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Abstract
Atherosclerosis, a chronic disease of arteries, results in high mortality worldwide as the leading cause of cardiovascular 
disease. The development of clinically relevant atherosclerosis involves the dysfunction of endothelial cells and vascular 
smooth muscle cells. A large amount of evidence indicates that noncoding RNAs, such as microRNAs (miRNAs), long 
noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), are involved in various physiological and pathological pro-
cesses. Recently, noncoding RNAs were identified as key regulators in the development of atherosclerosis, including the 
dysfunction of endothelial cells, and vascular smooth muscle cells and it is pertinent to understand the potential function of 
noncoding RNAs in atherosclerosis development. In this review, the latest available research relates to the regulatory role of 
noncoding RNAs in the progression of atherosclerosis and the therapeutic potential for atherosclerosis is summarized. This 
review aims to provide a comprehensive overview of the regulatory and interventional roles of ncRNAs in atherosclerosis 
and to inspire new insights for the prevention and treatment of this disease.
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Introduction

Atherosclerosis (AS) is a chronic inflammatory disease of 
the artery wall that is involved in a series of cardiovascu-
lar diseases (CVDs), including stroke, ischemic heart dis-
ease and peripheral vascular disease [1]. Investigating the 
molecular mechanisms that promote atherosclerosis for-
mation and development are indispensable for finding new 
therapeutic strategies. Atherosclerosis initially starts from 
the dysfunction of endothelial and vascular smooth muscle 
cells, and then lipids accumulate in the artery wall, followed 
by persistent inflammation, finally causing plaque rupture 

and thrombosis [2]. Endothelial cells (ECs) and vascular 
smooth muscle cells (VSMCs) are crucial cells in the occur-
rence and progression of atherosclerosis, and understanding 
the regulatory mechanisms of these dysfunctional cells dur-
ing the process of atherosclerosis will be significant for the 
treatment and prevention of this disease in the future.

ECs undergo migration in response to various stimuli, 
such as inflammatory mediators and hemodynamic forces, 
leading to the formation of neointima and plaque forma-
tion [3]. Altered endothelial adhesion properties, such as the 
upregulation of adhesion molecules like intercellular adhe-
sion molecule-1 (ICAM-1) and vascular cell adhesion mole-
cule-1 (VCAM-1), facilitate the recruitment and adhesion of 
leukocytes to the endothelial surface [4]. These interactions 
between endothelial cells and leukocytes contribute to the 
initiation and progression of AS. Endothelial lipid metabo-
lism is also a key factor in AS pathogenesis. Dysregulated 
lipid homeostasis, including impaired uptake and processing 
of low-density lipoprotein (LDL), leads to the accumulation 
of lipid deposits within the arterial wall, promoting the for-
mation of atherosclerotic plaques [5]. VSMCs play a crucial 
role in maintaining the structural integrity of blood vessels. 
However, in response to stimuli and growth factors, VSMCs 
can undergo phenotypic modulation, leading to excessive 
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proliferation and migration, contributing to neointima for-
mation and plaque development [6].

A large amount of evidence indicates that epigenetic 
modification plays a critical role in plaque progression and 
vulnerability, which highlights the potential role of therapeu-
tics in atherosclerosis intervention [2]. Noncoding RNAs, 
including miRNAs, lncRNAs, and circRNAs, are emerg-
ing as crucial epigenetic regulators of pathophysiological 
processes during the development of atherosclerosis, such 
as cellular activation, adhesion, proliferation, and inflamma-
tory factor production in ECs and VSMCs. Here, we sum-
marize the latest findings for the molecular mechanisms of 
noncoding RNAs in regulating ECs and VSMCs during ath-
erosclerosis and discuss their potential clinical applicability 
for atherosclerosis.

Biology of noncoding RNAs

With the development of sequencing technology, an increas-
ing number of meaningful noncoding RNAs have been found 
and investigated in a variety of diseases. MiRNAs, lncR-
NAs, and circRNAs are the most studied noncoding RNAs, 
show significant roles in regulating gene expression and have 
potential clinical applicability in disease intervention.

MiRNAs are characterized as a class of ∼ 22-nt-long 
nonprotein-coding RNAs derived from longer transcripts. 
In 1993, Lin-4 was the first miRNA to be identified from 
Caenorhabditis elegans as a regulator of gene expression 
controlling developmental timing [7]. Generally, miRNAs 
are initially derived from their own noncoding gene or from 
the introns of protein-coding genes in the nucleus as long 
primary transcripts (pri-miRNAs) and are further cleaved, 
exported, and processed in the cytoplasm [8]. Applying the 
method of biological and bioinformatics, many thousands of 
miRNAs have been discovered, and newly found miRNAs 
have been compiled officially in miRBase (http://​www.​mirba​
se.​org/) [9], which consists of published miRNA sequences 
and annotations as well as novel miRNAs before publica-
tion. They possess the capacity to negatively regulate gene 
expression at the posttranscriptional level in a sequence-spe-
cific manner, mainly through base pairing to the 3′-untrans-
lated region (3′ UTR) of target mRNA transcripts [10].

LncRNAs are characterized as > 200 nt in length and 
without an apparent protein-coding capacity, and they are 
derived from approximately 98–99% of the noncoding 
regions as well as exonic, intronic, and intergenic regions 
of the genome. Currently, there are eight categories of lncR-
NAs, including enhancer, intronic, promoter, intergenic, 
bidirectional, small nucleolar RNA-ended, natural antisense/
sense, and nonpoly(A) lncRNAs [11–17]. A series of stud-
ies have indicated that lncRNAs can manipulate cellular 
functions, such as cell proliferation, apoptosis, migration, 

differentiation, and metabolism, by regulating the expression 
of target genes through diverse mechanisms. For example, 
lncRNAs can target DNA, RNAs, and/or proteins to regulate 
transcription, epigenetic modifications, translation, protein/
RNA stability, and posttranslational modifications [18–21]. 
LncRNAs are mainly transcribed via RNA polymerase II 
and are polyadenylated [22], and the majority of lncRNAs 
are stabilized via polyadenylation or secondary structures 
[23]. LncRNAs can obstruct miRNAs and proteins to modu-
late their activity and levels, disturb posttranslational modi-
fication processes, or participate in mRNA translation and 
stability [24–26]. In addition, lncRNAs may play different 
functions by interacting with different targets according to 
the subcellular microenvironment [27].

CircRNAs exist in closed loop RNA structures that are 
biologically active and derived from mRNAs via spliceo-
some mediated back splicing: the 3′ splicing site is cova-
lently linked to the 5′ splicing site [28]. It was first reported 
in RNA viruses as early as 1976 [29] and then verified as 
an endogenous RNA splicing product in eukaryotes in 1979 
[30]. Subsequently, a series of circRNAs was documented, 
and dysregulated expression of circRNAs was found in 
various physiological conditions. CircRNAs consist of four 
categories: circular RNAs from introns, intergenic circR-
NAs, exonic circRNAs, and exon–intron circRNAs [31]. 
CircRNAs are generally treated as noncoding RNAs, but 
some circRNAs have the capacity to encode proteins [32]. 
A series of regulatory mechanisms of circRNA in patho-
physiological processes were reported, such as those serving 
as scaffolds to promote the assembly of protein complexes, 
regulating parental gene expression, regulating the stabil-
ity of mRNAs, modulating alternative splicing, interacting 
with RNA binding proteins, and competing with endogenous 
RNAs or miRNA sponges [33].

