
Vol.:(0123456789)1 3

Molecular and Cellular Biochemistry 
https://doi.org/10.1007/s11010-023-04787-z

The role of prickle proteins in vertebrate development and pathology

K. A. Radaszkiewicz1 · M. Sulcova1 · E. Kohoutkova1 · J. Harnos1 

Received: 23 March 2023 / Accepted: 9 June 2023 
© The Author(s) 2023

Abstract
Prickle is an evolutionarily conserved family of proteins exclusively associated with planar cell polarity (PCP) signalling. 
This signalling pathway provides directional and positional cues to eukaryotic cells along the plane of an epithelial sheet, 
orthogonal to both apicobasal and left–right axes. Through studies in the fruit fly Drosophila, we have learned that PCP 
signalling is manifested by the spatial segregation of two protein complexes, namely Prickle/Vangl and Frizzled/Dishevelled. 
While Vangl, Frizzled, and Dishevelled proteins have been extensively studied, Prickle has been largely neglected. This is 
likely because its role in vertebrate development and pathologies is still being explored and is not yet fully understood. The 
current review aims to address this gap by summarizing our current knowledge on vertebrate Prickle proteins and to cover 
their broad versatility. Accumulating evidence suggests that Prickle is involved in many developmental events, contributes 
to homeostasis, and can cause diseases when its expression and signalling properties are deregulated. This review highlights 
the importance of Prickle in vertebrate development, discusses the implications of Prickle-dependent signalling in pathology, 
and points out the blind spots or potential links regarding Prickle, which could be studied further.
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RS  Robinow syndrome
SNV  Single-nucleotide variant
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Introduction

Prickle, originally discovered in Drosophila in the 1940s, 
gets its name from a gene mutant phenotype with disori-
ented thoracic bristles, described as “irregularly erected and 
whorled, giving a prickle effect “ [1]. This phenotype has 
been linked to disrupted WNT/planar cell polarity (PCP) 
signalling responsible for forming and orienting body sur-
face structures [2]. As this mutant fly was not lethal, Prickle 
might have been assumed to be of lesser importance for 
invertebrate signalling. PCP signalling complexity in ver-
tebrates, however, extended to dynamic and more sophisti-
cated events such as neural tube formation, organogenesis, 
and cell migration [3]. This is evidenced by the fact that the 
single invertebrate Prickle protein is duplicated into four par-
alogs in vertebrates, Prickle1-4 (PRICKLE1-4 in humans), 
identified in the late 1990s and early 2000s [4–8].

Functionally, Prickle is a cytoplasmic protein with no 
known enzymatic activity and plays an essential part in the 
PCP mechanism [2, 3, 9]. To fulfil its function, Prickle binds 
to the four-span transmembrane protein Vangl [10], result-
ing in the accumulation of Vangl-Prickle complexes at the 
plasma membrane, where it primarily regulates the actin 
cytoskeleton (Fig. 1a) [11, 12]. In addition, Prickle proteins 
inhibit other PCP proteins such as cytoplasmic Dishevelled 
[10] and its transmembrane binding partner Frizzled that 
form the opposite PCP complex (Fig. 1a) [2, 3, 9]. Both of 
these Prickle activities are necessary for PCP signalling, and 
this phenomenon is reviewed elsewhere [2, 3, 9].

Our review is centred on three vertebrate Prickle protein 
aspects. First, we discuss Prickle protein sequence elements, 
similarity, and subcellular localization. Second, we will 
explore the crucial role of Prickle proteins in the develop-
ment of vertebrates. In the early vertebrate embryo, Prickle 
proteins are known to have roles in gastrulation and body 
axis formation. During neurulation and later development, 
Prickle is involved in, but not limited to, cell polarization in 
various tissues and organogenesis. Third, this review seeks 
to uncover the impact of PRICKLE proteins on maintain-
ing tissue homeostasis and the progression of diseases in 
humans. As PRICKLE protein levels and function can be 
altered in tumours, special emphasis will be placed on their 
role in cancer.

Overall, Prickle proteins are implicated in a wide range 
of physiological processes, as well as pathological processes 
in vertebrates. Hence, appreciating the multifaceted roles of 
Prickle is of great importance to our understanding of the 
physiological development and progression of pathologies.

Prickle protein sequence elements, 
similarity, and subcellular localization

Sequence elements

The human PRICKLE gene family consists of four mem-
bers, each encoding a protein of distinct length located on 
different chromosomes (Fig. 1b). All PRICKLE protein 
isoforms are modular and contain three sequence elements, 
the N-terminal PET and LIM domains, and the C-terminal 
PKH domain (Fig. 1c; Suppl. Figure 1).

PET domain. The PET (Prickle, Espinas, Testin) 
domain is found in Prickle, LIM-9, and Testin proteins 
(Espinas is an alternate name for Prickle2) and com-
prises ~ 110 amino acids, forming several α-helices [13, 
14]. It is involved in both signal transduction and pro-
tein–protein interactions implicated in a variety of cellular 
processes such as cell adhesion, migration, and differen-
tiation [13]. These cellular processes are typical for ver-
tebrate Prickle paralogs, as described further. If the PET 
domain is accompanied by LIM domains like in Prickle 
proteins, its membrane binding potential is increased [14], 
which is an important prerequisite for PCP signalling.

LIM domain. The LIM (Linl-1, Isl-1, Mec-3) domain 
is an evolutionarily conserved cysteine-rich protein mod-
ule composed of ~ 60 amino acids and is found in a wide 
variety of proteins collectively known as LIM proteins 
[15]. A single LIM domain consists of two zinc fingers, 
which are two antiparallel β-hairpin structures, separated 
by a two-amino acid hydrophobic linker residue. The LIM 
domain is involved in many cellular processes, from gene 
transcription to cytoskeleton organization. Moreover, 
this domain acts as an adaptor, mediating protein–protein 
interactions [16]. LIM domain-containing proteins often 
shuttle between the nucleus, where they regulate gene 
expression, and the cytosol, where they interact with the 
actin cytoskeleton, namely structures such as focal adhe-
sions and adherens junctions [16]. All these features are 
well reflected in Prickle proteins and their function, as 
described further.

The vertebrate Prickle1-3 paralogs contain three LIM 
domains (Fig. 1c; Suppl. Figure 1), and this applies also 
to invertebrates’ homologs (Suppl. Figure 1). However, 
vertebrate Prickle4 contains only two LIM domains 
(Fig. 1c; Suppl. Figure 1), and this might be the reason 
Prickle4 isoforms are not considered a bona fide Prickle 
family member by some researchers [17]. As the Prickle 
protein has several LIM domains, they allow for multi-
ple binding sites, enabling the protein to interact with 
other molecules simultaneously. Then, each LIM domain 
is composed of different amino acid sequences, enabling 
the protein to interact with different types of molecules. 



Molecular and Cellular Biochemistry 

1 3

Finally, three LIM domains provide flexibility in the pro-
tein's structure, allowing it to bind to multiple molecules 
in various orientations. To sum up, the presence of several 
LIM domains gives proteins the ability to better interact 
with their cellular environment [18].

PKH domain. The PKH (Prickle homology) domain is 
found only in the vertebrate Prickle protein family, based on 
our sequence-based database search. Neither is its function 

nor secondary structure well known [7], but this domain 
is assumed to be involved in Prickle membrane localiza-
tion due to its terminal CAAX sequence. CAAX, a common 
protein-targeting motif found in many eukaryotic proteins, 
consists of a C-terminal tetrapeptide sequence generally 
described as having an invariant cysteine (C), two aliphatic 
amino acids  (A1 and  A2), and one of several amino acids in 
the terminal position (X). The CAAX motif is important 

Fig. 1  a Basic PCP pathway components and their subcellular dis-
tribution. b The human PRICKLE1-4 gene locations and basic info. 
c Sequence elements of human PRICKLE1-4. For single sequence 
element description and abbreviations, see the accompanying text. d 
Phylogenetic analysis the of vertebrate Prickle family. Uniprot protein 
database was used to search for Prickle family members from main 
vertebrate species, which often serve as model organisms like Homo 
Sapiens, Pan Troglodytes, Mus musculus, Xenopus laevis, Xenopus 
tropicalis, and Danio rerio. We also added invertebrate species such 
as Ciona intestinalis, Drosophila melanogaster, and Caenorhabditis 
elegans as out-grouping to construct a phylogenetic tree. After col-
lecting the relevant protein sequences, we used the MUSCLE algo-
rithm to align the amino acid sequences and then used the Maximum 

Likelihood method to construct a phylogenetic tree. The tree shows 
the relationship of vertebrate Prickle1-4. A detailed description can 
be found in Data availability. e Amino acid sequence conservation 
in human PRICKLE1-4, compared to PRICKLE1; and individual 
combinations with Prickle1 isoforms across vertebrates, compared 
to human PRICKLE1. f Single amino acid sequence conservation in 
human PRICKLE1-4 showing the most conserved amino acids. g 3D 
structure in silico prediction for human PRICKLE1 using PONDR-
Fit. Score 0.0–0.5 (the bottom part) means that the region forms the 
secondary structure, score 0.5–1.0 (the upper part) identifies a disor-
dered region. h Prickle protein schematized depiction of eukaryotic 
cells showing six described subcellular locations of s
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for proteins’ post-translational modification (PTM), as it is 
recognized by a family of prenyltransferases that can add a 
farnesyl or geranylgeranyl group to the cysteine amino acid 
[19]. This modification allows the proteins to be targeted to 
specific cellular compartments such as plasma membrane, 
nucleus, or mitochondria [20]. As shown in invertebrate C. 
elegans, Prickle can be recruited to the plasma membrane 
in both a CAAX-dependent and CAAX-independent manner 
[21]. In vertebrates, however, it remains to be determined 
whether, and to which content, the CAAX motif with its 
farnesyl group is important for Prickle localization [22]. 
The uniqueness of each CAAX sequence (CIIS in both 
PRICKLE1 and PRICKLE2, CIVA in PRICKLE3, and 
CTMC in PRICKLE4; Suppl. Figure 1) shows that it is not 
fully conserved, and this suggests their distinct functions 
within the cell.

