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Abstract
In ageing men, benign prostatic hyperplasia (BPH) is a chronic disease that leads to progressive lower urinary tract symptoms 
(LUTS) caused by obstruction of the bladder outlet (BOO). Patients with LUTS (such as increased frequency and urgency 
of urination) and complications of BOO (such as hydronephrosis and bladder stones) are at risk of serious health problems. 
BPH causes a rapidly rising burden of LUTS far exceeding that of other urological conditions. Treatment outcomes are 
unsatisfactory for BPH largely due to the lacking of fully understanding of the pathogenesis. Hormonal imbalances related 
to androgen and oestrogen can cause BPH, but the exact mechanism is still unknown, even the animal model is not fully 
understood. Additionally, there are no large-scale data to explain this mechanism. A BPH mouse model was established 
using mixed slow-release pellets of testosterone (T) and estradiol (E2), and we measured gene expression in mouse prostate 
tissue using RNA-seq, verified the results using qRT‒PCR, and used bioinformatics methods to analyse the differentially 
expressed genes (DEGs).
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Introduction

Benign prostatic hyperplasia (BPH) is one of the most com-
mon diseases in older men, and it affects more than half of 
all men over the age of 50 years [1]. Its incidence increases 
further with age, reaching up to 80% in 80-year-old men 
[2]. Compression of the urethra by an enlarged prostate is 
the main factor involved in the progression of BPH; this 
enlargement is characterized by an increase in the number 
and size of prostate epithelial and stromal cells in the periu-
rethral region [3]. Progressive enlargement of the prostate 
can lead to compression of the urethra and lead to bladder 

outlet obstruction (BOO), which can manifest as LUTS [4]. 
This condition seriously affects the quality of life of patients. 
BPH is the highest health burden among conditions of the 
urological system [5]. Although there are many ways to 
treat BPH, such as alpha1-blockers [6], 5α-reductase inhibi-
tors (5-ARI) [7], and transurethral resection of the prostate 
(TURP)[8], ejaculation disorders, loss of sexual desire [9], 
and lower blood pressure [10] can occur with current treat-
ment options [9]; most minimally invasive treatments also 
destroy the urethra or the prostate, while removing the pros-
tate increases the occurrence of post-operation urinary tract 
infection [11], affecting sexual function [12] and causing 
other effects. Additionally, current treatment does not con-
trol disease progression in all patients [13, 14].

The pathogenesis of BPH is complex and may be related 
to the balance in cell proliferation and apoptosis [15], the 
androgen receptor [16], epithelial mesenchymal transforma-
tion [17] and estrogen and androgen imbalance [18], and 
the molecular mechanisms underlying the clinical pheno-
type have not yet been fully revealed [19]. Hormonal imbal-
ance related to estrogen and androgen may be one of the 
important factors causing BPH [20]. As the target organ 
of sex hormones, androgen and estrogen both regulate the 
growth of the prostate. It is well known that the prostate is 

 *	 Guangheng Luo 
	 luoguangheng1975@126.com

1	 Medical College, Guizhou University, Guiyang 550025, 
Guizhou, China

2	 Department of Urology Surgery, Guizhou Province People’s 
Hospital, Guiyang 550002, China

3	 Guizhou Medical University, GuiyangGuizhou 550025, 
China

4	 Department of Urology Surgery, Shanghai First People’s 
Hospital, Shanghai Jiao Tong University, Shanghai 201620, 
China