Noncoding RNA regulation of endothelial 
cells

Role of miRNAs in endothelial cells

AS, the pathological factor in cardiovascular disease, is 
treated as a lipid-driven inflammatory disorder of the arter-
ies. Large amounts of evidence have indicated that miRNAs 
are involved in endothelial cell dysfunction in AS. Previ-
ously, Li reported that oxLDL has could stimulate miRNA-
146a promoter activity in macrophages through the AP-1 
and NF-κB pathways, which leads to the suppression of 
macrophage maturation [34]. Recently, Xiao et al. reported 
that miR-146a is upregulated both in endothelial cells and 
extracellular vesicles derived from mesenchymal stem cells. 
Furthermore, they found that miR-146a plays a critical 
role in inhibiting endothelial senescence by regulating the 
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phosphorylation of Src and the expression of caveolin-1 and 
VE-cadherin [35]. In addition, miR-146a is dysregulated in 
several cancers as an oncogene involved in the development 
of cancer by regulating apoptosis and the proliferation of 
cancer cells [36]. These data suggest that miR-146a plays 
an important role in regulating the progression of a variety 
of diseases, and the regulatory mechanisms and linkages 
among different diseases require further elucidation.

It has been reported that miR-216a was upregulated in 
patients with coronary artery disease, and further investi-
gation indicated that miR-216a could lead to endothelial 
cell senescence and inflammation by activating the Smad3/
IκBα pathway [37]. Overexpression of miR-216a in human 
umbilical vein endothelial cells (HUVECs) can cause senes-
cence and promote inflammation by suppressing Smad3 
protein expression and improving IκBα degradation. In 
addition, miR-216a also promotes expression by activating 
the NF-κB pathway, which promotes monocyte adhesion to 
endothelial cells [38]. Ginsenoside Rb2 (Rb2), a traditional 
Chinese medicine extracted from the plant Panax ginseng, 
can specifically bind to miR-216a and attenuate senescence 
and inflammation induced by miR-216a, indicating that Rb2 
could serve as a potential therapeutic drug for AS by target-
ing miR-216a [38].

Inflammation is a main contributor to the develop-
ment of atherosclerosis. In recent years, a series of studies 
have shown that miRNAs play a crucial role in regulating 
endothelial inflammation and may serve as potential thera-
peutic targets for atherosclerosis intervention. Recently, Hou 
et al. found that miR-146a-5p overexpression attenuates the 
inflammatory response in HUVECs induced by lipopolysac-
charides (LPS) by suppressing tumor necrosis factor receptor 
associated 6 (TRAF6) and interleukin-1-receptor-associated 
kinase 1 (IRAK1), which indicates that miRNA-146a-5p 
may serve as a potential therapeutic target for atheroscle-
rosis [39].

It was reported that overexpression of miR-520b in 
ECs suppresses inflammatory gene expression, including 
intercellular adhesion molecule 1 (ICAM1), vascular cell 
adhesion molecule 1 (VCAM1), and selectin E (SELE), 
by targeting RELA [40]. Furthermore, miR-520b inhibits 
the adhesion of monocytes and monocyte trans-endothelial 
migration stimulated with LPS, which indicates the crucial 
role of miR-520b in the occurrence of AS and the therapeu-
tic potential of atherosclerosis. However, a series of miR-
NAs could aggravate the inflammatory response in ECs and 
promote AS development.

Previously, Li et al. reported that miR-19b could pro-
mote atherosclerosis progression by augmenting perivas-
cular adipose tissue-specific inflammation by repressing 
suppressor of cytokine signaling 3 (SOCS3) expression 
[41]. Recently, miR-19b was shown to be upregulated in 
oxLDL-treated HUVECs and arteries in an AS mouse 

model [42]. Mechanistically, miR-19b could target PPARγ 
and downregulate its expression, promoting inflammatory 
cytokine production, such as TNF-α and IL-1β, in the AS 
model, which indicates that miR-19b inhibition may serve 
as a potent therapeutic consideration for AS intervention.

Extracellular vesicles (EVs) have been reported to play 
a crucial role in endothelial inflammation and atherogen-
esis. Recently, Jing et al. found that hepatocyte-derived EVs 
promote the inflammatory response in ENs in the context 
of non-alcoholic fatty liver disease (NAFLD) [43]. Fur-
thermore, they disclosed that miR-1 in EVs could improve 
endothelial inflammation by inhibiting the expression of 
kruppel like factor 4 (KLF4) and finally facilitating athero-
genesis development.

The abnormal proliferation of ECs induced during vas-
cular injury is a pathological basis of atherosclerosis. It has 
been reported that miR-15a-5p plays an important role in 
sepsis via manipulating the inflammatory related signaling 
pathway [44]. Recently, miR-15a-5p was found to inhibit 
vascular endothelial cell proliferation by suppressing 
CX3CL1 transcription and affecting atherosclerosis pro-
gression [45].

Gomez et al. reported that neutrophil-derived microvesi-
cles can promote atherosclerotic plaque formation and the 
inflammatory response by delivering miR-155, which sug-
gests a critical role of miR-155 in AS progression [46]. 
Furthermore, the expression of miR-155 is upregulated 
in polycyclic aromatic hydrocarbon (PAH)-stimulated 
HUVECs and has been implicated in increased permeability 
and decreased proliferation [47]. Mechanistically, miR-155 
directly targets serpin family D member 1 (SERPIND1), 
downregulates its expression and causes endothelial injury. 
The above research indicates that miR-155 is a multifunc-
tional regulatory factor in the process of AS and may be 
treated as a potential drug target for AS treatment in the 
future.

Mesenchymal stem cell (MSC)-derived miRNAs play 
an important role in regulating cell functions, especially 
ECs. Chen et al. reported that miR-512-3p, enriched in 
exosomes derived from MSCs, can protect ECs from 
oxLDL-mediated damage by promoting their proliferation, 
inhibiting apoptosis, suppressing the expression of inflam-
matory cytokines and oxidative factors, and increasing the 
contents of superoxide dismutase (SOD) and glutathione 
peroxidase (GSH-PX). Mechanistic studies have shown 
that miR-512-3p targets Keleh-like ECH-associated pro-
tein 1 (Keap1) directly to protect ECs against oxLDL stim-
ulation [48]. However, Ge et al. reported that miR-512-3p 
expression is upregulated in oxLDL-treated HUVECs and 
that silencing of miR-512-3p can attenuate apoptosis and 
ER stress and promote the proliferation and viability of 
HUVECs stimulated with oxLDL [49]. Furthermore, they 
found that miR-512-3p can target X-box binding protein 1 
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(XBP-1) to regulate the ratio of XBP-1S/XBP-1U to par-
ticipate in atherosclerotic lesions. It is possible that the 
source of miRNA determines the physiological functions 
for the regulation of ECs cells during the AS process.

