugs, gene therapy methods, and intervention strate-
gies in the future. For example, by designing small mol-
ecule drugs or antibodies targeting specific molecules, we 
can selectively intervene in abnormal signaling pathways or 
inhibit pathological molecular interactions, thereby achiev-
ing precise treatment.

Despite the above results, our study has some limitations. 
First, the number of rats is limited because there were only 
4 in each group, and a larger sample number is needed to 
validate our results. Second, different species might result 
in different results that must be verified in additional stud-
ies of other species. Third, this study used normal rats and 
further research is needed to explore the repair mechanism 
of the prostate urethra in rats under different hormone levels 
and prostate states in order to gain a more comprehensive 
understanding of the wound repair mechanism after prosta-
tectomy. Finally, we did not discuss in depth the reason why 
the regeneration rate of the urinary tract epithelium of the 
rat prostate after trauma was faster than that of our previous 
studies on dogs [17].

Conclusions

In this study, a novel rat model of TULP was constructed 
and the process of healing the prostatic urethral wound was 
observed. We constructed lncRNA- and circRNA-associ-
ated ceRNA networks in the rat TULP model. Additionally, 
we screened important target genes and pathways. These 
results may provide new animal models for wound repair 
after prostatectomy in the future, provide new insights for 
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related molecular mechanism research, and help to provide 
new targets for clinical treatment.
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