http://crossmark.crossref.org/dialog/?doi=10.1007/s11010-023-04695-2&domain=pdf


2722	 Molecular and Cellular Biochemistry (2023) 478:2721–2737

1 3

an androgen-dependent organ, but interestingly, testosterone 
levels reach their peak during early adulthood in men and 
gradually decrease (1–2% per year)[21], and estrogen lev-
els remain unchanged or slightly decreased, which leads to 
an increase in the ratio of estrogen to androgen, which can 
induce the proliferation of stromal cells and their expression 
of inflammatory factors in individuals with BPH [22]. The 
estrogen receptor and G protein-coupled estrogen receptor 
accelerate the progression of BPH by inducing prostatic 
fibrosis [23]. The coinduction of androgen and estrogen 
signalling has been shown to accelerate prostatic hyperpla-
sia in dogs and lead to bladder outlet obstruction [24], but 
the specific mechanism through which estrogen and andro-
gen imbalance affect BPH is still unclear. For a potential 
breakthrough in BPH treatment, comprehensive research is 
needed to enable an understanding of the relevant molecular 
mechanism of BPH development. The existing BPH models 
rarely have physiological hormone levels associated with 
the progression of human benign prostatic hyperplasia so it 
is necessary to establish a mouse model of BPH combined 
with BOO based on the principle of estrogen and andro-
gen imbalance to further study the pathogenesis of BPH. In 
addition to 5α-reductase, estrogen and androgen, and their 
receptor-related genes, BPH is associated with the elevated 
expression of many genes, which mainly include growth fac-
tors; BPH has been found to be associated with abnormal 
expression of growth factors such as FGF [25], TGF-β [26], 
EGF [27], and IGF [28]. For example, bFGF can promote 
the proliferation of prostate fibroblasts cultured in vitro, 
and prostate stromal cells with high expression of bFGF 
can stimulate the proliferation of prostate epithelial cells in 
a paracrine manner [29, 30]. In addition, it was found that 
the abnormal expression of other genes can promote pros-
tatic hyperplasia; for example, the COX-2/PGE signalling 
pathway is involved in the progression of BPH [31]. How-
ever, the molecular mechanism through which oestrogen and 
androgen imbalance promotes BPH is not fully understood. 
RNA-sequencing (RNA-seq) has been widely used in medi-
cine, biology, and other fields [32, 33]; for instance, Magda-
lena Derbis et al. [34] conducted RNA-seq analyses of the 
striatum to gain insight into the molecular changes caused by 
ASO-CCG treatment. Milanez-Almeida et al. [35] recently 
showed that gene expression data obtained using RNA-seq 
from The Cancer Genome Atlas (TCGA) could be used to 
predict survival or the progression-free interval better than 
classic clinical prognostic factors, such as age at diagnosis, 
sex, and tumour stage. Therefore, RNA-seq is a key tool for 
studying disease and biology [36], and it may be beneficial 
for discovering novel therapeutic targets [37].

Therefore, in this study, a mouse model of BPH com-
bined with BOO was established using testosterone (T) 
and estradiol (E2) slow-release pellets, and RNA-seq was 
used to evaluate transcriptomic changes in BPH mice. The 

reliability of the BPH mouse model was also evaluated by 
analyses of gross specimens, pathology, and RNA expres-
sion, and finally, the key genes, pathways, and infiltrating 
immune cells were revealed by bioinformatics analysis. In 
conclusion, the results of this study provide a reference for 
identifying the potential targets of BPH for treatment.

Materials and methods

Environmental conditions and establishment 
of animal model

A total of twenty-two 6- to 8-week-old male C57BL/6 mice 
(Chongqing TengXing Biotechnology Co. Ltd, China) with 
an average weight of approximately 20 g were used. The 
animal housing was maintained at 20–25 °C and 40 ~ 75% 
relative humidity. Indoor lighting consisted of 12 h of light 
and darkness (split between 8 am and 8 pm), and the animals 
had free access to food and water. All procedures involv-
ing animals were approved by the Ethics Committee of 
Guizhou Provincial People's Hospital (Ethics approval No. 
2022–020). After 1 week of acclimatization, twenty-two 
mice were randomly divided into two groups (control group: 
Con group; T + E2 slow-release pellet group: T + E2 group) 
of eleven mice each; eight mice from each group were used 
for observation data statistics and prostate pathological 
examination, and the remaining three mice were used only 
for RNA-seq. With the aid of a pellet press (Parr Instrument 
Company, USA), T + E2 was made into a cylindrical solid 
pill with a diameter of approximately 2 mm and a length of 
approximately 3 mm, with a total weight of approximately 
28.6 mg (T: E2 = 10: 1). After preparing the skin on the 
back of the mouse, subcutaneous local anaesthesia was per-
formed with 1% lidocaine, and one pill was placed in the 
incision (Fig. 1A), while the control group received only a 
dorsal skin incision and suture without the treatment. In the 
T + E2 group, the pellet in each mouse was replaced with 1 
new slow-release pellet each month, and the control group 
underwent the same operation as described previously.

Tissue samples

After 12 weeks, the mice were killed with carbon dioxide; 
the bladder was examined for stones using a cystoscope as 
we described before [38]; and their urethra, bladder, pros-
tate, kidney, and testis were immediately obtained. The 
length of the urethra in the prostate was measured using an 
accurate calliper, and the volume of the bladder when it was 
full was estimated by measuring the length of the diameter 
of the bladder and weighing the prostate.
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Fig. 1   Effects of T and E2 treatment on the gross and urogenital 
pathology of mice. A Mice were implanted subcutaneously with 
T + E2 slow-release pellets: B (1) Ventral view of the prostate and 
urethra of the CON group; (2) dorsal view of the prostate and blad-
der of the CON group (the yellow arrowhead indicates the connecting 
site of the urethra and bladder in the subplot); (3) ventral view of the 
prostate and urethra of the T + E2 group; (4) dorsal view of the pros-
tate and bladder of the T + E2 group (the yellow arrowhead indicates 
the connecting site of the urethra and bladder in the subplot); (5) 
hydronephrosis of the T + E2 group (arrow marks the renal pelvis); 