Angiogenesis is implicated in a variety of biological 
processes, including AS and cancer. Dickkopf1 (DKK1) 
plays many roles in both tumors and AS and has emerged 
as a potential biomarker of cancer progression and prog-
nosis. Di et al. reported that DKK1 plays a critical role 
in AS progression by promoting plaque formation and 
vulnerability by causing EC apoptosis [50]. Baetta et al. 
also documented that DKK1 is a key driver of the ini-
tiation and progression of AS [51]. Recently, DKK1 
was reported to be involved in angiogenesis both in the 
plaques of ApoE−/− mice and oxLDL-treated HUVECs 
[52]. Mechanistically, the authors found that miR33a-5p 
was significantly downregulated in oxLDL-stimulated 
HUVECs and that miR33a-5p could directly bind to the 
3′-UTR of Ets-1 to manipulate the expression of Ets-1 and 
DKK1 and inhibit EC migration and angiogenesis.

Low shear stress and pyroptosis play key roles in the 
initiation and progression of AS. MiR-181b-5p is down-
regulated under shear stress in HUVECs, accompanying 
the upregulation of the NLR family pyrin domain con-
taining 3 (NLRP3) inflammasome, and re-expression of 
miR-181b-5p attenuates NLRP3 inflammasome-induced 
pyroptosis [53]. Mechanistically, miR-181b-5p can target 
the 3′-UTR of the signal transducer and activator of tran-
scription 3 (STAT-3) gene, inhibit NLRP3 inflammasome 
expression, and alleviate shear stress-induced pyroptosis, 
which indicates the crucial role of miR-181b-5p in the 
treatment of AS. In addition, miR-18b is downregulated 
in AS plaques compared with control arterial tissues, and 
miR-181b participates in the formation of AS plaques 
and injury of vascular ECs by targeting notch receptor 1 
(Notch1) and downregulating its expression [54]. How-
ever, Gregoli et al. found that miR-181b is upregulated in 
symptomatic human atherosclerotic plaques and abdomi-
nal aortic aneurysms [55]. Furthermore, they disclosed 
that miR-181b can maintain atherosclerotic plaque and 
aneurysm stability by regulating TIMP metallopeptidase 
inhibitor 3 (TIMP-3) and elastin expression, which indi-
cates that miR-181b is a key regulator in suppressing ather-
osclerosis and aneurysm progression and protecting plaque 
rupture, and it could be a potential therapeutic option for 
cardiovascular disease intervention in the future. Previ-
ously, butyrate has been reported to play beneficial roles 
in cardiovascular diseases by preventing endothelial injury 
in atherosclerosis, but the underlying mechanisms remain 
unknown. Recently, miR-181b expression was reported to 
be upregulated in atherosclerotic aortas and IL-1β-treated 
ECs after treatment with butyrate [56]. Importantly, the 
increased miR-181b induced by butyrate was shown to 

inhibit NADPH oxidase 2 (NOX2) expression and reactive 
oxygen species (ROS) generation in ECs.

Role of lncRNAs in endothelial cells

EC dysfunction is one of the main reasons for the occur-
rence of chronic disorders, including atherosclerosis, and 
is highly related to the abnormal expression of lncRNAs. 
LncRNA PVT1, located on human chromosome 8q24 
adjacent to the c-myc genes, is considered a potential 
oncogene. Indeed, a series of studies have reported that 
lncRNA PVT1 expression is increased in many malignan-
cies and is involved in promoting tumor cell proliferation, 
migration, and metastasis [56]. Recently, lncRNA PVT1 
was found to be upregulated in the serum of AS patients 
and in oxLDL-stimulated HUVECs, and repression of 
lncRNA PVT1 in oxLDL-treated HUVECs promotes pro-
liferation and inhibits apoptosis and production of inflam-
matory cytokines by downregulating the expression of 
miR-30c-5p [57].

It has been reported that lncRNA NEAT1 is involved in 
regulating gastric progression by manipulating the miR‐
335‐5p/ROCK1 pathway [58]. In addition, the dysregu-
lation of lncRNA NEAT1 is involved in atherosclerosis 
progression. Wang et al. found that NEAT1 is significantly 
upregulated in human myeloid leukemia mononuclear cells 
(THP-1) cells stimulated with oxLDL and promotes the 
inflammatory response by targeting miR-342-3p [59]. Tri-
methylamine N-oxide (TMAO) improves atherosclerosis by 
regulating the functions of endothelial cells. Wu et al. found 
that NEAT1 is upregulated in TMAO-stimulated HUVECs 
and plays an important role in regulating cell proliferation 
[60]. Zhang et al. reported that NEAT1 is upregulated in 
the serum of AS patients and in oxLDL-stimulated HAECs 
and that the suppression of NEAT1 inhibits human aor-
tic endothelial cells (HAECs) proliferation and promotes 
apoptosis by targeting miR‑638 to regulate the AKT/mTOR 
pathway [61]. Recently, NEAT1 expression was reported 
to be increased in AS clinical samples and TMAO-treated 
HUVECs, and NEAT1 suppression suppressed prolifera-
tion and induced apoptosis in HUVECs [62]. Mechanisti-
cally, NEAT1 modulates STAT3 expression by binding to 
miR-370-3p and attenuates HUVEC functions during AS 
progression.

The lncRNA RMST has been revealed to play a crucial 
role in cerebral ischemic disease, and the suppression of 
RMST expression protects against ischemic brain injury [63, 
64]. Recently, RMST was shown to play a critical role in 
regulating EC function in AS [65]. RMST is upregulated 
in the serum of AS patients, and oxLDL-induced HUVECs 
and RMST depression are involved in cell viability and the 
inflammatory response by targeting miR-224-3p. Further-
more, the receiver operating characteristic (ROC) curve 
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indicated that RMST has clinical diagnostic value for AS 
and that RMST could serve as a potential diagnostic marker 
for AS [65].

LncRNA RNCR3, known as LINC00599, was first 
shown to be dysregulated during mouse retinal develop-
ment and was subsequently reported to play an important 
role in regulating the differentiation of neurons and oligo-
dendrocytes [66, 67]. Importantly, the expression of RNCR3 
is upregulated in human aortic atherosclerotic lesions and 
oxLDL-induced ECs and VSMCs [68]. Furthermore, 
RNCR3 knockdown inhibits proliferation and migration 
and promotes apoptosis of ECs and VSMCs by inhibiting 
miR-185-5p. Recently, Hong et al. reported that the expres-
sion of RNCR3 is increased in the serum of atherosclerosis 
patients and that RNCR3 overexpression improves prolif-
eration and the production of inflammatory factors, such as 
IL-6, IL-1β, and TNF-α, in ECs [69]. Mechanistic studies 
revealed that RNCR3 binds to miR-185-5p, regulates cyclin 
D2 expression, and promotes cell growth and cytokine secre-
tion, which suggests that RNCR3 may be a potential target 
for atherosclerosis treatment.

LncRNA SNHG12, a tumor activator in cancers, was 
upregulated in brain microvascular ECs in a model of 
ischemic stroke, and it could serve as a biomarker of pulmo-
nary arterial hypertension [70–72]. Importantly, SNHG12 
was shown to play a regulatory role in the apoptosis and 
proliferation of oxLDL-stimulated VSMCs [73]. Recently, 
the modulatory role of SNHG12 in ECs of AS was investi-
gated. Mao et al. found that SNHG12 is upregulated in AS 
patients and that oxLDL-stimulated HUVECs and SNHG12 
can promote proinflammatory factor secretion and augment 
atherosclerotic lesions in vivo via the miR-218-5p/IGF2 axis 
[74].