Besides PET, LIM, and PKH domains, all Prickle paral-
ogs contain a central intrinsically disordered region, which 
can be up to 50% of the total protein length (Fig. 1c; Suppl. 
Figure 1). Likely owing to such lengths, the 3D structure 
of no Prickle paralogs has yet been solved, as intrinsically 
disordered regions lack a defined 3D structure under physi-
ological conditions. On the other hand, these regions are 
often associated with PTMs, especially phosphorylation 
[23]. In line with this, several kinases such as Nemo [24], 
Misshapen-like kinase 1 (MINK1) [25], and the family of 
Casein kinases 1 (CK1) [26, 27] have been shown to inter-
act with and modify Prickle. Although these kinases greatly 
influence Prickle function and localization, it is unknown 
whether this happens exclusively via the central intrinsically 
disordered region (see further).

Furthermore, some Prickle paralogs have two unique dis-
tinctive elements, VBM and localization signals.

VBM. The VBM (Vangl binding motif) is a short and 
conserved motif that is ~ 100 amino acids long and is unique 
for Prickle1-2 paralogs. Based on our sequence-based data-
base search, this motif has not been found outside the Prickle 
family. The VBM binds to the intracellular part of the Vangl 
protein [10] and is crucial for the proper assembly, localiza-
tion, and signalling of the PCP complex [10]. This motif was 
required for Prickle2 asymmetry in Xenopus planar-polar-
ized ciliated epithelium, while both LIM domains and VBM 
promoted Vangl1 asymmetric enrichment [28]. The VBM in 
PRICKLE2 was also shown to bind to Ankyrin-G, a family 
of proteins that play a crucial role in maintaining the cell 
membrane structure, during axonal specification and forma-
tion [29]. However, it is unknown whether Ankyrin-G and 
Vangl compete for the VBM at the same time. As the VBM 
is not found in both Prickle3 and Prickle4 (Fig. 1c; Suppl. 
Figure 1), it remains elusive which alternative mechanism 
regulates their asymmetric membrane localization [30].

Localization signals. Two localization signals have 
been predicted for Prickle paralogs. First, mitochondrial 

localization signal (MLS) was found on the N-terminus 
of Prickle3 (sequence MFARGSRRRRSGRA in human 
PRICKLE3) [31], and this sequence is conserved in all ver-
tebrate Prickle3 isoforms (Suppl. Figure 1). MLS (or a simi-
lar MLS sequence) has not been found in PRICKLE1, 2, and 
4 (Suppl. Figure 1). Second, several putative nuclear locali-
zation signals (NLS) have been predicted for PRICKLE1 and 
PRICKLE2 with recognition by the importin/karyopherin 
complex [32, 33]. In PRICKLE1, there are three NLSs at 
amino acid residues from 617 to 623 (sequence PVLRRSK), 
673 to 677 (HRRRR), and 818 to 821 (KKKK; Suppl. Fig-
ure 1) [32, 33]. As these sequences are conserved in ver-
tebrate Prickle1 and partially in Prickle2 isoforms only, it 
remains to be determined whether nuclear localization is 
exclusive to them.

The similarity in Prickle proteins

To understand the vertebrate Prickle family’s evolution, we 
performed a phylogenetic analysis. Specifically, we used the 
UniProt protein database [34] to search for Prickle paral-
ogs from species often serving as vertebrate model organ-
isms like Homo, Pan, Mus, Xenopus, and Danio. We also 
added Prickle sequences from invertebrate species such as 
Ciona, Drosophila, and Caenorhabditis as out-grouping 
sequences to root a phylogenetic tree. After collecting rel-
evant sequences, we used the MUSCLE algorithm [35] 
to align the amino acid sequences (Suppl. Figure 1) and 
the Maximum Likelihood method [36] to construct a phy-
logenetic tree (the detailed procedure is explained in Data 
availability). Our phylogenetic tree (Fig. 1d) illustrates the 
evolutionary relationships of Prickle between several species 
and reveals three pieces of information. First, it classifies 
vertebrate Prickle proteins into four distinct subfamilies, 
with Prickle1 and Prickle2 as sister groups, Prickle3 as more 
distant, and Prickle4 as the most divergent (Fig. 1d). Based 
on the sequence–structure–function relationship assumption, 
this suggests that Prickle1 and Prickle2 are more similar not 
only in sequence, but also in their structure and function 
properties, and that Prickle3 and Prickle4 are unique family 
members. Second, the match between the Prickle protein 
tree and the species tree suggests that the vertebrate Prickle 
proteins have been subject to a conserved pattern of evo-
lution. Third, the tree showed all individual isoforms are 
more conserved to each other (e.g. Prickle1 isoforms from 
all vertebrates are grouped) than to other paralogs among 
the same species (e.g. human PRICKLE1-4), thus suggest-
ing each isoform has its unique and conserved role within a 
species over time.

This suggestion is further supported by the sequence con-
servation analysis. The general assumption behind it is that 
amino acids crucial for maintaining a protein’s structural or 
functional properties tend to be conserved over evolution 
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[37]. Although Prickle proteins are highly conserved, this 
conservancy is reflected on different levels: while the Prickle 
protein’s amino acid similarity within one species is approxi-
mately 20–60% when compared to Prickle1 (Fig. 1e; Suppl. 
Figure 2), the individual Prickle isoforms from different ver-
tebrate species may be up to 80–100% identical, as shown in 
the example of vertebrate Prickle1 isoforms (Fig. 1e; Suppl. 
Figure 2). On the single amino acid level, the conserva-
tion analysis shows that the most conserved residues are 
found N-terminally, as well as at the C-terminus (Fig. 1f). 
This conservancy pattern is consistent with the 3D structure 
formation predicted by the PONDr-Fit tool (Fig. 1g), sug-
gesting that these very conserved amino acids are important 
for the 3D structure formation of the N- and C-terminus 
in Prickle proteins. Therefore, this finding emphasizes the 
importance of the 3D structure formation and amino acid 
conservation of relevant regions in Prickle proteins.

Subcellular localization of Prickle

Once Prickle1-4 are expressed as proteins, they are homog-
enously distributed throughout the cytoplasm (Fig. 1h) [25, 
38–40]. From there, they can be recruited to the plasma 
membrane by their binding partner Vangl (Fig. 1h), as men-
tioned previously [5, 6, 10, 25, 28, 38–42]. This membrane 
distribution, which is crucial for PCP signalling, is induced 
by PTM such as phosphorylation of the T370 residue in 
the LIM2 domain in Prickle mediated by MINK1 kinase. 
Surprisingly, this residue is conserved only in Prickle1 iso-
forms (Suppl. Figure 1) [25], which suggests an alternative 
mechanism for other Prickle paralogs. While research has 
proposed that the cytoplasmic form of Prickle primarily acts 
only as a reservoir for PCP-dependent membrane complex 
formation, it has also been found to increase F-actin content 
[43]. In contrast, membrane-bound Prickle reduced the local 
cortical density of F-actin [43]. These findings suggest that 
Prickle is essential to determine the actin dynamics for cell 
rearrangements and migration at the cellular cortex, and this 
feature very likely depends on PCP signalling.

Although most studies in vertebrates discuss Prickle 
localization in the membrane in association with PCP sig-
nalling, the Prickle1-3 proteins also localize to the nucleus, 
microtubule organizing centres (MTOCs), and mitochon-
dria (Fig. 1h). First, Prickle1 and Prickle2 were revealed 
to localize to the nucleus during mouse early development. 
The presence of Prickle in the nucleus has been shown to 
be essential for cell fate decisions in the development of the 
blastocyst cavity, as well as in maintaining the integrity of 
the trophectoderm during early mouse embryogenesis [33, 
44].

As for the first type of MTOC, which is the cilia, 
Prickle2 was shown to localize to both motile [33, 45] and 
non-motile cilia such as stereocilia in the inner ear [42]. 

Sokol and colleagues extended this work by demonstrating 
that Prickle3 can be involved in ciliogenesis itself, and this 
might be a PCP-regulated event [46]. As for the second 
type of MTOC, the centrosome, only the Prickle3 isoform 
may be involved. Specifically, it was shown to bind a sin-
gle mature mother centriole and to be delivered to both 
centrioles during mitosis in ciliated cells. This suggests 
that the selective interaction of several proteins, including 
PRICKLE3, to the mature centriole might be necessary for 
cell polarization and asymmetric distribution of the dif-
ferently mature centrioles during cell division. However, 
the root cause of Prickle3 localization to the centrosome 
and its consequences are not yet fully understood [47–49].

In addition, PRICKLE3 was recently found in mito-
chondria, where it might be necessary for mitochondrial 
ATP production and cell bioenergetics [31]. In mitochon-
dria, PRICKLE3 interacted with ATP synthase on the 
inner membrane by binding to the ATP8 subunit. Cells 
carrying an R53W mutation in PRICKLE3 (Suppl. Fig-
ure 1) and a mitochondrial DNA mutation specific for 
Leber’s hereditary optic neuropathy, the most common 
maternally inherited eye disease, exhibited defective ATP 
synthase assembly and stability, leading to ATP synthase 
deficiency [31]. However, a recent study discovered that 
cells with only the R53W mutation in PRICKLE3 had a 
mild decline in mitochondrial ATP contents [50]. Further-
more, they observed little or no increase in cytochrome 
C, a marker in the apoptotic mitochondrial pathway [50]. 
These results indicate that the presence of PRICKLE3 in 
the mitochondria is likely involved in other mitochondrial 
functions than ATP production and apoptosis.