(6) endoscopic observation of a stone in the bladder (red arrowhead), 
and green arrow indicates bladder lumen; C initial body weight; D 
final body weight; E prostate weight; F relative prostatic index: 
“Prostate weight”/ “Final body weight” × 100%; G prostatic urethral 
length; H bladder volume (Formula: volume = Length x width x 
height x (π/6)); I discovery of bladder stones; J discovery of hydro-
nephrosis. AP = anterior prostate, VP/LP = ventral prostate/lateral 
prostate, U = urethra, DP = dorsal prostate, B = bladder. *P < 0.05; 
**P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant
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Haematoxylin–Eosin (HE)

The fixed tissue embedded in paraffin was sectioned into 
5-μm-thick sections. After dewaxing and rehydration, sections 
were stained with haematoxylin and eosin (H&E) according 
to standard procedures for light microscopic observation. The 
prostate epithelial thickness, cross-sectional area of the ure-
thral lumen, renal parenchymal thickness, and detrusor mus-
cle thickness of the bladder were measured and analysed by 
ImageJ software (National Institutes of Health, USA).

High‑throughput RNA‑Seq

The total RNA isolated from the prostate tissues 
(n = 3 for each group) was used as input material to pre-
pare RNA samples. Sequencing libraries were generated 
using the Illumina TruSegTM RNA Sample Preparation 
Kit (Illumina) following the manufacturer's instructions. The 
libraries were sequenced on an Illumina HiSeg X-ten Sys-
tem according to the manufacturer's instructions (Shanghai 
Biotechnology Co.).

Differentially expressed gene (DEG) analysis

DEG analysis was performed by the R package “DESeq2” 
for the identification of DEGs using the cut-off criteria of 
|log2 Fc| > 1 and an adjusted P value of < 0.05. Principal 
component analysis (PCA) plots were generated by the 
“ggplot2” package in R. PCA and intersample correlation 
were carried out by the “DESeq2” package in R (version 
4.1.3). Correlation heatmap, volcano, and pheatmap plots 
were plotted in R using the “ggplot2” package and “Com-
plexHeatmap” package.

Gene ontology (GO) and kyoto encyclopedia 
of genes and genomes (KEGG) functional 
enrichment analysis

The Metascape website (http://​metas​cape.​org/​gp/​index.​
html#/​main/​step1) is an effective and efficient portal 
designed for experimentalists [39]. To elucidate the biologi-
cal functions of the DEGs, pathway enrichment analysis was 
performed using KEGG signalling and GO analyses. Metas-
cape was also used to calculate the enrichment terms for up- 
and downregulated DEGs separately. The top 20 clusters of 
enriched terms (GO/KEGG terms) are each visualized using 
a heatmap format, which are coloured based on P values.

Protein‒Protein interaction (PPI) network analysis 
of DEGs and correlation analyses

Using default parameters, Metascape was used to generate a 
PPI network with molecular complex detection (MCODE) 

components, and Cytoscape software (Version 3.9.1) was 
used for further analysis. We first calculated the top 30 hub 
genes calculated by each algorithm (betweenness, Bottle-
Neck, degree, radiality, stress) of the cytoHubba plugin in 
Cytoscape and then screened for genes that were shared with 
the MCODE seed genes. We continued to explore the rel-
evance of these key genes in normal and hyperplastic pros-
tate tissue (Spearman approach) using the Genotype-Tissue 
Expression (GTEx) and Gene Expression Omnibus (GEO) 
databases. GTEx data were obtained from UCSC Xena 
(https://​xenab​rowser.​net/) and visualized by the package 
“ggplot2” in R. We downloaded transcriptomic data for all 
BPH patients from GSE101486, GSE104749, GSE119195, 
GSE28204, and GSE5377 in GEO. The expression levels 
obtained from the 5 GEO datasets were normalized using 
the R package ‘sva’, and the data were visualized using the R 
package “ggplot2”. Then, we used the genemania plugin in 
Cytoscape to explore the association between the key genes.

Gene set enrichment analysis (GSEA) and gene set 
variation analysis (GSVA)

GSEA is a computational method that determines whether 
an a priori defined set of genes shows statistically significant, 
concordant differences between two biological states [40], 
and the GO/KEGG annotations for GSEA were performed 
and visualized with the “clusterprofiler” package in R. 
GSVA, a nonparametric, unsupervised method for estimat-
ing gene set enrichment variations in gene expression data, 
was used to analyse gene set enrichment variations [41]. 
Then, GO and KEGG results were analysed by the “GSVA” 
package and visualized by the “ggplot2” R package.

Generation of the ceRNA network

According to the ceRNA hypothesis, lncRNAs (circRNAs) 
act as molecular sponges that compete with mRNAs for 
binding to miRNAs, thus inhibiting their activity [42]. The 
ceRNA network is widely documented as a posttranscrip-
tional regulatory network that participates in many biologi-
cal processes. We selected the modules of interest in the PPI 
network to identify ceRNAs and predicted and visualized the 
interactions of DEmRNAs-miRNAs and miRNAs-lncRNAs 
(CircRNA) by StarBase (https://​starb​ase.​sysu.​edu.​cn/) and 
Cytoscape (Version 3.9.1).