LncRNA NORAD, a newly discovered noncoding RNA 
located at Chr20q11.23, can be activated via DNA dam-
age and is related to maintaining genomic stability [75]. 
NORAD transcripts have been found to function both in the 
cytoplasm and nucleus [76]. In the cytoplasm, NORAD tar-
gets PUMILIO and modulates cell proliferation and division 
by regulating mRNA stability [77]. In addition, NORAD 
is involved in maintaining mitochondrial homeostasis by 
regulating PUMILIO. Recently, NORAD was found to play 
a critical role in atherosclerosis progression by regulating 
endothelial cells [75]. NORAD downregulation leads to 
cell cycle arrest in G0/G1 phase, promoting senescence and 
apoptosis in oxLDL-stimulated HUVECs. Mechanistically, 
NORAD causes endothelial cell senescence and apoptosis 
in atherosclerosis, mainly by manipulating the NF-κB and 
p53–p21 pathways and IL-8 expression, in which NORAD-
mediated regulation of IL-8 expression may directly target 
splicing factor proline and glutamine rich (SFPQ).

LncRNA SNHG12, which is involved in promoting the 
proinflammatory response and augmenting atherosclerotic 

lesions, also regulates vascular endothelium senescence 
during AS [78]. Hemmig et al. reported that SNHG12 
is highly expressed in vascular ECs and downregulated 
during lesion progression and that SNHG12 knockdown 
improves atherosclerotic lesion formation by exacerbating 
DNA damage and senescence in vascular ECs.

Epithelial-mesenchymal transition (EMT) is a key 
contributor to atherosclerosis progression, and lncR-
NAs are widely related to atherosclerosis development. 
The lncRNA ZFAS1, located on the antisense strand of 
the promoter region of ZNFX1, was first discovered in 
breast cancer and then shown to play an important role in 
oncogenic properties in other cancers [79, 80]. Recently, 
ZFAS1 was demonstrated to be related to the process of 
atherosclerosis and involved in regulating macrophage 
functions during the progression of atherosclerosis [81]. 
In addition, ZNFX1 was investigated and reported to be 
involved in EMT during atherosclerosis [82]. The expres-
sion of ZFAS1 is significantly increased in atherosclerotic 
mice, and oxLDL-induced HUVECs and ZFAS1 overex-
pression in HUVECs promote EMT-related gene expres-
sion, including α-SMA and vimentin. Mechanistic studies 
have shown that ZFAS1 promotes EMT mainly by target-
ing the miR-150-5p/Notch3 signaling pathway.

The lncRNA ANRIL, a 3.8-kb transcript from the 
INK4B‐ARF‐INK4A gene cluster located in the chromo-
some 9p21 region, is involved in a variety of diseases, such 
as diabetes and coronary heart disease [83, 84]. ANRIL 
has been documented to play a key role in the develop-
ment of AS. Liu reported that the level of ANRIL in blood 
plasma is significantly upregulated in acute coronary syn-
drome patients and that the expression level of ANRIL is 
positively related to the inflammatory cytokine production 
level [85]. In addition, ANRIL knockdown significantly 
promotes tubule formation and cell proliferation and sup-
presses inflammatory secretion by HUVECs. Further-
more, ANRIL mediates HUVEC dysfunction mainly by 
regulating the TGF-βR1/Smad pathway and suppressing 
let-7b expression. In addition, ANRIL also affects the pro-
gression of intracranial aneurysm (IA) by manipulating 
VSMCs. Hu et al. found that ANRIL levels were decreased 
in the plasma and arterial wall of IA patients and that over-
expression of ANRIL promoted proliferation and blocked 
apoptosis of VSMCs [86]. The above results reveal that 
ANRIL may play a variety of regulatory roles in cardio-
vascular disease.

Bai et al. analyzed a Gene Expression Omnibus (GEO) 
dataset and found that lncRNA AK136714 was upregulated 
in the plaque and plasma of atherosclerosis patients [87]. 
Furthermore, they found that AK136714 knockdown main-
tained the endothelial barrier, suppressed EC inflammation 
and alleviated atherosclerosis formation in ApoE−/− mice. 
Mechanistic studies have verified that AK136714 directly 
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targets HuR (ELAVL1) to promote the mRNA stability of 
TNF-α and IL-1β and increases the transcription of Bim, 
indicating that AK136714 could function in atherosclerosis 
and provide potential novel drug targets for atherosclerosis 
intervention.

Role of circRNAs in endothelial cells

CircRNAs have been revealed to play a key regulatory role 
in the occurrence and development of AS, and dysregulated 
circRNAs have been found in ECs during the AS process. 
CircRSF1, known as circ_0000345, derived from remod-
eling and spacing factor 1 (RSF1), was found to be signifi-
cantly upregulated in HUVECs induced by oxLDL through a 
circRNA microarray assay, and knockdown of circ_0003575 
improved the proliferation and angiogenesis of HUVECs 
[88]. Furthermore, Wei et al. found that circRSF1 expres-
sion was downregulated in the serum of AS patients and 
oxLDL-induced HAECs and that upregulating circRSF1 
promoted cell viability, migration, and tube formation of 
oxLDL-treated HAECs and inhibited cell apoptosis [89]. 
Mechanistically, circRSF1 competitively targets miR-758 
and positively regulates the expression of CCND2, indicat-
ing that circRSF1 could be a potential future target for ath-
erosclerosis treatment. Recently, Zhang et al. also found that 
circRSF1 was downregulated in oxLDL-treated HUVECs 
and that overexpression of circRSF1 could promote cell pro-
liferation and inhibit apoptosis and inflammation in oxLDL-
stimulated HUVECs [90]. Further study confirmed that 
circRSF1 could bind directly to miR-135b-5p and regulate 
histone deacetylase 1 (HDAC1) expression in AS progres-
sion. These investigations of circRSF1 in AS indicated the 
potential therapeutic role of circRSF1 in the diagnosis and 
therapy of AS.

CircNOL12, known as circ_0004543, is located on chr22 
and is derived from the nucleolar protein 12 (NOL12) gene. 
Recently, the regulatory role of circNOL12 in the occur-
rence and development of AS was investigated. CircNOL12 
expression is increased in oxLDL-stimulated HUVECs, 
and downregulation of circNOL12 significantly improves 
the proliferation, migration, and invasion of HUVECs and 
inhibited their apoptosis induced with oxLDL. Furthermore, 
circNOL12 knockdown can activate the PI3K/AKT/NOS3 
signaling axis in oxLDL-treated HUVECs, which provides 
a potential target for treating EC injury in AS [91]. Kaemp-
ferol (Kae), a natural alternative flavonoid, has been used in 
several diseases, including cancer and cardiovascular dis-
eases, due to its antioxidant and anti-inflammatory activities 
[92, 93]. Importantly, Kae has been documented to suppress 
apoptosis of HAECs stimulated by oxLDL by suppressing 
the NF-κB signaling pathway [94]. Li et al. reported that Kae 
could attenuate oxLDL-stimulated circNOL12 upregulation 

and alleviate oxLDL-induced inflammation and apoptosis in 
HUVECs [95]. They also found that circNOL12 could bind 
directly to miR-6873-3p in oxLDL-treated HUVECs.