Based on the similarity and localization data, 
PRICKLE1 and PRICKLE2 appear to behave in a typical 
manner for LIM proteins, which involves being present in 
the membrane (crucial for PCP signalling, Vangl binding, 
and actin remodelling) and the nucleus (in relation to gene 
expression and cell fate decision). PRICKLE3, however, 
is more diverse, as it can be found in mitochondria and 
MTOCs. Unfortunately, as there is limited knowledge on 
PRICKLE4, it is difficult to make predictions about its role 
in vertebrate cells.

The role of Prickle in vertebrate 
development

The role of Prickle in vertebrate development is complex 
and multifaceted. Prickle proteins play a crucial role in cell 
polarization and coordinating key processes during verte-
brate development, including early development, neurula-
tion, body axis elongation, and organogenesis (Fig. 2a). 
Studies conducted in mouse, zebrafish, Xenopus, and 
chicken embryos have revealed the importance of Prickle 



 Molecular and Cellular Biochemistry

1 3

proteins in these processes. To reflect the presumed role of 
Prickle in human development, Prickle-regulated develop-
mental defects in humans are discussed at the end of the 
chapter.

Early stages of development

During mouse embryo preimplantation development, 
Prickle1 and Prickle2 were both expressed in the nucleus 
of 2-cell-stage mouse embryos. If Prickle1 was deleted, the 
embryos died between E5.5 and E6.5 [51], which is in stark 
contrast to surviving prickle fly mutants with only a mild 
phenotype, represented by disrupted bristles on the body 
surface. For this action in mice, not only Prickle1 expression 
was required, but also its proper nuclear localization [51]. In 
the meantime, if Prickle2 was absent, mouse embryo devel-
opment was arrested around the 30-cell stage, resulting in 
blastocyst cavity formation failure and a morula-like appear-
ance [33]. It appears that both Prickle-dependent regulation 
events occur independently of PCP signalling. First, the 
deletion of other PCP component mutants such as Dishev-
elled does not ultimately lead to mouse embryo death [52]. 
Second, PCP signalling, formerly known as planar tissue 

polarity or PTP [53], does not occur early for the first time 
as during gastrulation [54], when a “proper” tissue of cells 
is formed. Collectively, these findings demonstrate that both 
Prickle1 and Prickle2 are irreplaceable for proper preimplan-
tation development in vertebrates, and their deletion is lethal 
for a vertebrate embryo. Thus, vertebrate Prickle1-2 have an 
additional role compared to its invertebrate homolog origi-
nating from, for instance, Drosophila and other vertebrate 
Prickle paralogs, as Prickle3 [31] and Prickle4 [55] deletion 
mouse mutants were viable.

Neurulation and body axis elongation

Neurulation and body axis elongation are closely related 
processes that occur during vertebrate development. Neu-
rulation is the ectoderm’s post-gastrulation process which 
creates the neural tube, and which later gives rise to the brain 
and spinal cord in vertebrates. Body axis elongation is the 
mesoderm’s post-gastrulation process during which the body 
of a vertebrate embryo elongates along its anterior–poste-
rior axis. Both processes require the coordination of mul-
tiple molecular components and cellular movements, such 
as convergent extension (CE). CE is a form of collective 

Fig. 2  a Mapping the Prickle-regulated events during vertebrate 
development, shown on the example of mouse development. The 
investigated organisms are depicted on the right. Created with 
BioRender.com. b Developmental defects in humans, regulated 
by PRICKLE proteins, can be divided into two groups. Created 
with BioRender.com. c gnomAD-derived data showing PRICKLE 

gene mutations in three categories. Our analysis shows that both 
PRICKLE1 and PRICKLE2 are under the hard pLOF selection, as 
depicted by low LOEUF values. Higher (more positive) Z scores 
indicate that the transcript is more intolerant of variation (more con-
strained). See the text for explanation and abbreviations
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cell movement, where cells at the edges of the tissue move 
towards the centre while simultaneously elongating in the 
same direction. This is a crucial mechanism for neural tube 
closure and body axis elongation, as it extends the length of 
the body axis and reduces the distance between the adjacent 
neural folds, leading eventually to their fusion [56, 57]. It 
has been shown that CE is regulated by PCP signalling via 
directed cell intercalations in the planar plane, and this has 
been extensively studied in Xenopus embryos [6, 56, 58].

Neurulation. Endogenous Prickle1 was strongly 
expressed during embryogenesis in the posterior neural 
ectoderm, where it persisted through the neurula stage [59], 
suggesting its involvement in neurulation. During neurula-
tion, Prickle2 colocalized with Vangl2 at the anterior cell 
edges of the neural plate at NF stage 13 in Xenopus develop-
ment [6], indicating active PCP signalling. This colocaliza-
tion was enhanced at the shrinking cell–cell junction dur-
ing cell intercalation of the closing neural tube [60], further 
supporting its role in neurulation and CE. Recent studies 
showed that CE is dependent on synchronized oscillatory 
actomyosin contraction causing the cellular shrinking neces-
sary for cell intercalation [61]. In line with this, Prickle2 was 
detected to be accumulated at the cell–cell junctions once 
shrinking starts [60]. Moreover, if Prickle2 was knocked 
down by morpholino antisense oligonucleotide (MO) injec-
tion, the actomyosin contraction frequency was impaired 
[61], thus further strengthening the role of Prickle in CE 
ectodermal processes. In addition to Prickle2, Prickle3 was 
found to be associated apically with the Par3 protein in the 
Xenopus neural plate and suggested to be involved in CE 
[62]. As some of these results were shown in a developing 
chicken embryo with misexpressed Prickle1 [63], these data 
collectively demonstrate Prickle is involved in PCP-depend-
ent neurulation by CE and this function is likely conserved 
across different organisms.

Body axis elongation. Endogenous Prickle1 was strongly 
expressed during frog embryogenesis in the dorsal meso-
derm too [59], suggesting its involvement in body axis 
elongation. Indeed, injecting Prickle1 mRNAs into Xeno-
pus embryos’ dorsal blastomeres caused the development of 
tadpoles with a significantly shorter dorsal axis [10], indicat-
ing an issue with the proper mesoderm CE induced by the 
Prickle1 overexpression. This process is consistent with the 
overexpression of other PCP components such as Dishev-
elled [56]. Prickle1 mutation, on the other hand, impaired 
cell migration, resulting in cell intercalation failure and sub-
sequent CE defects [43]. To support findings from Xeno-
pus, the transplantation of cells with overexpressed Prickle1 
to the wild-type environment led to CE defects along the 
anterior–posterior axis in zebrafish. Prickle1 MO injections 
resulted in a shorter body axis, again linking Prickle to 
mesodermal CE regulation. However, Prickle2 MO injection 

showed a less severe phenotype [64, 65], suggesting the 
privileged role of vertebrate Prickle1 in this process.

Altogether, evidence shows that mostly Prickle1-2 play 
a critical role in neurulation and body axis elongation by 
regulating cellular processes such as CE, and their proper 
balance is essential in these events. As the manipulation of 
other PCP proteins such as Dishevelled showed similar phe-
notypes [56], it is clear that the role of Prickle in neurulation 
and body axis elongation is PCP-dependent.

Organogenesis

Most research on Prickle-regulated vertebrate organogen-
esis shown in this subchapter seems to be PCP-dependent, 
at least based on the studies done predominantly on mouse 
embryos with mutated Prickle1 [66–68]. As mentioned ear-
lier, since the mouse null mutant of Prickle1 is not viable, 
this early embryonic lethality must be somehow bypassed 
to further study the role of Prickle in organogenesis. For 
this purpose, researchers have used the gene-trap technique, 
which is inducible and allows researchers to control genes 
temporally [69]. Several Prickle1 mouse mutant constructs 
have been created, which we briefly discuss here. The first 
mutant is Prickle1 C251X  (Prickle1C251X/C251X) [66], which 
targets the first cysteine residue C251 in the LIM3 domain 
(Suppl. Figure 1) that forms a zinc finger and changes it 
to the stop codon (therefore, the whole LIM3 domain, the 
central disordered region, and the C-terminus of Prickle1 
are missing). The second mouse mutant termed Beetlejuice 
 (Prickle1Bj/Bj) targets C161F [67] (Suppl. Figure 1), the 
cysteine residue in the first LIM1 domain, which forms a 
zinc finger, and which is conserved in all Prickles including 
invertebrates (Suppl. Figure 1). Finally, another Prickle1 
mutant mouse targets a different exon at the N-terminus, 
specifically exon 2, and results in the expression of Prickle's 
very N-terminal only [68]. A reader should consider this 
information, as it might influence the overall insight into 
Prickle-regulated organogenesis.

Skeletogenesis, craniofacial development, and odon-
togenesis. Recent studies have shown that PCP signalling 
plays a key role in various hard tissues’ morphogenesis, 
including bones and teeth as well as limb elongation and pat-
terning [70–72]. Limb elongation and patterning along the 
proximal–distal axis are partially mediated by oriented cell 
divisions and migration, for which the PCP components are 
crucial [70]. In  Prickle1C251X/C251X mutant mouse embryo, 
the first signs of limb development impairment were 
described starting from E11.5. This led to the development 
of shorter limbs at later stages of embryonic development. 
At E18.5, shorter limbs and impaired vertebrae resulting 
in a shorter tail were observed. Additionally, these mutants 
exhibited an increased level of cell death in the digit area 
and decreased level of apoptosis in interdigit space [66]. 
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Similar phenotypes were also observed in other Prickle1 
mutant mice targeting exon 2, still exhibiting shortened 
limbs, blunted digits, misaligned sternebrae, and shorter but 
thicker long limb bones such as scapula, humerus, radius, 
and ulna [68], thus indicating and supporting the active role 
of Prickle1 in skeletogenesis.

Congenital defects in the craniofacial region are often 
manifested by cleft palate. To show Prickle proteins are 
involved in this process, the  Prickle1C251X/C251X mutant 
embryos exhibited shorter snout and an open palatal shelf 
[66] and  Prickle1Bj/Bj had wider cranial bases than wild-type 
animals [67]. Furthermore, in the latter mutant model, the 
cleft lip was observed in all studied foetuses, and cleft palate 
in 52% of embryos [73]. As the Prickle1 hypomorph mutant 
targeting exon 2 exhibited a number of craniofacial defects 
such as widely spaced eyes, a flat nose, a short snout, and a 
prominent forehead [68], the role of Prickle1 in proper crani-
ofacial development has been well established.