Assessment of immune infiltration

To explore the immune microenvironment, we performed 
CIBERSORT analyses to estimate how many infiltrating 
immune components were present in the samples [43]. 
We first obtained the mouse immune cell dataset [44], 
and the “CIBERSORT” package in R software was used 

http://metascape.org/gp/index.html#/main/step1
http://metascape.org/gp/index.html#/main/step1
https://xenabrowser.net/
https://starbase.sysu.edu.cn/
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to investigate possible associations between the genes and 
immune cells to predict the relative proportions of 25 infil-
trating immune cell subtypes, with a total of 1000 permuta-
tions performed.

Quantitative real‑time RT‒PCR

TRIzol (Takara) was used to extract total mRNA, and the 
PrimerScriptTM RT Reagent Kit (Takara) was used to syn-
thesize cDNA. A SYBR Green PCR kit (Takara Biotechnol-
ogy Co., Ltd.) was used for qRT‒PCR performed using the 
CFX96 Touch qRT‒PCR System (Bio-Rad). PCR data were 
analysed using the 2 − ∆∆Cq method and are expressed as 
the fold change relative to GAPDH expression levels. All 
experiments were repeated three times. All primers are listed 
in Table S1.

Statistical analysis

GraphPad Prism software (version 9.3.0 for Windows) and R 
software (version 4.1.3) were used to perform the statistical 
analyses and data visualization. Wilcoxon tests or Student's 
unpaired t tests were used to compare data. The correlation 
analysis was performed by Spearman correlation. Differ-
ences were considered significant when P < 0.05 (*P < 0.05; 
**P < 0.01; ***P < 0.001; ****P < 0.0001; ns = not signifi-
cant, P > 0.05).

Results

T + E2 treatment induction of BPH and BOO in mice

After 12 weeks of treatment with T + E2 slow-release pel-
lets, all mice survived with good mental status, normal 
diet and activity, and no hormone-related adverse effects, 
such as hair loss, but there was a slightly hunched posture 
during urination in the T + E2 group. The volume of the 
prostate glands in the T + E2 group was uniformly larger 
than that in the control group (CON group; Fig. 1B, 2), 
and bladder volume was significantly higher when  the 
bladder was full (Fig. 1B, 3, 4); the urethra, which was 
covered by the prostate gland, was narrowed so that more 
pressure was required to pass the urine from the bladder 
through the urethra in the T + E2 group (Fig. 1B, 2, 4). 
Two mice in the T + E2 group suffered from unilateral 
hydronephrosis (Fig. 1B, 5). More interestingly, we found 
small stones in the bladder in the T + E2 group, while this 
phenomenon did not occur in the CON group (Fig. 1B, 
6). There were no significant differences in body weights 
(initial and final body weights) between the CON and 
T + E2 groups (P > 0.05, Fig. 1C–D). The weight of the 
prostate in the T + E2 group was significantly higher than 

that in the CON group (+ 148.16%, P < 0.01, Fig. 1E), and 
similarly, the relative prostate index in the T + E2 group 
also increased (+ 184.22%, P < 0.01, Fig. 1F). The urethral 
length of the prostatic portion in the mice in the T + E2 
group was increased (+ 85.90%, P < 0.0001, Fig. 1G). The 
volume of the bladder upon filling was significantly higher 
in the T + E2 group (+ 905.02%, P < 0.0001, Fig. 1H), and 
two mice with bladder stones and hydronephrosis were 
found in the T + E2 group (Fig. 1I–J).

T + E2 treatment causes BPH pathological features

After 12 weeks of treatment with T + E2 slow-release pel-
lets, the epithelial cells of the prostate gland in mice had 
significantly proliferated, the cytoplasm was full, there 
were epithelial nodules and an accumulation of epithelial 
cells, and the lumen of the prostatic ducts was also rela-
tively smaller (Fig. 2A). The epithelial thickness of the 
prostate gland in the T + E2 group was significantly greater 
than that in the CON group (+ 369.71%, P < 0.0001, 
Fig. 2B). The urethral opening was relatively narrower 
in the T + E2 group than in the CON group, with signs of 
extraluminal compression of the urethral lumen (Fig. 2C) 
and a reduction in urethral cross-sectional area of approx-
imately 73.83% (P < 0.01, Fig.  2D). The parenchymal 
thickness of the hydronephrotic kidney in the T + E2 group 
tended to lower than that in the CON group (Fig. 2E). In 
the T + E2 group, the bladder detrusor was significantly 
thinner (Fig. 2F) than that in the CON group, with a reduc-
tion in thickness of approximately 50.83% (P < 0.0001, 
Fig. 2G).