Phosphofurin acidic cluster sorting protein 2 (PACS2) 
expression is increased in oxLDL-treated HUVECs, and 
PACS2 upregulation aggravates oxLDL-induced EC 
apoptosis [96]. Recently, it was found that circ_0033596 
expression, originating from the PACS2 transcript, is 
enhanced in oxLDL-treated HUVECs, and circ_0033596 
overexpression is able to suppress HUVEC viability and 
cell cycle progression and improve apoptosis [97]. Further 
studies have demonstrated that circ_0033596 targets and 
negatively regulates miR-217-5p expression, promotes 
oxLDL-stimulated HUVEC apoptosis and participates in 
the pathogenesis of AS.

The newly discovered circCHFR, known as 
circ_0029589, is located on chromosome 12 and is sig-
nificantly upregulated in oxLDL-treated VSMCs according 
to microarray assay data [98]. Furthermore, the research-
ers found that circCHFR plays a critical regulatory role 
in the proliferation and migration of VSMCs in AS by 
manipulating the FOXO1/Cyclin D1 signaling pathway 
by targeting miR-370. Li et al. reported that circCHFR is 
also involved in regulating HUVEC function during AS 
[99]. It was found that circCHFR expression is increased 
in AS patients and oxLDL-induced HUVECs, and circ-
CHFR knockdown improves viability and attenuates apop-
tosis of HUVECs. Mechanistic studies have revealed that 
circCHFR, as a molecular sponge, binds to miR-15b-5p 
and regulates growth arrest and DNA damage inducible 
gamma (GADD45G) expression in HUVECs, leading to 
AS progression.

Wu et al. analyzed the profile of circRNAs in young 
and senescent ECs by applying RNA sequencing, and they 
found that circGNAQ (circ_0006459), which is enriched in 
vascular ECs, was significantly reduced in senescent ECs 
[100]. Further mechanistic studies indicated that circG-
NAQ may serve as a sponge to manipulate Polo-like kinase 
2 (PLK2) expression by targeting miR-146a-5p, thereby 
attenuating EC senescence. Additionally, overexpression 
of circGNAQ in ECs weakens vascular EC senescence and 
reduces atherosclerosis progression, suggesting that the 
manipulation of circGNAQ is a potential therapeutic target 
for suppressing AS progression in the future.

Fu et al. performed a circRNA sequencing of periph-
eral blood mononuclear cells from coronary heart disease 
(CHD) patients and controls, and found circ_0030042, 
derived from forkhead box O1 (FOXO1), was significantly 
downregulated [101]. Furthermore, circ_0030042 plays a 
critical role in regulating HUVEC autophagy by targeting 
eukaryotic translation initiation factor 4A3 (eIF4A3) and 
attenuating its recruitment to the mRNA of beclin1 and 
forkhead box O1 (FOXO1). Importantly, circ_0030042 



1285Molecular and Cellular Biochemistry (2024) 479:1279–1295	

1 3

Table 1   Summary of AS-related noncoding RNAs in endothelial

↑: Promote; ↓: Inhibit; Up: Upreulation; Down: Downregulation

Noncoding RNAs Effect on AS Targets/pathway Model Regulation Phenotype Intervention References

miR-146a Anti-AS Src HUVECs Down Senescence↓ No [35]
miR-216a Pro-AS Smad3 HUVECs/HAECs Up Senescent↑ Rb2 [38]
miRNA-146a-5p Anti-AS TRAF6/IRAK1 HUVECs Down Inflammation↓ No [39]
miR-520b Anti-AS NF-κB/p65/ICAM1/

VCAM1
HUVECs/HAECs Down Inflammation↓ No [40]

miR-19b Anti-AS PPARγ HUVECs Down Inflammation↑ No [42]
miR-1 Pro-AS KLF4 HUVECs Up Inflammation↑ No [43]
miR-15a-5p Anti-AS CX3CL1 HUVECs/ApoE−/− 

mice
Down Proliferation↑ No [45]

miR-155 Pro-AS SERPIND1 HUVECs Up Permeability↑, prolif-
eration↓

No [47]

miR-512-3p Pro-AS XBP-1 HUVECs/ApoE−/− 
mice

Up Viability↑, apopto-
sis↓, migration↑

No [49]

miR33a-5p Anti-AS MiR33a-5p/Ets-1/
DKK1

HUVECs/ApoE−/− 
mice

Down Angiogenesis↓ No [52]

miR-181b-5p Anti-AS STAT-3 HUVECs Down pyroptosis↓ No [53]
miR-181b Anti-AS PPARδ ApoE−/− mice Down NOX2↓, ROS↓ Butyrate [56]
lncRNA PVT1 Pro-AS miR-30 c-5p AS patients/HUVECs Up Proliferation↑, apop-

tosis↓, inflamma-
tion↑

No [57]

lncRNA NEAT1 Pro-AS miR-370-3p/STAT3/
FMO3

AS patients/HUVECs Up Proliferation↑, apop-
tosis↓

No [62]

lncRNA RMST Pro-AS miR-224-3p AS patients /
HUVECs

Up Viability↓, inflamma-
tion↑

No [65]

LncRNA RNCR3 Pro-AS miR-185-5p/cyclin 
D2

AS serum/HUVECs Up Proliferation↑, 
inflammation↑

No [69]

LncRNA SNHG12 Pro-AS miR-218-5p/IGF2 HUVECs/ApoE−/− 
mice

Up Inflammation↑, 
senescence↓

No [74] [78]

lncRNA NORAD Anti-AS NF-κB/p53-p21 HUVECs/ApoE−/− 
mice

Down Apoptosis↓, senes-
cence↓, inflamma-
tion↓

No [75]

lncRNA ZFAS1 Pro-AS miR-150-5p/Notch3 HUVECs/ApoE−/− 
mice

Up EndMT↑ No [82]

lncRNA ANRIL Pro-AS let-7b/TGF-βR1 AS patients/HUVECs Up Inflammation↑, 
apoptosis↑, pro-
liferation↓, tubule 
formation↓

No [85]

circRSF1 Anti-AS miR-135b-5p/HDAC1 HUVECs Down Proliferation↑, apop-
tosis↓, inflamma-
tion↓

No [90]

circNOL12 Pro-AS miR-6873-3p/FRS2 HUVECs Up Inflammation↑, oxi-
dative stress↑, and 
apoptosis↑

Kaempferol [91, 95]

circ_0033596 Pro-AS miR-217-5p/CLIC4 HUVECs Up Viability↓, cell 
cycle↓, apoptosis↑

No [97]

circCHFR Pro-AS miR-15b-5p/
GADD45G

AS patients/HUVECs Up Apoptosis↑, viabil-
ity↓

No [99]

circGNAQ Anti-AS miR-146a-5p HUVECs/HCAECs Down Senescence↓, prolif-
eration↑, angiogen-
esis↑

No [100]

circ_0030042 Anti-AS eIF4A3 HUVECs/ApoE−/− 
mice

Down Autophagy↓, plaque 
stability↑

No [101]
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also promotes plaque stability and attenuates eIF4A3-
stimulated plaque instability (Table 1).