Evidence of PCP involvement in the odontogenesis 
process started to appear recently [5, 74]. Expression of 
Prickle1, Prickle2, Prickle3, and Prickle4 was confirmed 
in differentiating ameloblasts of rat incisors with Prickle1 
and Prickle2 localized specifically in secretory ameloblasts. 
Prickle3 was predominantly found in the supranuclear cyto-
plasm of both secretory and mature ameloblasts, and the 
same applies to Prickle4 [5]. Prickle1 hypomorph target-
ing exon 2 exhibited fused mandibular incisors [68], thus 
collectively suggesting that Prickle1, as well as Prickle2, 
regulates odontogenesis.

Eye morphogenesis. An indispensable step in proper 
eyelid formation is the elongation of the periocular ecto-
derm followed by eyelid fold fusion, a process similar to the 
CE-driven fusion of neural folds (see above). The eyelid fold 
fusion represents the developmental event for which the PCP 
pathway represents an important driving force [75]. To test 
the role of Prickle1 deficiency on eyelid closure, the Prickle1 
mutant targeting exon 2 exhibited delayed eyelid closure 
starting from E15.5. This phenomenon was also accompa-
nied by altered cell orientation and cell shape of the eye-
lid junctional cells [75]. Furthermore, this mutant showed 
abnormal morphology of eyelids and eyelashes [68], clearly 
indicating the role of Prickle1 in mouse eye morphogenesis.

To support the results from mice, Prickle1 expression was 
present in the retinal ganglion cell layer, inner nuclear layer, 
and at the lens in 3dpf (days post fertilization) old zebrafish 
embryos and in the retina of adult fish. A similar expression 
phenomenon was described for Prickle2 [76, 77], suggesting 
that not only Prickle1 but also Prickle2 is indispensable for 
proper eye morphogenesis in zebrafish.

Finally, the role of the Prickle protein family in eye 
morphogenesis was further supported by the role of mouse 
Prickle3 in Leber’s hereditary optic neuropathy [31]. 
However, in contrast to other eye-involved Prickle events, 

whether this Prickle3 action concerning mitochondria is 
PCP-dependent or not remains to be proven.

Inner ear development. The utricle and saccule of the 
inner ear are equipped with hair cells that bear bundles of 
V-shaped actin stereocilia and single tubulin-based kino-
cilium, both pointing to the abneural edge of the cochlea. 
Similarly, as in other ciliated organs, the proper function of 
hair cells is PCP-dependent based on the polarized deposi-
tion of kinocilium [78].

As has been demonstrated, asymmetric Prickle2 expres-
sion first appeared at E13.5 within differentiating hair cells. 
Interestingly, it was observed that the Prickle2 expression 
was present in hair cells with centrally located kinocilium, 
implying that Prickle2 and PCP signalling is essential to ini-
tiate hair cell polarity. On top of that, Prickle2 positive cres-
cents remained until P12, indicating its necessary role not 
only in initiating hair cell polarity but also in maintaining it 
[42]. Once the Prickle’s binding partner Vangl2 was mutated 
in Vangl2 conditional knock-outs, Prickle2 was mislocalized 
from the cell boundaries of non-sensory cells situated along 
the organ of Corti to the random appearance throughout the 
cell periphery [79]. However, in a Vangl2 mutant lacking 
a transmembrane domain, Prickle2 remained preserved in 
the medial utricle. In contrast, the Vangl2Lp/Lp mutant com-
pletely lacked Prickle2, resulting in cellular polarity disrup-
tion in the same area of the inner ear [80]. Together, this 
suggests that Vangl2 is an important regulator of Prickle 
in the inner ear, but the changes in Prickle2 expression dif-
fer depending both on the type of Vangl2 mutation and the 
observed part of the inner ear.

In the  Prickle1C251X/C251X mutant, the cochlear spiral gan-
glion neurites were not developing properly – neurites grew 
towards the apex instead of towards the base and failed to 
protrude and innervate the hair cells. However, the Prickle1 
mutation did not cause any misorientation or PCP impair-
ment of hair cells [81]. In contrast, Liu et al. described 
shorter and orderless bundles of actin stereocilia in the 
absence of Prickle1 [68]. To sum up, Prickle1-2 have been 
found to play an important role in inner ear development, 
particularly in forming and maintaining hair cell polarity.

Respiratory tract development. The respiratory tract is 
equipped with multiciliated cells, which are necessary for 
the efficient clearance of respiratory contaminants. Appro-
priate mucociliary airway cell (MCC) function requires cor-
rect cilia orientation along the whole pseudostratified epithe-
lium. For this purpose, PCP proteins represent a key feature 
for the regulation of proper cilia adjustment [82].

As shown in the cell culture of mouse tracheal epithelial 
cells, the expression of key PCP proteins was found to be 
asymmetrical as expected, including Prickle1-4 [83, 84]. 
In comparison to previous sections where Prickle1 usu-
ally dominated, Prickle2 seems to be more relevant here. 
During embryonic development, as airway epithelial cell 
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differentiation and ciliogenesis proceed, Prickle2 expres-
sion initially appeared at E16.5 exclusively in already cili-
ated cells. Such a delayed and MCC-restricted appearance 
contrasts with the rest of the PCP core proteins such as 
Vangl1 and Frizzled6, which are asymmetrically expressed 
starting from E14.5 across the whole airway epithelium. 
This implies that Prickle2 is not necessary for intercellu-
lar (PCP-like) polarization, but is rather restricted to polar-
izing cilia in MCCs [83]. When the cilia biogenesis was 
disrupted, the Prickle2 crescent was missing, suggesting 
that Prickle2 expression appears to be MCC differentiation 
dependent. Interestingly, Sowers and colleagues showed that 
Prickle2-deficient adult mice had defective cilia, implying 
that Prickle2 has an influence on proper cilia formation and 
function [45]. However, according to Vladar and colleagues, 
Prickle2 mutant mice exhibited only limited cilia disruption 
[30], confirming Prickle 2 as the link between MCC dif-
ferentiation and PCP protein localization regulation down-
stream of basal body orientation.

On the contrary to Prickle2, the Prickle1 and Prickle3 
isoforms were both expressed in equal amounts in MCCs 
and other cell types of airway epithelia. The appearance 
of Prickle4 was similar to Prickle1 restricted to MCCs. As 
for the latter one, Prickle1 mutant mice targeting exon 2 
revealed a more severe phenotype with a lower number of 
cilia in the MCC with visible basal body misorientation [84]. 
This clearly indicates that all Prickle proteins are essential 
for proper cilia arrangement in the respiratory tract, but 
Prickle2 can do it in a unique way involving cilia polariza-
tion in MCCs.

Cardiac development. Cardiac development requires 
precise formation, septation, and remodelling, and to achieve 
this, PCP signalling is used to gain proper outflow tract for-
mation. This is evidenced in the Prickle1Bj/Bj mutant mice, 
in which detailed cardiovascular phenotyping uncovered a 
congenital heart defect in the so-called double outlet right 
ventricle combined with a perimembranous ventricular sep-
tum defect. Furthermore, since PCP signalling is responsi-
ble for cardiomyocyte migration, Prickle1 mutant embryos 
do not have myocardial prongs and the overall myofilament 
alignment in the cardiomyocytes is disorganized/misoriented 
[68, 85].

Studies on zebrafish have also revealed the effects 
of Prickle disruption, as randomized heart looping was 
observed following Prickle1 and WNT11 elimination by 
MO injection. This knock-down targeted Kupffer’s vesicle, 
which is responsible for left–right asymmetry patterning 
in the brain, heart, and gut [86]. This suggests that Prickle 
proteins may be involved in Kupffer’s vesicle formation and 
thus in the left–right patterning of organs like the heart.

Liver, kidney, and renal system development. The 
liver and Prickle proteins are closely connected since PCP is 
essential for its proper polarization and cell arrangement. In 

zebrafish, Prickle1 MO knock-down led to reduced liver bil-
iary size followed by abnormal intrahepatic biliary develop-
ment. Concurrently, Prickle1 MO-injected larvae exhibited 
an increase in abnormal digestive organ localization, such as 
left-sided liver, gallbladder, intestine, and both exocrine and 
endocrine pancreas [87]. The biliary duct in Prickle1 mutant 
mice was shorter than wild type; however, the missing length 
was substituted by the increased duct width. Nevertheless, 
the mutant biliary duct had significantly less mucosal folds 
and several layers of epithelial cells lining the surface of 
the liver, that allow performing its various functions [88]. 
Thus, Prickle1 seems to be indispensable for proper mucosal 
folding.

The kidneys, as one of the PCP-dependent organs, exhib-
ited cysts at low penetrance and dilated renal tubules once 
the Prickle1 is mutated. Similarly, collecting ducts exhibit 
an irregular elliptical shape and cuboidal epithelial cells of 
ascending Henle’s loop appeared quadrilateral and penta-
gon compared to the hexagonal wild-type cells [68]. Thus, 
Prickle1 mutation produces kidney developmental defects, 
all of which are indicative of PCP-dependent organ damage.

In the last decade, evidence has accumulated for the role 
of the PCP pathway in renal system development [89, 90]. 
In the ureteric bud of Prickle1 mutant mice, Vangl2 together 
with Dishevelled1-3 expression was mislocalized when 
compared to strictly apical protein expression in wild-type 
animals. Furthermore, the actin filament distribution was 
concentrated more laterally [68]. These findings demonstrate 
the importance of Prickle in the renal system and its role 
in the proper localization of other PCP proteins and actin 
filaments.