DEG analysis and verification

Overall, there were 833 mRNAs with significantly different 
expression between the T + E2 group and the CON group 
(Table S2), including 523 upregulated (Table S3) and 310 
downregulated mRNAs (Table S4). Hierarchical clustering 
heatmaps (Fig. 3A) and volcano plots (Fig. 3B) show the 
differences in gene expression between the two groups. In 
PCA clustering analysis, samples obtained within the same 
group were more tightly clustered, and there were significant 
expression differences between the two groups (Fig. 3C). 
Samples from the same group were strongly correlated with 
each other, with significant differences between different 
groups (Fig. S1). To further validate the sequencing results, 
the levels of 6 randomly selected mRNAs were measured 
using qRT‒PCR, and the difference between the two groups 
was significant (P < 0.05) and followed the same trend as 
the sequencing results, suggesting accurate and reliable 
sequencing results.
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Functional annotation and pathway enrichment 
analysis

GO analysis showed that the DEGs were mainly enriched in 
modified amino acid binding, import into the cell, cellular-
modified amino acid metabolic process, ion homeostasis, 
and amide transport (Fig. 4A, Table S5). Enrichment analy-
sis of the upregulated and downregulated genes revealed 
that the upregulated DEGs were mainly enriched in the 
production of molecular mediator of immune response, 
endopeptidase inhibitor activity, and oxidoreductase activ-
ity, while the downregulated DEGs were mainly enriched in 
cation transmembrane transporter activity, thyroid hormone 
transport, and neuronal cell body. Up- and downregulated 

genes were mainly coenriched in ion homeostasis, amide 
transport, modified amino acid binding, regulation of hor-
mone levels, and cellular modified amino acid metabolic 
process (Fig. 4B, Table S6).

The results of KEGG enrichment analysis showed that the 
DEGs were mostly enriched in transport of small molecules, 
mineral absorption, amino acid metabolism, oxidative stress, 
redox pathway, prostaglandin synthesis, and regulation 
(Fig. 4C, Table S7). KEGG enrichment analysis of the up- 
and downregulated DEGs also revealed that the upregulated 
DEGs were mainly enriched in the regulation of insulin-
like growth factor (IGF) transport and uptake by insulin-like 
growth factor binding proteins (IGFBPs), passive transport 
by aquaporins, and other glycan degradation, while the 

Fig. 2   Pathological examination of prostate in mice. A Comparisons 
of HE staining images of prostate tissues between CON and T + E2 
group (arrow head: prostate epithelial cells; scale bar = 100  μm); B 
compared with CON group, the thickness of prostate epithelial cells 
in T + E2 group increased significantly; C comparison of the ure-
thral lumen in prostate between the CON and T + E2 groups (arrow 
head: urethral lumen; scale bar = 100  μm); D compared with CON 
group, the cross-sectional area of the urethral cavity in T + E2 group 

was significantly reduced; E comparison of renal parenchymal thick-
ness between the CON and T + E2 groups (arrow head: renal paren-
chyma; scale bar = 200  μm); F comparison of bladder detrusor 
between the CON and T + E2 groups (arrow head: bladder detrusor; 
scale bar = 200 μm); G compared with CON group, the detrusor mus-
cle of bladder in T + E2 group was significantly thinner. *P < 0.05; 
**P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant
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downregulated DEGs were mainly enriched in amino acid 
transport across the plasma membrane, metabolism of car-
bohydrates, and aldosterone synthesis and secretion. The 
up- and downregulated DEGs were mainly coenriched in 
mineral absorption, transport of small molecules, and amino 
acid metabolism (Fig. 4D, Table S8).

GSEA was performed for GO and KEGG analysis, and 
the results showed that the main terms were regulation of 
endopeptidases and peptidases and the complement and 
coagulation cascade pathways (Fig. S2–S3, Tables S9–10).

GSVA  scores for  GO items were high for positive 
regulation of cholesterol esterification (biological pro-
cess (BP)), cellular response to insulin-like growth fac-
tor stimulus (BP), endoplasmic reticulum tubular network 

membrane (cellular component (CC)), phospholipid 
translocating ATPase complex (CC), and phosphate ion 
transmembrane transporter activity (molecular function 
(MF)) in the T + E2 group. In the CON group, mitochon-
drial translational elongation (BP), positive regulation of 
3’UTR-mediated mRNA stabilization (BP), elastic fibre 
(CC), cell body fibre (CC), and leucine transmembrane 
transporter activity (MF) were scored high via GSVA (Fig. 
S4-A, B, C, Tables S11–13).

GSVA suggested that o-glycan biosynthesis, lysosome, 
complement and coagulation cascades, proteasome, and 
regulation of autophagy were scored high in the T + E2 
group. In the CON group, valine, leucine, and isoleucine 
biosynthesis; Wnt signalling pathway; arginine and proline 

Fig. 3   Results of gene expression profile identification and validation 
of DEGs. A Heatmap diagram of DEGs between the CON and T + E2 
groups. B Volcano plots showing DEGs (the horizontal dotted line 

marks log2-fold changes of 1 or -1). C PCA plot showing the clus-
tering of the samples using all DEGs. D Six differentially expressed 
genes were validated by qRT‒PCR
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metabolism; gap junctions; and glycine serine and threonine 
metabolism were highly scored (Fig. 4E, Table S14).