Noncoding RNA regulation of smooth 
muscle cells

Role of miRNAs in smooth muscle cells

VSMCs also play key and complex roles in the progres-
sion of atherogenesis. Under normal conditions, VSMCs 
are mainly quiescent and express signature markers (such 
as smooth muscle cell myosin heavy chain, SM22α/
tagln, smooth muscle cell actin, smoothelin). However, in 
response to pathological signals that occur during athero-
genesis, VSMCs reduce the expression of their signature 
markers and acquire a proatherogenic phenotype with an 
increased capacity for proliferation, migration and secre-
tion. The phenotypic switching of VSMCs has been con-
sidered a key process in atherosclerosis, and intervention 
investigations to prevent phenotypic switching are of great 
significance for AS treatment. Recently, a series of studies 
have indicated that noncoding RNAs are critical regula-
tors of VSMC function during AS. Gorur et al. analyzed 
the expression profiles of miRNAs in the plasma of AS 
patients and healthy controls and found that the expres-
sion of miR-222-5p was significantly upregulated in AS 
patients [102]. Then, Liu et al. characterized the potential 
regulatory role of miR-222-5p in AS progression [103]. 
They found that the expression of miR-222-5p in oxLDL-
stimulated VSMCs and serum from AS model mice was 
significantly increased and that knockdown of miR-222-5p 
suppressed the proliferation and migration phenotype of 
oxLDL-stimulated VSMCs; additionally, the regulatory 
effect on VSMC behaviors could be reversed by knock-
down of RB transcriptional corepressor 1 (RB1). Mecha-
nistic studies have revealed that miR222-5p can target RB1 
by binding to the 3ʹ-untranslated region. In addition to the 
regulatory role of miR-222-5p in VSMCs, the dysregu-
lated expression of miR-222-5p in serum is also involved 
in lipid deposition, which suggests that miR-222-5p may 
serve as a novel therapeutic target for AS in the future.

It has been documented that miR-378c is dysregulated 
in several cancers and plays a key role in regulating tumor 
development [104]. Recently, miR-378c has been reported 
to be involved in the progression of AS. The expression 
of miR-378c is significantly downregulated in AS plaques 
and serum of acute coronary syndrome (ACS) patients 
compared with controls, and miR-378c knockdown facili-
tates VSMC phenotypic switching during atherosclerosis 
[105]. Samd1 can bind (Low Density Lipoprotein) LDL on 
the cell surface, promote the oxidation of LDL and play a 
critical role in foam cell formation. Furthermore, Samd1 

was found to be inhibited by miR-378c, and its protein 
level is increased in blood from ACS patients, indicating 
that the miR-378c-Samd1 axis participates in both VSMC 
phenotypic switching and LDL oxidation during AS and 
may be a potential target for AS treatment.

In previous work, miR-205-5p was shown to negatively 
regulate the expression of low-density lipoprotein receptor-
related protein 1 (LRP1), leading to cholesterol accumula-
tion within large arterial walls because of the attenuation 
of the LRP1/ABCA1 pathway [106]. Meng et al. utilized 
miR-205-5p knock-in (KI) mice crossed with apolipopro-
tein E knockout (ApoE−/−) mice to investigate the role of 
miR-205-5p in atherosclerotic plaque formation [107]. It 
was found that miR-205-5p KI ApoE−/−mice develop larger, 
more unstable plaques than ApoE−/− mice, with lower serum 
levels of high-density lipoprotein cholesterol. These results 
suggest that miR-205-5p is related to unstable plaques and 
has a negative influence on lipid metabolism in AS. Huang 
et al. also found that miR-205–5p is downregulated in an 
AS model and may serve as a potential biomarker of cardio-
vascular disease [108]. Recently, miR-205–5p was shown to 
inhibit the viability of human aortic vascular smooth mus-
cle cells (HAVSMCs) stimulated by oxLDL, suppress the 
cell cycle by inhibiting the expression of cyclin D1, and 
improve cell apoptosis by enhancing the expression of Bax/
Bcl-2 and caspase3 [109]. Mechanistically, miR-205-5p 
inhibits the proliferation and migration of oxLDL-treated 
HAVSMCs by attenuating the phosphorylation of (erb-b2 
receptor tyrosine kinase 4) ERBB4 and AKT, suggesting 
that miR-205-5p may serve as a novel target for AS interven-
tion.miR-126-3p, located in the intron of EGF-like domain 
multiple 7 (EGFL7), is mainly derived from ECs [110]. It 
has been demonstrated that miR-126-3p plays an important 
antiatherogenic role by modulating a variety of pathways. 
For example, miR-126-3p derived from EC apoptosis bodies 
suppresses the production of regulator of G-protein signaling 
16 (RGS16) to activate CXCL12 and its receptor CXCR4, 
weakening atherosclerosis [111]. miR-126-3p also prevents 
the adhesion of leukocytes to ECs by downregulating the 
expression of vascular cell adhesion molecule-1 (VCAM-1) 
[112]. The stimulation of VSMCs with EC-derived micro-
particles (EMPs) rich in miR-126-3p inhibits SMC prolifera-
tion by regulating LDL receptor-related protein 6 (LRP6) 
and β-catenin expression [113]. Vascular calcification has 
an effect on aortic rigidity and can enhance the possibil-
ity of atherosclerotic lesion rupture. Recently, Zeng et al. 
declared that miR-126-3p is involved in the reduction of 
vascular calcification of SMCs [114]. Furthermore, they 
revealed that the upregulation of miR-126-3p in VSMCs 
can inhibit ERK1/2 and reduce calcification in AS lesions.

VSMC senescence causes cell dysfunction and improves 
the occurrence of aging-related cardiovascular diseases, 
including AS, where suppression of VSMC senescence 
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could be one of the interactions in AS. Recent studies have 
revealed that miRNAs are essential regulators of VSMC 
cellular senescence. Hypoxia plays an important role in 
promoting VSMC proliferation. The expression of miR-665 
is upregulated in PASMCs under hypoxic conditions, and 
the upregulation of miR-665 PASMC enhances prolifera-
tion [115]. In addition, the miR-665 level is significantly 
increased in VSMCs with bleomycin (BLM)-stimulated 
senescence and olmesartan reduced BLM-induced senes-
cence by upregulating Syndecan 1 (SDC1), which is medi-
ated by miR-665 [116]. Recently, Chen et al. analyzed dif-
ferentially expressed miRNAs in young and old VSMCs 
through microarray analysis and found that miR-665 was 
significantly upregulated in aging VSMCs, and miR-665 
knockdown attenuated VSMC senescence [117]. Further 
investigation demonstrated that miR-665 could promote 
senescence in AS mainly by targeting SDC1 in VSMCs, 
which may elucidate a novel intervention strategy for aging-
related AS.