Developmental defects in humans

In this chapter, we demonstrated that Prickle is essential for 
the proper function of various processes during vertebrate 
development, which involves all three germ layers (Fig. 2a). 
Its mutations are thus associated with a range of develop-
mental defects in organisms including humans, which can 
be arbitrarily divided into two groups (Fig. 2b).

The first group is neural tube defects (Fig. 2b), which 
are among the most common human birth defects with a 
prevalence between 0.5 and 2 per 1,000 births [91]. Since 
neural tube closure is a dynamic process, the probability of 
any mistakes leading to developmental defects represents a 
real threat. The most common neural tube closure defect, 
i.e. spina bifida, has been shown to be caused by a mutation 
in genes belonging to the PRICKLE protein family. Spe-
cifically, six PRICKLE2 single-nucleotide polymorphism 
variants showed potential association with spina bifida [92]. 
Another study detected seven rare missense heterozygous 
mutations in PRICKLE1 associated with neural tube defects 
such as hydrocephalus or lumbosacral myelomeningocele. 
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All these mutant variants caused CE perturbation with a 
large number of severe phenotype observations [93]. There-
fore, it is clear that PRICKLE1-2 play a crucial role in clos-
ing the neural tube and have the potential to be used in clini-
cal practice for diagnosing neural tube defects.

The second type is Robinow syndrome (RS), a human 
genetic complex developmental disorder with a preva-
lence of 1 per 500,000 births. RS involved errors in many 
PRICKLE-regulated developmental events described above, 
such as macrocephaly (erroneous neurulation), spine and 
ribs deformities (erroneous skeletogenesis), cleft palate 
(erroneous craniofacial development), hearing loss (errone-
ous ear development), and problems with the heart, kidney, 
and renal system (Fig. 2b). These RS’ pathological features 
have been recapitulated and studied in Prickle1 mutant 
mice targeting exon 2 [68]. These data demonstrated that 
PRICKLE1 deregulation disrupted processes such as cell 
migration, leading to severe developmental defects like RS.

Developmental defects, in general, are twice as lethal as 
cancer for people in the Western world, and it is striking 
how rarely these statistics are discussed [91]. Therefore, we 
analysed the mutational constraint spectrum quantified from 
variation in about 140,000 humans, available in the Genome 
Aggregation Database (gnomAD), a comprehensive data-
base providing information on genetic and functional aspects 
of human development and the successor to the Exome 
Aggregation Consortium (ExAC). We checked expected and 
observed PRICKLE1-4 single-nucleotide variants (SNV) in 
three different types of variation: synonymous mutations, 
missense mutations, and predicted loss of function (pLOF; 
Fig. 2c). As for synonymous and missense mutations, no 
major differences between the observed to expected ratio 
(O/E) were detected. However, the pLOF data regarding O/E 
and related loss-of-function observed/expected upper bound 
fraction (LOEUF) values, which enable placing each gene 
along a continuous spectrum of tolerance to inactivation, 
showed that only 13% of the expected loss-of-function vari-
ants in PRICKLE1 and 28% in PRICKLE2 were observed. 
Therefore, both genes are under hard selection against LOF 
variants, as 35% is a hard threshold according to the authors 
[94]. In contrast, PRICKLE3 and PRICKLE4 are not under 
such hard pLOF selection, thus suggesting that they are 
not so crucial to proper human development. Collectively, 
these data are in nice agreement with the ones from mouse 
embryos, where only the deletion of either Prickle1-2 was 
shown to be lethal for mice.

The role of PRICKLE in cancer

Unravelling the complexity of the PCP pathway is essential 
to gain insights not only into physiological processes but 
also diseases, particularly cancer progression. A detailed 

examination of the components of this pathway, such as 
PRICKLE family proteins, is necessary to comprehend its 
role in cancer biology and for the development of modern 
anti-cancer therapies [95, 96]. In this chapter, we discuss the 
altered expression, mutational profile, and cellular signalling 
roles of PRICKLE in cancer cells.

Altered PRICKLE protein expression in cancer

Cancer cells often show extensive alterations in protein 
expression levels, which are drivers of their malignant trans-
formation [97]. We wondered whether this is the case in 
PRICKLE proteins. Indeed, PRICKLE has been found to be 
upregulated in several types of cancers, suggesting it might 
act as tumour promoting factor. For example, increased 
expression of PRICKLE1 has been shown to promote cell 
migration and invasion in breast cancer [98], gastric cancer 
[99, 100], and leukaemia [101, 102], or PRICKLE4 in the 
Stem-A molecular subtype of breast cancer [103], together 
conferring an unfavourable prognosis. However, PRICKLE1 
has also been found to have anti-tumour properties in liver 
cancer [104] and neuroblastoma [105], where its overex-
pression has been associated with decreased tumour size. 
Similarly, PRICKLE2 has been reported to have anti-tumour 
properties in clear-cell renal cell carcinoma [106] and cervi-
cal cancer [107], with higher expression levels correlating 
with longer overall patient survival. Due to the limited num-
ber of studies about the role of the PRICKLE isoforms in 
carcinogenesis, we decided to analyse PRICKLE1-4 expres-
sion in tumour samples compared to normal tissues using 
the GEPIA2 database (see Data availability). All PRICKLE 
genes had a distinct expression pattern within certain cancer 
types (Suppl. Figure 3, 4), and this heterogeneity was also 
reflected in the survival data (Suppl. Figure 5). In addition, 
the very same PRICKLE isoform, e.g. PRICKLE1, can act 
as both a negative and favourable overall survival predictor 
(Fig. 3a, 3b). Based on these data, it seems unlikely that 
PRICKLE protein levels are bona fide drivers of malignant 
cancer cell transformation. Therefore, we decided to take a 
closer look at their genes’ mutational profile.

Mutational profile of PRICKLE genes in cancer

It is widely accepted that mutations in genes coding relevant 
proteins can be the trigger for cancer cell transformation. To 
answer whether PRICKLE1-4 might be one of these genes, 
we analysed the TCGA dataset using the cBioCancer por-
tal (Fig. 3c, 3c’). We observed the highest mutational rate 
of PRICKLE1 and PRICKLE2 in melanoma, stomach, and 
endometrial carcinoma (approximately 6% of all cases). 
We also noticed that PRICKLE3 genetic changes were the 
most common in ovarian and esophageal cancers (5% and 
4%), while PRICKLE4 was affected in more than 6% of the 
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Fig. 3  a Survival heat map of PRICKLE1 across the TCGA dataset 
showing its expression levels. The red blocks indicate higher haz-
ard risk and blue blocks indicate lower hazard risk when PRICKLE1 
expression is elevated. The bold square frame indicates the statistical 
significance. b The diverse impact of the PRICKLE1 high (red) and 
low (blue) expression level on the overall survival of patients with 
bladder urothelial carcinoma (BLCA), ovarian serous cystadenocar-

cinoma (OV), and thyroid carcinoma (THCA). c PRICKLE isoforms 
alteration frequencies and types across TCGA cancer studies. Each 
column represents the indicated cancer type, and the legend (c’). The 
used abbreviations are explained in Supplementary Table  1. d Pie 
charts showing the percentage of alteration types across PRICKLE 
genes
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stomach and esophageal tumours. This information suggests 
that all PRICKLE genes are mutated in similar types of can-
cer with a comparable prevalence of around 5%. However, 
aberration types varied between genes, with amplifications 
and deep deletions being predominant in PRICKLE3 and 
PRICKLE4, and point mutations being the most common 
in PRICKLE1 and PRICKLE2 (Fig. 3d). At the same time, 
there were no frequent point mutations that we would con-
sider as ‘hot spots’ in tested TCGA cancer cases (Suppl. 
Figure 6a). These data suggest that PRICKLE genes are 
mutated in more than one spot. Finally, we analysed the 
effect of mutations on patients’ overall survival data, and 
our analysis revealed that only PRICKLE3 mutations had a 
significant negative prognostic impact within TCGA sam-
ples (Suppl. Figure 6b).

Taken together, these data suggest that mutations are not 
the most important cause for PRICKLE-regulated tumo-
rigenesis. Thus, PRICKLE should be carefully studied to 
reveal their individual roles and action mechanisms in can-
cer biology. To do so, we will discuss PRICKLE proteins’ 
signalling role in (cancer) cell migration, the most impor-
tant step of metastasis responsible for 90% of cancer deaths 
[108].

Cellular signalling roles of PRICKLE proteins 
in migrating (cancer) cells

PRICKLE and cytoskeleton crosstalk. Cell migration 
is a complex process that involves cytoskeletal rearrange-
ments and several different pathways, including PCP signal-
ling. Thus, here we aimed to describe known information 
about the PRICKLE family in cellular locomotion, which 
might tell us more about its role in cancer. Downregulating 
PRICKLE1 expression in cancer cells significantly reduced 
migration speed; however, upregulating Prickle1 expression 
does not always increase cell migration [109–111]. Daulat 
and colleagues found that cells with a high basal level of 
PRICKLE1 were insensitive to further overexpression, and 
that only cells with a lower initial PRICKLE1 level showed 
an increase in migration speed [109–111]. These results sug-
gest that the regulation of PRICKLE1 expression is impor-
tant for controlling cell migration in general, but there is a 
certain limit for increasing its speed. Furthermore, we asked 
whether and how PRICKLE localization can influence (can-
cer) cell migration.