Construction of the PPI network and analysis of hub 
genes

The PPI networks constructed using Metascape, with 479 
nodes and 1607 edges, were also divided into 16 significant 
modules based on different GO clusters (Fig. 5A, Table S15) 
and the genes in each module (Table S16). Module 5 was 
the most central module associated with antioxidant activ-
ity. Previous studies have demonstrated a close relationship 
between antioxidant activity and BPH [45]. All 13 genes 
from module 5 had the highest Macode score of the top 13, 
and the genes from module 5 were also used to generate the 
subsequent ceRNA network. Next, we used the five algo-
rithms in Cytoscape’s plugin “Cytohubba” to identify the 
top 30 genes for each and the key genes IGF1 and EPHA7 
that were shared with the seed genes of the 16 important 
modules (Fig. 5B). In normal tissues obtained from the 
GTEx dataset, the levels of these 2 genes showed different 
correlations in different tissues (Fig. 5C), with a significant 
positive correlation between the levels of these 2 genes in 
prostate tissue (P < 0.05, Fig. 5D). We further examined the 
transcriptional data obtained from all BPH samples from 5 
datasets (37 samples in total) from GEO and found a positive 
but nonsignificant correlation between the levels of 2 genes 
(P > 0.05, Fig. 5E, Table S17). A network of Igf1 and Epha7 
interactions was generated using the genemania plugin in 
Cytoscape, and the 2 genes were found to be linked in vari-
ous ways, including physical interactions, prediction, and 
coexpression.

Construction of the ceRNA network

To explore the molecular regulatory mechanisms of DEm-
RNAs within the module of interest, lncRNA‒miRNA-
mRNA and circRNA-miRNA‒mRNA regulatory networks 
were established. lncRNA-related ceRNA networks were 
generated, involving 199 molecules and 445 interactions, 
including those of 2 DEmRNAs, 172 predicted lncRNAs, 
and 25 predicted miRNAs (Fig. 6A, Tables S18–19). The 
other circRNA-associated ceRNA network, involving 300 
genes and 608 interactions, included 2 DEmRNAs, 273 
predicted circRNAs, and 25 predicted miRNAs (Fig. 6B, 
Tables S18, 20). ceRNA networks can enable an understand-
ing of the regulatory relationships of these key genes and 
help discover more potential biological targets. For exam-
ple, we focused on Hsd17b2, which could be regulated by 
miR-181a-5p, while lncRNA NEAT1 and circRNA Snx5 can 
regulate Hsd17b2 by competing for miRNA binding sites.

Immune cell infiltration

Using the CIBERSORT algorithm, we compared the infiltra-
tion levels of 25 subsets of immune cells in the prostate tis-
sues between the two groups and found that all samples were 
infiltrated by multiple types of immune cells; for example, 
plasma cells and monocytes were the predominant immune 
cells in all samples, while eosinophils were less represented 
(Fig. 7), but there was no significant difference in the pro-
portion of individual types of infiltrating immune cells when 
the two groups were compared (P > 0.05, Fig. S5).

Discussion

During adulthood, the prostate is the only solid organ that 
continues to grow continuously [46]. BPH has been found 
to be associated with quality-of-life (QoL) alterations and 
health problems in elderly men [47, 48]. In our study, mice 
treated with T + E2 showed not only the gross and pathologi-
cal features of BPH but also features that have only observed 
in patients with progressive BPH, such as elongation and 
narrowing of the urethra in the prostate area, as well as blad-
der stones, which is consistent with secondary stones, and 
hydronephrosis and bladder wall thinning caused by BOO 
[49–53]. The elongation and narrowing of the urethra in 
the prostate might be a key factor in the development of 
BOO in BPH mice, and the elongation of the urethra at the 
junction with the bladder was particularly pronounced and 
might be related to the lack of fixation of the urethra in this 
area by tissues, such as smooth muscle, and the pull of the 
dilated bladder. The T + E2-induced mouse model of BPH 
has greater advantages than the rat model, as the character-
istic alterations associated with BPH combined with BOO 
more closely resembled those in humans, while similar find-
ings have not been reported for the steroid hormone-induced 
BPH rat model. In addition, the genetics of the mice was 
more fully explored, and the mature gene editing system in 
mice is more conducive to assessing the impact of changes 
in genetic information on biological functions [54, 55]. The 
protocol for inducing BPH mice with BOO in this study 
had the shortest known induction time, requiring only three 
subcutaneous implantations of slow-release pellets with a 
total induction time of 12 weeks, which leads to a lower 
risk of infection than traditional daily injections of sex hor-
mones, facilitating the mass production of BPH-combined 
BOO mice. The T + E2-induced mouse model of BPH with 
BOO can provide a reliable research tool for the study of 
mechanisms related to BPH.