Role of lncRNAs in smooth muscle cells

lncRNAs are dysregulated during vascular pathology and are 
involved in the switch of SMCs to a dedifferentiated state 
in the microenvironment of AS lesions. LncRNA CARMN, 
which was previously found in human cardiomyocytes, is 
juxta-located upstream of miR-143 and miR-145, both of 
which are related to regulating vSMC function [118]. Dong 
et al. reanalyzed large-scale single-cell RNA sequencing 
datasets and showed that CARMN, which had been docu-
mented to play a key role in cardiac differentiation, is an 
abundant, conserved, and SMC-specific lncRNA [119]. 
They found that CARMN expression is significantly down-
regulated in humans and murine models of vascular disease 
and regulates the phenotype of VSMCs in vitro. In vivo, spe-
cific deletion of CARMN in SMCs dramatically aggravates 
injury-stimulated neointima formation in mice. Mechanistic 
studies have revealed that CARMN targets the transcrip-
tional cofactor myocardin, promoting its activity and thereby 
protecting the contractile phenotype of VSMCs. In addi-
tion, this was the first lncRNA discovered to target myocar-
din. Vacante et al. found that CARMN negatively regulates 
miR-143 and miR-145 expression in human coronary arterial 
smooth muscle cells (hCASMCs), and transcriptomic data 
from CARMN-knockout hCASMCs showed that CARMN is 
involved in the proliferation, migration, inflammation, lipid 
metabolism and dedifferentiation of SMCs [120]. Impor-
tantly, the expression of miR-143 and miR-145 is reduced 
after CARMN knockout, and the volume and size of plaques 
are increased in AS, revealing that lncRNA CARMN serves 
as a regulator to facilitate vSMC differentiation toward a 
proatherogenic phenotype and aggravates AS progression.

Differentiation antagonizing nonprotein-coding RNA 
(DANCR) has been documented to participate in the 
occurrence of a series of cancers, including lung and 
colorectal cancers [121, 122]. In addition, Zhang et al. 
discovered that DANCR is involved in AS progression by 
manipulating ATP binding cassette subfamily A member 
1 (ABCA1), suggesting that DANCR plays a crucial role 
in AS development [123]. Recently, An et al. found that 
the expression of DANCR was upregulated in serum from 
AS patients and positively correlated with the levels of 
low-density lipoprotein cholesterol (LDL-C), homocyst-
eine (Hcy), and C-reactive protein (CRP) in serum [124]. 
In addition, DANCR knockdown attenuates the prolifera-
tion and migration of VSMCs. It was further revealed that 
DANCR aggravates AS progression by binding to miR-
335-5p. Similarly, Zhang et al. have reported that DANCR 
is dramatically upregulated in the serum of AS patients 
and oxLDL-stimulated VSMCs and HUVECs [125]. In 
addition, DANCR downregulation significantly enhances 
viability and suppresses apoptosis of oxLDL-treated 
VSMCs. Moreover, DANCR downregulation inhibits the 
expression of inflammatory cytokines, such as IL-6, IL-1β, 
and TNF-α, in oxLDL-treated VSMCs and HUVECs. 
Mechanistically, DANCR can regulate the expression of 
cytochrome c oxidase assembly factor COX20 (COX20) 
by binding to miR-214-5p, and the downregulation of miR-
214-5p can weaken the protective effects of si-DANCR on 
oxLDL-induced EC injury. These results demonstrate that 
DANCR may be a potential target for AS intervention.

LncRNA XIST, derived from the inactivated X chromo-
some, is related to X chromosome inactivation in female 
mammals, supplying compensation for the imbalance of 
the X-associated gene dosage between the sexes [124]. It 
has been documented that XIST plays an essential role in 
vascular diseases, including the aggravation of myocardial 
infarction, via miR-101a-3p-targeted fos proto-oncogene 
(FOS) manipulation [126]. Oxygen–glucose deprivation 
(OGD) upregulates the expression of XIST, and overex-
pression of XIST exacerbates OGD-stimulated neuronal 
injury by regulating the miR-455-3p/TIPARP pathway 
[127]. In addition, downregulation of lncRNA XIST sup-
presses oxLDL-induced EC inflammation and apoptosis by 
regulating the expression of miR-221-3p [128]. Recently, 
the regulatory role of XIST, located on human chromo-
some Xql3.2, was investigated in oxLDL-treated VSMCs. 
Zhang et al. found that XIST was upregulated in oxLDL-
treated VSMCs and that knockdown of XIST limited the 
proliferation and migration of oxLDL-stimulated VSMCs 
[129]. XIST can directly target miR-539-5p and suppress 
its expression. In addition, inhibition of miR-539-5p 
expression can partially reverse the effect of XIST down-
regulation on the migration and proliferation of oxLDL-
stimulated VSMCs. A mechanistic investigation revealed 
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that the expression of secreted phosphoprotein 1, a target 
of miR-539-5p, is regulated by XIST to promote the pro-
liferation and migration of VSMCs during AS progression.

The lncRNA NRON, composed of three exons with a 
length of 2.7 kb, plays an important role in the assembly of 
a large RNA/protein complex [130]. NRON was previously 
thought to be related to the immune system and involved in 
the differentiation of T cells [130]. In addition, Nron has 
been reported to manipulate the pathophysiology and par-
ticipate in processes involved in a series of diseases [131, 
132]. Recently, Du et al. studied the role of NRON in the 
progression of AS and clarified the regulatory mechanism of 
Nron in SMC function and intraplaque angiogenesis [133]. 
They found that the expression of NRON is depressed in 
atherosclerotic lesions from humans and mice and that 
overexpression of NRON in VSMCs causes more fragile 
plaques with an increase in the degradation of elastic fibers. 
Conversely, NRON knockdown attenuates the progression 
of AS and enhances the stability of AS plaques. Mechanistic 
studies have revealed that NRON specifically targets and 
negatively manipulates nuclear factor of activated T cells 
3 (NFATC3), thus suppressing the proliferation and exac-
erbating the apoptosis of VSMCs during the process of AS, 
which suggests that targeting and inhibiting NRON expres-
sion may have future potential for AS intervention. In addi-
tion, lncRNA-p21 has also been reported to play a protective 
role against AS development by inhibiting the proliferation 
and promoting the apoptosis of VSMCs by targeting sirtuin 
7 (SIRT7) [134].

Role of circRNAs in smooth muscle cells

CircRNAs generally have a long half-life by resisting exo-
nuclease degradation. The regulatory role of circRNAs 
has been investigated in cancer and cardiovascular and 
neurologic diseases [135]. CircRNAs have been reported 
to be involved in vascular diseases by regulating VSMCs. 
CircMTO1 is conserved in mice and humans, and it has 
been found to be dysregulated in a series of cancers [136]. 
Recently, it was reported that CircMTO1 plays an essential 
role in regulating the function of VSMCs during AS progres-
sion [137]. Ji et al. found that the expression of circMTO1 
is reduced in serum samples from AS patients and oxLDL-
treated VSMCs, suggesting that circMTO1 is related to the 
development of AS. CircMTO1 upregulation suppresses pro-
liferation and migration and enhances apoptosis in oxLDL-
treated VSMCs. CircMTO1 was further found to regulate 
the expression of RAS p21 protein activator 1 (RASA1) by 
inhibiting miR-182-5p. Furthermore, re-expression of miR-
182-5p and knockdown of RASA1 was found to reverse the 
effects of circMTO1 on the migration, proliferation, and 
apoptosis of oxLDL-treated VSMCs, indicating that circ-
MTO1 could serve as a potential target in AS intervention.