PRICKLE localisation. As for cell migration, it can 
be classified from different views. The two most common 
categories are amoeboid and mesenchymal, and single and 
collective [112]. The mesenchymal mode of migration 
involves changes in the actin cytoskeleton and the forma-
tion of various cellular protrusions, including thin extensions 
of the leading edge called lamellipodia. In single migrating 
mesenchymal cells, PRICKLE1 was found adjacent to the 

leading edges together with VANGL2. There, PRICKLE1 
was aligned along the non-protrusive membranes that are 
lateral to the active protrusions. On the contrary, FRIZ-
ZLED7 and DISHEVELLED3 were enriched at the tip of 
migrating cell protrusions [109, 113]. As there is no direct 
evidence about the PRICKLE protein distribution in differ-
ent categories of migration, we hypothesize that PRICKLE 
can be present at the leading edge in collectively migrating 
cells [114] and at the trailing edge or in the uropod structure 
in ameboid lymphocytes [115]. Our assumption was made 
based on the localisation of the VANGL protein in cells, as 
the asymmetric polarization of PCP components resembles 
the planar-polarized localisation of the PCP components in 
epithelial cells in vivo [116] to some extent. The precise 
mechanism behind the asymmetrical PRICKLE localization 
in migrating cancer cells is not fully understood, but two 
things are important to mention. First, it has been suggested 
that the MINK1 kinase is involved, as it induces PRICKLE 
membrane localization [25, 111], and MINK1 expression is 
elevated in chemoresistant carcinomas [117], thus suggest-
ing its possible role in tumorigeneses. Second, the correct 
subcellular localization of PRICKLE is important for its 
signalling roles, and this is described below.

PRICKLE and small GTPases. Rho and Ras-family 
GTPases, regulated by the small Rho-guanylyl exchange fac-
tors (GEFs) and GTPase-activating proteins (GAPs), are cru-
cial actin cytoskeleton regulators. Spatiotemporal and mutu-
ally exclusive interaction between RhoA and Rac1 GTPases 
control protrusive and retracing motile cell forces, ensuring 
efficient movement [118, 119]. Strikingly, these signalling 
events are downstream components of the PCP pathway, and 
some of the small GTPases are known as PRICKLE1 inter-
actors [25, 109, 120].

Zhang and colleagues showed that PRICKLE1 and Arh-
gap21/23 complex, an actin cytoskeleton regulator, together 
inhibit RhoA activity in the actin-enriched lamellipodia 
(Fig. 4a) [109]. Similarly, PRICKLE1-depleted cells dis-
played protrusive membrane ruffling around the entire cell 
periphery caused by uncontrolled RhoA activity. In cells 
lacking PRICKLE1, the level of Myosin light chain 2 phos-
phorylation (pMLC2), the activated component downstream 
of RhoA, was increased and evenly distributed along the cell 
membrane, whereas in control cells, pMLC2 was concen-
trated in the restricted protrusion region [109]. This increase 
in actomyosin contractility led to impaired cell migration 
due to PRICKLE1 downregulation [110, 111]. On the other 
hand, upregulation of PRICKLE1, caused by the silenc-
ing of the E3 ubiquitin ligase Smurf2 marking PRICKLE1 
for degradation, stopped excessive protrusive activity and 
decreased the ability of cells to migrate. A precise balance 
of Prickle1 in lamellipodia is required to control directional 
cell migration [109, 121, 122]. It is known that overexpres-
sion and downregulation of the PCP components can lead 
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to the same phenotypes [123, 124], caused by interference 
with the dynamics of cytoskeletal rearrangements. Interest-
ingly, increased Prickle1 levels either by overexpression of 
the exogenous construct [98, 110] or by modulation of the 
endogenously expressed Prickle1 protein level through the 
Smurf2 siRNA [109] produced different effects. It seems 
that Prickle1 localisation and local concentration control are 
crucial for the proper regulation of the actin network via 
small GTPases.

PRICKLE1 was also shown to interact with Epithelial cell 
transforming sequence 2 (ECT2) in lammelipodia (Fig. 4a) 
[120]. ECT2 is one of the GEFs that promote Rac1 activity, 
stimulating cell growth and invasion [125]. Upregulating 
PRICKLE1 inhibited ECT-induced Rac1 activation, sug-
gesting that PRICKLE1 is a negative ECT2 regulator [120]. 
Evidence suggests that PRICKLE1 contributes to the Arh-
gap21/23 and ECT2 spatial localisation in order to modulate 
RhoA and Rac1 activity, which is vital for reorganizing the 
actomyosin network and subsequent cell migration [126].

PRICKLE and focal adhesions. Focal adhesions are 
protein complexes facilitating the interaction of cells with 
the underlying extracellular matrix. PRICKLE1 was also 
found to be in close proximity to those structures, and its 
depletion has been shown to lead to the formation of large, 
stable focal adhesions and impaired cell migration (Fig. 4b). 
The knock-down of either PRICKLE1 or MINK1 kinase 
increased the level of active β1-integrin, a protein involved 
in focal adhesion structure and maturation [111, 127].

Furthermore, PRICKLE1 has been found to interact with 
two proteins involved in focal adhesion turnover: CLIP-
associating proteins (CLASPs, two isoforms CLASP1 and 
CLASP2) and Pleckstrin Homology Like Domain Family 
B Member 2 (PHLDB2, also known as LL5β) [110, 128]. 
CLASPs promote the stability of microtubules and anchor 
them to focal adhesions, allowing for their disassembly 
[129]. LL5β, on the other hand, is responsible for recruit-
ing CLASPS to the plasma membrane [130]. PRICKLE1 
downregulation did not affect LL5β localisation in the distal 
regions of the cell cortex, but abolished CLASP1 recruit-
ment to this site. Moreover, LL5β knock-down impaired 
PRICKLE1 localisation in focal adhesions [110], suggest-
ing that PRICKLE1 is upstream from CLASP1 and down-
stream from LL5β. Additionally, LL5β is also known as a 
substrate for MINK1. MINK1 phosphorylates LL5β within 
the CLASPs’ binding domain, which enhances the associa-
tion between CLASP2 and LL5β at the cell cortex [128]. 
Thus, PRICKLE1, MINK1, and the CLASP–LL5β complex 
form a network of interactors that regulate cell communica-
tion with the microenvironment by modulating focal adhe-
sion dynamics and cell migration speed.

PRICKLE and PI3K/AKT/mTOR signalling. PI3K/
AKT/mTOR signalling is conserved and controls various 
aspects of cell biology. PRICKLE1 was shown to participate 
in the regulation of the mammalian target of the rapamycin 
(mTOR) signalling pathway in cancer (Fig. 4c) [98, 100]. 
It is not clear which mTOR signalling branch is involved 
in PRICKLE1-dependent cancer cell motility. Zhuo and 

Fig. 4  Molecular mechanisms of PRICKLE-dependent signalling regulation in migrating (cancer) cells, via a small GTPases, b focal adhesions, 
and c AKT signalling
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colleagues showed that inhibiting mTOR signalling by 
rapamycin, a known inhibitor of the mammalian target of 
rapamycin complex 1 (mTORC1), decreased migration of 
the PRICKLE1 overexpressing cells [100, 131]. On the 
other hand, Daulat and colleagues found that PRICKLE1 
interacted only with mTORC2 called RICTOR, and not 
with RAPTOR involved in mTORC1 [98]. The interaction 
between PRICKLE1 and RICTOR was positively regu-
lated by MINK1. MINK1 downregulation led to the delo-
calisation of both proteins from the cell cortex. Similarly 
to PRICKLE1 and MINK1, downregulating RICTOR influ-
enced cytoskeleton reorganization, increased focal adhesion 
size, and consequently decreased cell migration [98]. These 
results are in line with previous findings showing that the 
mTORC2 complex participates in cytoskeletal reorganiza-
tion by regulating Rho GTPase activity [132-134] and regu-
lates focal adhesion dynamics [135].

Furthermore, AKT kinase is a known substrate for 
mTORC2, specifically activated by S473 phosphoryla-
tion [136, 137]. Upregulating PRICKLE1 promotes AKT 
phosphorylation at S473; however, it depends on its inter-
action with MINK1 and mTORC2 [98]. This is interesting 
and worth further attention, because the phosphoinositide 
3-kinase (PI3K)/AKT signalling pathway plays an enor-
mous role in various types of cancer, regulating cell sur-
vival, metabolism, and metastasis [138]. Moreover, it dic-
tates the asymmetric localisation of the noncanonical WNT 
receptor FRIZZLED6 [139], and its downregulation causes 
neural tube defects [140]. Thus, the MINK1-PRICKLE1-
mTORC2 complex may serve as a local AKT activation unit 
and promote cytoskeleton reorganization, cell motility, and 
proliferation.

Overall, what makes PRICKLE unique in cancer is not 
its protein level or mutational profile, but its cellular signal-
ling roles and their balance. Thus, PRICKLE can act both 
as a tumour-promoting and as a suppressing factor, since it 
is involved in miscellaneous downstream pathways. There-
fore, we suggest one should investigate the role of PRICKLE 
proteins in (cancer) cell biology carefully.

The role of PRICKLE in non‑cancer 
pathologies

In addition to contributing to tumorigenesis, PRICKLE para-
logs have been associated with several neurological and neu-
rodegenerative diseases, including Progressive myoclonus 
epilepsy syndrome, Autism spectrum disorders, and Alzhei-
mer’s disease, and the autoimmune and inflammatory illness 
Rheumatoid Arthritis (see Fig. 5).

Progressive myoclonus epilepsy syndrome (PME). 
Multiple studies have demonstrated various PRICKLE1-2 
mutations linked to autosomal recessive and autosomal 

dominant PME, a brain disorder characterized mainly by 
myoclonic and tonic–clonic seizures, balance problems, and 
neurological decline, especially ataxia and dementia [141].

One of the first studies described a single, missense 
R104Q mutation in PRICKLE1 (Suppl. Figure 1) causing 
autosomal recessive PME. This mutation was located in the 
PET domain, disrupting the PRICKLE1 interaction with the 
crucial neural gene regulator RE1-Silencing Transcription 
Factor (REST). This, in turn, prevented the regular REST 
transport out of the nucleus, leading to the constitutively 
active REST deregulating its target genes and silencing 
neuronal genes in neuronal precursors, mature neurons, and 
non-neuronal cells. In patients, it manifested as PME-ataxia 
syndrome [142]. Moreover, Algahanti and colleagues have 
recently described a novel autosomal dominant mutation of 
PRICKLE1 (R84N; Suppl. Figure 1), also affecting the PET 
domain. Interestingly, this mutation has been also detected 
in PME-unaffected heterozygous individuals, suggesting 
that such PRICKLE1 mutations have incomplete penetrance 
[143]. These results point to the PRICKLE1-REST interac-
tion’s essential role in the proper function of neuronal cells.