A proportion of patients with BPH who are treated clini-
cally with medication eventually require surgery, account-
ing for approximately 10% [56], which reflects the limita-
tions of current pharmacological treatment options. The 
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imbalance of androgen and oestrogen was considered to 
be one of the important pathogenic mechanisms underly-
ing BPH, but there was no comprehensive and effective 

treatment for the imbalance [57], and the search for new 
therapeutic targets had become an urgent matter, but there 
was a lack of large-scale transcriptomic screening. This type 
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of screening is indispensable for an in-depth study of the 
molecular mechanisms involved in androgen- and oestrogen-
induced BPH. By RNA-seq, 833 significantly differentially 
expressed genes were identified between the two groups. In 
the results of GO enrichment analysis, we found that upregu-
lated DEGs were significantly enriched in redox processes, 
which was consistent with previous studies that the redox 
system was associated with the development of BPH [58]. 
The destruction of redox balance is easy to induce oxidative 
stress [59]. Oxidative stress is also considered to be one of 
the mechanisms that cause early pathological changes dur-
ing prostate hyperplasia [60]. Oxidative stress can promote 
prostate hyperplasia by affecting the apoptosis pathway of 
prostate cells [61], inducing prostatitis [62, 63], and acceler-
ating prostate proliferation [64] by activating the PI3K/Akt 
signalling pathway. Androgen can induce oxidative stress 
by increasing free radicals [65] and physiological amount 
of estrogen has antioxidant effect, but over-physiological 
amount of estrogen may induce oxidative stress by causing 
mitochondrial dysfunction [66]. However, the relationship 
between the ratio of estrogen/androgens and oxidative stress 
is still unknown, and further study is needed. Antioxidant 
stress may become a new therapeutic target for BPH; for 
example, previous studies have found that the lipid extract 
from the fruit of the Royal Palm of Cuba may treat prostatic 
hyperplasia through antioxidation [67]. GO terms enriched 
in the downregulated DEGs were associated with ion trans-
port [68], whereas the upregulated DEGs were enriched in 
hormonal regulation, and previous studies had demonstrated 
the involvement of both androgens and oestrogens in the pro-
gression of BPH[23, 69]. In addition, the results of KEGG 
analysis suggested that the most significant pathway was 
small molecules, which had been shown in previous stud-
ies to influence the cell cycle, apoptosis and proliferation 
[70–72], whereas the upregulated DEGs were most sig-
nificantly enriched in pathways associated with IGFs and 
IGFBPs, which have been previously shown to be associ-
ated with BPH [28, 73], and inhibition of IGF-1 secretion 
inhibited the proliferation of prostate epithelial cells [29]. 
Up- and downregulated DEGs were also predominantly 
coenriched in small molecule compound-related pathways, 
suggesting that this pathway might play an important role in 

steroid hormone-induced BPH. It is well accepted that BPH 
is an androgen-dependent condition, as castrated individu-
als do not develop BPH [74]. In the prostate, 5 α-reductase 
converts testosterone into dihydrotestosterone, which in 
turn combines with the androgen receptor to promote pro-
static hyperplasia. Steroid signalling through the androgen 
receptor is considered to be the key regulator of prostatic 
hyperplasia [75, 76]. In addition, oestrogen signalling 
plays an important role in the pathophysiology of prostatic 
hyperplasia, and oestrogen can regulate the proliferation of 
primary stromal cells and their expression of inflammatory 
factors during BPH [22, 31]. By increasing oestrogen to 
androgen ratios, upregulated AR expression may increase 
the sensitivity of the prostate to androgens, resulting in pros-
tate hyperplasia [31]. To further explore steroid hormone-
induced genomic differences in mice, we used GSEA and 
GSVA. GSEA results showed that terms enriched for GO 
and KEGG were mainly associated with the regulation of 
endopeptidases and peptidases and complement and coagu-
lation. GSVA showed that enriched GO and KEGG terms 
were mainly associated with cellular responses to insulin-
like growth factor stimulation and autophagy, which is con-
sistent with previous studies that have shown that BPH is 
associated with insulin-like growth factor-mediated hormone 
imbalance [77] and impaired autophagy [78].