RNA-Seq was applied to identify vascular remod-
eling–related circRNAs in AS tissues obtained from 
ApoE–/– model mice. circEsyt2, the top 5 dysregulated 
circRNAs involved in junction counts, was significantly 
upregulated in plaques from the AS model and in VSMCs 
from damaged carotid arteries [138]. circEsyt2 knock-
down decreased the proliferation of VSMCs, as measured 
by Ki67 staining. In addition, after circEsyt2 knockdown, 
expression of the phenotypic switch markers SMA and 
Myosin heavy chain 11 (Myh11) was elevated in the 
damaged carotid arteries. Furthermore, circEsyt2 knock-
down promoted VSMC apoptosis in vivo. Mechanistic 
studies have shown that circEsyt2 can interact directly 
with Poly(rC) binding protein 1 (PCBP1) and regulate 
the intracellular location of PCBP. Furthermore, silenc-
ing of circEsyt2 significantly increases p53 splicing via 
PCBP1, resulting in altered expression of p53 target genes 
(cyclin D1, PUMA, and NOXA) and decreased VSMC 
proliferation. These results suggest that circEsyt2 could 
serve as a key target for combating AS caused by vascular 
remodeling.

It has been reported that circHIPK3 is involved in myo-
cardial repair and regeneration by targeting miR-133a and 
enhancing the expression of connective tissue growth factor 
(CTGF) [139]. Recently, circHIPK3 was identified to play 
a crucial role in AS progression. Wei et al. reported that 
circHIPK3 is repressed in high fat-fed mice and oxLDL-
stimulated HUVECs [140]. Furthermore, they revealed that 
circHIPK3 could suppress lipid content in ox-LD-stimu-
lated HUVECs by promoting autophagy by regulating the 
miR-190b/ATG7 axis, which suggested that circHIPK3a is 
involved in AS development by manipulating VECs. In addi-
tion, circHIPK3 was also found to be upregulated in human 
vascular smooth muscle (HVSMCs) during AS progression 
[141]. The CCK-8 experiment revealed that knocking down 
circHIPK3 decreases the growth of VSMCs. In VSMCs, 
knocking down circHIPK3 causes cell cycle arrest and apop-
tosis. These data suggest that circHIPK3 control may be an 
essential regulatory factor for VSMC proliferation in AS.

Studies have investigated the relationship between dys-
regulated circRNAs and vascular calcification (VC). Ryu 
et al. performed RNA sequencing of inorganic phosphate-
induced VSMCs and profiled the dysregulated circRNAs 
during VC progression [142]. A series of circRNAs were 
found and verified to be involved in the development of VC. 
For example, circSmoc1–2 were significantly downregulated 
post VC induction. Recently, the authors further confirmed 
that the expression of circSmoc1–2, located mainly in the 
cytoplasm, is decreased after VC induction. circSmoc1–2 
overexpression substantially attenuates calcium deposition, 
implying that circSmoc1–2 modulation has an impact on 
VC. Furthermore, inhibition of circSmoc1–2 results in cal-
cium deposition, but combining a miR-874-3p inhibitor with 
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a circSmoc1–2 siRNA results in reduced calcium deposition, 
indicating that circSmoc1–2 acts as a sponge for miR-874-3p 
during VC. The above investigations revealed that circS-
moc1–2 could be a new therapeutic target for the treatment 
of VC during AS (Table 2).

Conclusion future direction

Because of the ability of noncoding RNAs to modulate gene 
expression, they have an undeniable influence on AS initia-
tion and development. We were able to determine the pos-
sible influence of various noncoding RNAs by connecting 
their target genes to the consequences of downregulating 
their respective protein expression. This has been found to 
affect the phenotypic behavior of multiple critical actors in 
AS, including ECs and SMCs, the dysregulation of which 
initiates and accelerates AS plaque formation. A number of 
studies have suggested that noncoding RNAs play important 
roles in lipid metabolism, EC dysfunction, the VSMC phe-
notype, reverse cholesterol transfer, and vascular inflamma-
tion in atherosclerosis. Several noncoding RNAs offer strong 
potential as biomarkers and intervention targets for various 
pathological alterations that occur during the AS process. 

Delivery of a cassette containing noncoding mimics or 
inhibitors could thus be an appealing therapeutic method for 
specific stages of AS and management of its consequences. 
However, most investigations on the link between noncoding 
RNAs and AS are limited to cell or blood detection. To iden-
tify the specific role of noncoding RNAs in atherosclerotic 
plaques, in vivo investigations are needed. In addition, it is 
necessary to analyze the role of the same noncoding RNA 
in different diseases, such as the associations between AS 
and cancers. In addition, the models of AS are limited for 
investigating the regulatory roles of noncoding RNAs, and 
it is necessary to explore novel models that are more fully 
aligned with actual AS progression, such as three-dimen-
sional (3D) cell culture systems.

Despite these challenges, the potential of ncRNAs as 
promising therapeutic targets and agents for atherosclerosis 
treatment is increasingly recognized. Future research should 
focus on developing more effective and targeted ncRNA-
based therapies, such as antisense oligonucleotides, small 
molecules, and nanoparticle delivery systems, which can 
specifically target dysregulated ncRNAs in atherosclerotic 
lesions and modulate their functions. Moreover, large-scale 
clinical studies are needed to validate the efficacy and safety 
of ncRNA-based therapies in patients with atherosclerosis 

Table 2   Summary of atherosclerosis-related noncoding RNAs in smooth muscle cells

↑: Promote; ↓: Inhibit; Up: Upregulation; Down: Downregulation

Noncoding RNAs Effect Targets/pathway Model Regulation Phenotype Intervention References

miR-222-5p Pro-AS RB1 HAVSMCs/ApoE−/− 
mice

up Proliferation↑, migra-
tion↑

No [103]

miR-378c Anti-AS Samd1 HAVSMCs Down Proliferation↓, migra-
tion↓

No [105]

miR-205-5p Anti-AS ERBB4/AKT HAVSMCs Down Proliferation↓, migra-
tion↓

No [109]

miR-126-3p Anti-AS ERK1/2 HASMCs/HUVECs/
ApoE−/− mice

Down Calcification↓ No [114]

miR-665 Pro-AS lncRNA GAS5/SDC1 HASMCs Up Senescence↑ No [117]
lncRNA CARMN Anti-AS miR-143 and mi-R145 HASMCs/atheroscle-

rotic plaques
Down Proliferation↓, migra-

tion↓,
No [120]

lncRNA DANCR Pro-AS miR-214-5p/COX20 HASMCs/AS patients Up Viability↓, apoptosis↑, 
Inflammation↑

No [124, 125]

LncRNA XIST Pro-AS miR-539-5p/SPP1 HASMCs Up Proliferation↑, migra-
tion↑

No [129]

LncRNA Nron Pro-AS NFATc3 HASMCs Up Proliferation↓, apop-
tosis↑

No [133]

LncRNA-p21 Pro-AS miR-17-5p/SIRT7 AS patients/
ApoE−/−mice

Up Proliferation↓, apop-
tosis↑

No [134]

CircMTO1 Anti-AS miR-182-5p/RASA1 AS patients/ HASMCs Down Proliferation↑, apop-
tosis↓

No [137]

circEsyt2 Pro-AS PCBP1 HASMCs/ApoE−/−mice Up Proliferation↑, migra-
tion↑, apoptosis↓

No [138]

circHIPK3 Pro-AS miR-637 HASMC Up Proliferation↑, no [141]
circSmoc1-2 Anti-AS miR-874-3p/Adam19 HASMC Down Calcification↓ no [143]
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and related cardiovascular disorders. Overall, a deeper 
understanding of the regulatory and interventional roles of 
ncRNAs in atherosclerosis holds great promise for the devel-
opment of novel diagnostic and therapeutic strategies for this 
complex and multifactorial disease.
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