In addition to PRICKLE1, PRICKLE2 has also been asso-
ciated with PME. Two more heterozygous missense muta-
tions in PRICKLE1 (R144H located in the LIM1 domain and 
Y472H in the central disordered region; Suppl. Figure 1) 
and three missense mutations in PRICKLE2 (R148H and 
V153I located in the LIM1 domain, and V605F in the central 
disordered region; Suppl. Figure 1) were identified in other 
patients with PME [144]. The expression of prickle zebrafish 
mutants altered in these amino acids showed aberrant Prickle 
function and reduced  Ca2+ activation, indicating that Prickle 
also mediates  Ca2+ signalling in the nervous system [144]. 
We speculate that this could be another molecular mecha-
nism behind PRICKLE-mediated PME.

As a third possible mechanism behind PRICKLE-medi-
ated PME, we suggest PTM PRICKLE de-ubiquitination. 
Paemka and colleagues identified the de-ubiquitinase 
USP9X, which is the PRICKLE2 stabilizer in the neural 
system. Specifically, they showed that USP9X deficiency 
led to the downregulation of the Prickle2 protein level in the 
forebrain neurons of mice. Moreover, they identified sev-
eral patients suffering PME-carrying mutations in USPX9. 
The authors tested the small-molecule USP9X inhibitor 
Degrasyn/WP1130, which resulted in decreased PME phe-
notype in mutant flies [145]. However, these results need 
to be replicated in human cells. Thus, USPX9 has emerged 
as a new potential target to treat USPX9 (and perhaps also 
PRICKLE-) -mediated PME.

Autism spectrum disorders (ASD). Another group of 
neurological disabilities linked to PRICKLE gene mutations 
is ASD. ASD is a term used to describe a range of condi-
tions that affect social interaction, communication skills, and 
behaviour. Sowers and colleagues identified two families 
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with ASD whose members carried two missense muta-
tions in PRICKLE2 located at the very N-terminus (E8Q) 
and in the LIM1 domain (V153I; Suppl. Figure 1) [144, 
146]. The function assays showed that disrupting Prickle2 
in these amino acids decreased the number of synapses in 
hippocampal neurons and reduced post-synaptic density size 
in mutant mice. Loss of Prickle2 also led to decreased basal 
synaptic transmission and reduced the number and size of 
miniature synaptic currents. Moreover, they showed that 
ASD-like symptoms are already present in heterozygous 
mice, suggesting that Prickle2 haploinsufficiency is enough 
to cause ASD in patients [144, 146]. Besides missense muta-
tions, PRICKLE2 was identified as the most likely cause 
of ASD-like behaviour in monozygotic twins carrying de 
novo 3p14 6.88-Mb deletions containing 17 genes involv-
ing PRICKLE2 [147]. These data confirm that one of ASD’s 
causes is PRICKLE2-mediated synaptic dysfunction.

In addition to PRICKLE2, PRICKLE1 was also revealed 
to be involved in ASD [148-150]. The study showed that 
the loss of the Prickle1 allele led to ASD-like phenotype 

in mice, including abnormal circadian rhythm and abnor-
mal social and repetitive behaviours. Moreover, Prickle1 
has emerged to interact with the synaptic protein Synapsin1 
in the mouse brain, which participates in synaptogenesis, 
synaptic vesicle trafficking, and regulating neurotransmit-
ter release. Mutations in both SYNAPSIN1 and PRICKLE1 
led to defects in vesicle pool size and trafficking [148, 151], 
suggesting that they cooperate to ensure synapse function 
often impaired in ASD. Another approach consisting of 
analysing transcriptome organization between autistic and 
normal brains showed significant PRICKLE1 expression 
differences between the frontal and temporal cortex in con-
trol and autism samples [150]. Together, these data confirm 
PRICKLE1’s crucial role in synapse function and ASD.

Because ASD is a neurodevelopmental disorder and 
patients typically display symptoms before the age of three, 
one of the key questions in autism research is whether the 
pathology is reversible in childhood, juvenile, or adult 
ages. Studies in several models have addressed this issue in 
genetic animal models (discussed elsewhere [152, 153]), but 

Fig. 5  Mapping of PRICKLE-
regulated pathologies during the 
adult homeostasis in humans. 
Created with BioRender.com
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it remains to be determined whether PRICKLE can be also 
used for such therapeutic purposes.

Alzheimer’s disease (AD). PRICKLE2 has also been 
revealed to participate in the most common progres-
sive cognitive neurodegenerative disease, AD. A recent 
study has shown that APP/PS1/Tau transgenic-AD mice 
(homozygous for the Psen1 mutation, homozygous for the 
co-injected APPSwe and tauP301L transgenes) display sig-
nificantly lower Prickle2 mRNA levels in the brain’s cortex 
and hippocampus [154]. On the other hand, upregulating the 
Prickle2 mRNA levels led to improved cognitive deficits and 
AD-like pathology. Moreover, the data proved that Prickle2 
inhibits the PCP signalling pathway in AD [154]. These 
results demonstrated that Prickle2 has an essential role in 
AD and was revealed as a potentially valuable candidate for 
AD diagnosis and treatment.

Rheumatoid Arthritis (RA). PRICKLE1 deregulation 
has been shown to be a possible cause of an autoimmune 
and inflammatory disease, RA. RA is characterized by the 
“tumour-like” behaviours of fibroblast-like synoviocytes 
(FLS), including abnormal proliferation, migration, and 
invasion [155]. The recent study by Yang and colleagues 
showed that PRICKLE1 plays an essential role in activating 
the mTORC2 signalling during irregular FLS cell migra-
tion. The authors showed that flavonoid Morin prevents FLS 
migration and reduces focal adhesion turnover in arthritic 
rats by targeting a Prickle1-specific stabilizer, ubiquitin-spe-
cific protease 7, suggesting that Prickle1 PTM ubiquitination 
plays a role in RA development [156].

In summary, PRICKLE is involved in pathologies that 
are mostly connected with the neural and immune system in 
humans. This is in line with its role in vertebrate develop-
ment and cancer that we described in the previous chapter, 
as Prickle plays a crucial role in neurulation and cancer cell 
migration, which in some features resembles RA.

Concluding remarks

Prickle proteins are essential PCP mechanism components, 
with their conservation across the entire animal kingdom 
indicating their crucial role in vertebrate organisms’ devel-
opment and pathogeny. Prickle is a relatively new protein 
and its role in cell development and organization is still 
being studied. That is why we assume Prickle has not been 
properly reviewed so far, as its function is still not com-
pletely understood.

In the first part of the review, we explored the sequence 
and structure properties of vertebrate Prickle proteins. We 
conducted a phylogenetic analysis showing conservation 
among all vertebrates. We showed that Prickle1 and Prickle2 
are more similar to each other, and this finding has been sup-
ported many times also functionally throughout the review. 

Furthermore, we discussed Prickle proteins’ key sequence 
elements, such as the PET, LIM, and PKH domains, as well 
as several motifs, which are unique and highly conserved 
for individual isoforms across vertebrates. This conservancy 
indicates that each isoform has its defined roles in cellu-
lar signalling. At the end of the first chapter, we analysed 
Prickle proteins’ amino acid conservation and the impor-
tance of their intrinsically disordered regions, together with 
their subcellular localization. The Prickle protein family 
localizes to the various subcellular compartments in eukary-
otic cells such as the cytoplasm, plasma membrane, MTOCs, 
mitochondria, and nucleus. It seems that this is due to sev-
eral reasons. In the cytoplasm, Prickle is involved in signal 
transduction and metabolic pathways. In the membrane, 
Prickle is involved in the PCP-mediated cell–cell commu-
nication. In the nucleus, Prickle may be involved in gene 
expression and other nuclear processes, and this is important 
for the viability of vertebrate embryos. In the mitochondria, 
Prickle may be involved in energy metabolism and other 
mitochondrial functions. Finally, in the MTOCs, Prickle may 
be involved in ciliogenesis, cell division, and other centro-
somal processes. We speculate that each Prickle protein is 
likely suited for its specific task, localizing to the compart-
ment where it is needed most and that these processes are 
regulated by PTM.

In the second part of the review, we explored vertebrates’ 
embryonic development. It is evident that Prickle plays a 
critical role in many vertebrate developmental events. In 
particularly, Prickle1-2 proteins are essential for normal 
preimplantation development in vertebrate embryos, as 
their deletion leads to embryonal lethality in mice (based 
on experimental data) and humans (gnomAD database). All 
Prickle proteins play a crucial role in neurulation and proper 
organogenesis. From the obtained data, it seems that some 
of the Prickle proteins may likely be functionally redundant 
here. The involvement of Prickle proteins in these processes 
is conserved across species, emphasizing their importance 
in vertebrate development, especially in humans, as several 
developmental defects have been observed and studied.

In the third part, we focused on PRICKLE-regulated 
pathogeneses. We discussed that PRICKLE proteins are 
involved in cancer biology. It appears that the function of 
PRICKLE proteins in the context of cancer is highly context-
dependent, and the roles of individual PRICKLE isoforms 
require further investigation. Moreover, PRICKLE proteins 
appear to interact with several other important proteins 
involved in cytoskeletal reorganization and metabolism 
in cancer cells, suggesting that they play a crucial role in 
tumorigenesis and metastasis. Of note, the data support the 
hypothesis that Prickle’s localization and signalling is just as 
important as its expression. Specifically, PRICKLE expres-
sion is necessary to establish PCP, while localizing and sig-
nalling Prickle is necessary to maintain PCP. Without proper 
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PRICKLE localization and signalling, the PCP pattern will 
not be maintained over time.