The PPI network generated in this study identified 16 
important modules; for example, module 6 was mainly 
associated with oxidoreductase activity and the steroid 
metabolic process, and previous studies have shown that 
dysregulation of redox homeostasis was associated with the 
pathogenesis of prostate hyperplasia [58]. It is known that 
the development of BPH is dependent on steroid hormones 
[79]. The key genes IGF1 and EPHA7, important seed 
genes in the modules and hub genes in several algorithms, 
were also identified, and previous studies have shown that 
IGF1 is associated with the development of BPH [64, 80, 
81]. Findings involving EPHA7 have not been reported in 
most studies of BPH, although one study found that EPHA7 
expression was upregulated in BPH tissue or normal tissue 
compared to most PCa samples [82]. In correlation studies, 
we found different correlations between IGF1 and EPHA7 
levels in different tissues, implying that they may have dif-
ferent interregulatory effects; the levels of these genes were 
positively correlated in organs of the digestive system, 
such as the small intestine, stomach, colon, pancreas, and 
oesophagus. However, they were negatively correlated in 
adipose tissue. In prostate tissue, IGF1 levels were posi-
tively correlated with EPHA7 levels. Then, we studied all 
BPH samples from 5 GEO datasets and found that the levels 
of the two genes were also positively correlated, but this 
result was not statistically significant, indicating the need 
for further validation with more samples. Further study of 
the interrelationship of the 2 genes revealed a high degree 

Fig. 5   PPI network of the DEGs was generated, and hub genes were 
analysed. A The PPI network and the 16 most significant MCODE 
components. B Flower plot shows the hub genes obtained by 6 algo-
rithms. C A comparison of the expression levels of the hub genes in 
different normal tissues. D Scatterplot shows a positive correlation 
between IGF1 and EPHA7 expression levels in prostate tissue from 
the GTEx database (P = 0.008); E Scatterplot shows a positive cor-
relation between IGF1 and EPHA7 expression levels in the prostate 
of BPH patients from the GEO database (P = 0.181); F GeneMANIA 
network: black circles represent inputs into GeneMANIA, and grey 
circles correspond to GeneMANIA proposed hubs

◂
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of interrelationship in a biological network with the 2 genes 
as the core; this interrelationship involved physical interac-
tions, predicted, coexpression, colocalization, and shared 
protein domains in the network. We found many members 
of the Eph family and IGFBP family. As the largest family 
of tyrosine kinases, the Eph receptor has 14 members, and 
the binding site of its ligand (Ephrin) is located on the cell 
membrane [83]. In addition to modulating IGF bioactivity, 
IGFBP family members have independent biological actions 

[84], and it was predicted by the network that IGF-1 might 
interact directly or indirectly with multiple IGFBP family 
and Eph family members. The network predicted that IGF-1 
might interact directly or indirectly with several IGFBP and 
Eph family proteins, suggesting that these interactions might 
be related to the regulation of cell-to-cell crosstalk.

Based on the ceRNA hypothesis, lncRNAs (circR-
NAs) might act as ceRNAs by acting as sponges for miR-
NAs and thus indirectly regulate mRNA expression. The 
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expression of mRNAs in this network is regulated directly 
and indirectly by miRNAs and lncRNAs (circRNAs)[85]. 
Many noncoding RNAs in the generated ceRNA network 
might be involved in regulating these key genes, which 
in turn can influence the regulation of steroid hormone-
induced BPH. For example, in the lncRNA-related ceRNA 
network, NEAT1 can regulate the expression of Hsd17b2, 
an mRNA related to steroid metabolism, via miR-181a-5p 
[86]. Steroid hormones were inactivated by HSD17B2, 
and their balance was regulated in a variety of tissues by 
this molecule [87]. The elevation in HSD17B2 levels may 
have been due to the supraphysiological dose of steroid 
hormone used in this experiment. In the circRNA-related 
reRNA network, circRNA Snx5 regulates Aldh1a2 (a reti-
noic acid synthase) via miR-129-5p, and elevated Aldh1a2 
promotes retinoic acid synthesis, while retinoic acid (a 
vitamin A metabolite) also exhibits anti-inflammatory 
effects by preventing oxidative stress [87]; these findings 
suggest feedback regulation by mouse prostate tissue in 
response to intense oxidative stress. The above findings 
also suggest that steroid hormone-induced BPH in mice 
was regulated by a dynamic balance of oxidative stress and 
antioxidative stress.

In the immune infiltration analysis, we found no signifi-
cant difference in the proportion of 25 immune cells after 
T + E2 treatment and similar levels of immune infiltration 
in both groups. Erin M. McAuley et al.[88] used T + E2 to 
treat mice and similarly found no effect on the distribution 
of immune cells in the prostate. Human BPH tissue con-
tains infiltrating T lymphocytes, B lymphocytes and mac-
rophages, which might drive fibromuscular growth during 
BPH by activating and coordinating the release of cell fac-
tors [89]. The time of our prostate sample collection might 
not have coincided with the time of immune infiltration, and 
more samples are needed to confirm the findings regarding 
immune infiltration in the model. The shift from experimen-
tal animals to clinical application needs to be continuously 
explored and validated.

Conclusion

In conclusion, we established a mouse model of BPH com-
bined with BOO that is simple to manipulate and suitable for 
mass production. The model is associated with the specific 
alterations in histology and general pathology associated 
with BPH and provides a research platform for further stud-
ies of BPH. In this study, we also identified important genes 
and pathways involved in steroid-induced BPH and explored 
intermolecular regulatory relationships and immune fea-
tures, and these results might provide new insights into the 
search for therapeutic targets for BPH.
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