Finally, we showed that PRICKLE expression and func-
tion have been associated with various non-cancer patholo-
gies. Their role in various neurological, neurodegenerative, 
and autoimmune diseases has been studied in recent years, 
with many promising findings. PRICKLE proteins’ regu-
lation and dysregulation provide valuable insight into the 
development and progression of diseases and potential thera-
peutic targets to diagnose and treat Progressive myoclonus 
epilepsy syndrome, Autism spectrum disorders, Alzheimer’s 
disease, and Rheumatoid Arthritis.

Future perspectives

Going forward, it is essential to explore if Prickle activity is 
always reliant on Vangl and consequently PCP signalling. A 
bit of research has been done in this regard already. Notably, 
the nuclear activity of Prickle1-2 seems to be independent of 
classical PCP, as PCP occurs later during gastrulation and 
on. In adult organisms, one such scenario is the presence of 
PRICKLE in proximity to the focal adhesions, which was not 
affected by the knock-down of other PCP and PCP-related 
components such as WNT5 ligands, DISHEVELLED and 
VANGL proteins, nor by the inhibition of WNT ligand pro-
cessing and secretion [110]. This suggests that PRICKLE 
localisation in focal adhesions could be independent of both 
canonical WNT signalling and PCP pathways. With more 
research, we could finally provide an answer to this question.

Furthermore, Prickle protein investigations should also 
include the study of the two underappreciated members of 
the vertebrate Prickle family: Prickle3 and Prickle4. This 
is of great importance to understanding their functions and 
roles in the development and progression of different pathol-
ogies. The redundancy of the Prickle family in many cell 
types is not known. Do Prickle1-4 and their expression levels 
have a distinct effect on cell signalling? Therefore, further 
insights into the exact role of Prickle1-4 in cell biology are 
needed, as current studies primarily focus on Prickle1 and 
Prickle2.

Subsequently, our phylogenetic tree showed that surpris-
ingly, vertebrate Prickle4 proteins were more closely related 
to invertebrate Prickles than the other isoforms. As there is 
little knowledge available about Prickle4, it is not straight-
forward to understand what this observation implies. Yet, it 
appears to suggest that Prickle from invertebrates is similar 
to Prickle4, whereas Prickle1, 2, and 3 have been dupli-
cated and adapted for vertebrate (i.e. more complex) PCP 
signalling. It would be interesting to explore this hypoth-
esis further, to see if there is any evidence that suggests 
Prickle4 is indeed an ancestral Prickle protein. To support 
this hypothesis, the deletion of Prickle4 in mice does not 

lead to embryonic lethality, similar to the deletion of inver-
tebrate Prickle in Drosophila.

In addition, the conservation analysis highlighted the 
need to validate some described findings. For example, one 
may notice the importance of conserved residue T370 and its 
role in Prickle function via MINK1 kinase. However, T370 
is conserved only in Prickle1 isoforms, so how is this residue 
alternated in other isoforms? Similarly, the Prickle part bind-
ing to Vangl called VBM is conserved only in Prickle1 and 
2, so more research should be conducted to understand how 
Prickle3 and 4 are performing these functions.

Finally, we would like to point out that induced pluri-
potent stem cell (iPSC) technology provides a promising 
approach to better understand PRICKLE mutant-related dis-
eases such as ASD [157]. The ability of iPSCs to generate 
a variety of brain cells combined with the formation of 3D 
organoids makes them an ideal model for elucidating dis-
ease mechanisms [158]. Gene editing tools such as CRISPR/
Cas9 have further enabled the study of these mechanisms by 
allowing specific gene mutations’ control and manipulation 
[159]. These technologies also promise to eventually create 
potential therapeutic interventions for these diseases. While 
in vitro models are important in studying PRICKLE muta-
tion-related diseases, animal models also play a valuable role 
to assess disease pathologies, especially in the context of 
ASD [160]. Animal models enable further manipulation of 
specific gene mutations to better understand their interaction 
with ASD and they also provide opportunities to investigate 
drug therapies and develop clinically relevant symptomatic 
treatments for ASD [160]. To sum up, iPSCs and animal 
models can become essential tools for studying PRICKLE 
mutant-related diseases like ASD and ultimately develop 
effective therapeutic interventions in the future that can sig-
nificantly improve the quality of life of all those affected.

In conclusion, the current review provided an overview 
of the Prickle proteins, their functions, and their roles in dif-
ferent pathogeneses. However, there is still much to uncover 
and understand, such as the discovery of new PRICKLE-
related functions, the exploration of the Prickle family’s 
evolutionary history, and the validation of already known 
functions. Thus, this review serves as a valuable tool for 
researchers looking to unravel the PCP signalling’s impli-
cations in animal development and homeostasis. We hope 
that this review of Prickle proteins will be useful for future 
studies exploring their structure, function, and evolution and 
will provide a platform for novel discoveries in the field of 
PCP signalling.
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Availability of data and material For Fig. 1d, sequences of 23 Prickle 
paralogs were collected in the Uniprot database: Q96MT3, Q7Z3G6, 
O43900, and Q2TBC4 for human PRICKLE1-4; A0A2I3TH70, 
A0A2I3RJX6, K7DBC5, and H2R2U9 for Pan Prickle1-4; Q3U5C7, 
Q80Y24, Q80VL3, and D3Z6Q6 for mouse Prickle1-4; Q90Z06, 
A0A8J0V3T3, A8WH69, and D3Z6Q6 for Xenopus laevis Prickle1-4; 
A0A6I8QKU1, F6U3C9, A0A803K7N2, and B0JZ01 for Xeno-
pus tropicalis Prickle1-4; and Q6WGK5, Q7ZZC4, and F1Q568 for 
Danio rerio Prickle1-3. Multiple sequence alignments were performed 
using the ClustalW algorithm, implemented in the BioEdit editor 7.2 
[161]. Prickle phylogenetic tree was generated from a set of 23 Prickle 
sequences above plus Q9NDQ9 for Ciona intestinalis Prickle, A1Z6W3 
for Drosophila melanogaster Prickle, and A0A260ZPH8 for Caeno-
rhabditis elegans. Specifically, the sequences were first aligned using 
ClustalW algorithm, implemented in BioEdit editor 7.2 [161]. The 
total sum of amino acids and gaps (i.e. regions of insertion/deletion) in 
the multiple sequence alignment was 1170, and has been visualized in 
JalView2 desktop version with standardized Clustal X Colour Scheme 
(Suppl. Figure 1). Next, the best fitting amino acid substitution model 
and evolution parameters of evolution were estimated using SMS: 
Smart Model Selection in PhyML [162], with Akaike information 
criterion (available online on http:// www. atgc- montp ellier. fr/ phyml/). 
The JTT model [163] was estimated as the best fitting model, in variant 
JTT + G + I + F (parameter gamma = 1.032, proportion of invariable 
sites estimated 0.043, and number of substitution rate categories 4). 
Based on the multiple sequence alignment and JTT substitution model, 
the (unrooted) phylogenetic tree was calculated using PhyML3.0 [164]. 
The Ciona, Caenorhabditis and Drosophila Prickle sequences were 
used here as an outgroup for a tree rooting. Finally, the phylogenetic 
tree was visualized using PRESTO (a Phylogenetic tReE viSualisa-
TiOn; implemented in PhyML 3.0 [164]), and manually edited in the 
Affinity Designer software.

In Fig. 1e, 1f and Suppl. Figure 2, aligned sequences together with their 
conservation score (see below) were manually graphically edited in the 
Affinity Designer software. Conservation is visualized on the alignment 
or a sequence group as a histogram giving the score for each column. 
Pairwise Sequence alignment and Conservancy score were calculated 
via Emboss needle tool (https:// www. ebi. ac. uk/ Tools/ psa/ emboss_ nee-
dle/) and the Jalview2 desktop version, respectively.
Figure 1g was created using PondrFit tool available on http:// origi nal. 
dispr ot. org/ pondr- fit. php, and manually edited in the Affinity Designer 
software.
Figures 2a, 2b, and 5 were created with BioRender.com, the online 
app used to create, edit, and collaborate on scientific diagrams, and il-

lustrations. Data for Fig. 2C were adopted from the gnomAD database 
v2.1.1, available on https:// gnomad. broad insti tute. org on February 10, 
2023.
Data for Fig. 3, including Suppl. Figures 3, 4, 5, and 6 were prepared 
using GEPIA2 and cBioPortal databases, and manually edited in the 
Affinity Designer software.
GEPIA2 database analysis: the datasets analysed for this study can be 
accessed through the following website: http:// gepia2. cancer- pku. cn. 
TCGA and GTEx data were accessed on January 9, 2023. The gene 
expression profile and box plot function were used to compare cancer 
versus normal PRICKLE1-4 tissue expression, by comparing cancer 
TCGA with normal TCGA and GTEx data. The expression data were 
log2 (TPM + 1) transformed, with the log2FC = 1 cut-off and q-value 
cut-off = 0.01. Statistical significance between cancer and normal sam-
ples was analysed by ANOVA. The impact of PRICKLE1-4 expression 
on Overall survival of TCGA cancer patients was visualized with the 
help of the survival heat map, using the median for cut-off, with no p-
value adjustment. Log-rank significance level was p = 0.05, estimated 
using the Mantel–Cox test. For overall survival (OS) representation, 
Kaplan–Meier curves were generated, and the median was selected 
as the threshold for separating the high- and low-expression groups 
in TCGA data. The hazard ratio (HR) was calculated based on the 
Cox PH model; a 95% Confidence Interval was added (dotted line). 
Graphs were manually edited in Affinity Designer.cBioPortal analysis: 
The datasets used for this study can be accessed through the following 
website: https:// www. cbiop ortal. org. TCGA data were used for further 
analysis, accessed on January 9, 2023, and analysed using software-
derived tools. Pie charts representing derived mutational data were 
generated with the help of the GraphPad Prism 8.0 software. Graphs 
were manually edited in the Affinity Designer software.
All figures in this research paper were designed with colourblind-
friendly colours to ensure maximum accessibility.
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