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Abstract
Cervical cancer being one of the primary causes of high mortality rates among women is an area of concern, especially 
with ineffective treatment strategies. Extensive studies are carried out to understand various aspects of cervical cancer ini-
tiation, development and progression; however, invasive cervical squamous cell carcinoma has poor outcomes. Moreover, 
the advanced stages of cervical cancer may involve lymphatic circulation with a high risk of tumor recurrence at distant 
metastatic sites. Dysregulation of the cervical microbiome by human papillomavirus (HPV) together with immune response 
modulation and the occurrence of novel mutations that trigger genomic instability causes malignant transformation at the 
cervix. In this review, we focus on the major risk factors as well as the functionally altered signaling pathways promoting 
the transformation of cervical intraepithelial neoplasia into invasive squamous cell carcinoma. We further elucidate genetic 
and epigenetic variations to highlight the complexity of causal factors of cervical cancer as well as the metastatic potential 
due to the changes in immune response, epigenetic regulation, DNA repair capacity, and cell cycle progression. Our bioin-
formatics analysis on metastatic and non-metastatic cervical cancer datasets identified various significantly and differentially 
expressed genes as well as the downregulation of potential tumor suppressor microRNA miR-28-5p. Thus, a comprehensive 
understanding of the genomic landscape in invasive and metastatic cervical cancer will help in stratifying the patient groups 
and designing potential therapeutic strategies.
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BRK  Breast tumor kinase
CAFs  Cancer-associated fibroblasts
CIN  Cervical intraepithelial neoplasia
CMV  Cytomegalovirus
CSCC  Cervical squamous cell carcinoma
CTCs  Circulating tumor cells
CTHRC1  Collagen triple helix repeat containing 1
CXCR  C-X-C motif chemokine receptor
DEGs  Differentially expressed genes
DTCs  Disseminated tumor cells
FABP5  Fatty acid binding protein 5

FIGO  The international federation of gynecology 
and obstetrics

HIF  Hypoxia-inducing factor
HIV  Human immunodeficiency virus
HPV  Human papillomavirus
HR-HPV  High-risk human papillomavirus
HSIL  High-grade intraepithelial lesions
HSV  Herpes simplex virus
LNM  Lymph node metastasis
LOF  Loss of function
LSIL  Low-grade squamous intraepithelial lesions
LVSI  Lymphovascular space invasion
MAFs  Metastasis-associated fibroblasts
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MDSCs  Myeloid-derived suppressor cells
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Net1  Neuroepithelial transforming gene 1
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PDGF-BB  Platelet-derived growth factor BB
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PD-L1  Programmed death ligand 1
PLNM  Pelvic lymph node metastasis
PLVD  Peritumoral lymphatic vessel density
POU2F1  POU class 2 homeobox 1
PPBP  Pro-platelet basic protein
PROX1  Prospero homeobox protein 1
RACK1  Receptor for activated C kinase 1
SCC  Squamous cell carcinoma
SEER  The Surveillance, Epidemiology, and End 

Results (SEER) database
SLN  Sentinel lymph node
TAMs  Tumor-associated macrophages
TDLN  Tumor cells target tumor-draining lymph 

node
TLG  Total lesion glycolysis
VE  Vascular endothelial
VEGF  Vascular endothelial growth factor

Introduction

Cervical cancer (CC) is the most common tumor of the female 
reproductive system and the fourth most prevalent cancer 
type overall [1–3]. The incidence and mortality rate of CC are 
the leading causes of death among women and vary among 
racial and ethnic groups, suggesting that genetic and epige-
netic factors may determine the outcome of the disease [4, 5]. 
Depending on the histopathology and severity of the cervical 
lesion, 69% of the CC are classified as squamous cell carci-
noma (SCC) and 25% as adenocarcinoma or adenosquamous 
cancers. The other 6% include small cell carcinoma, rhabdo-
myosarcoma, primary cervical lymphoma, and cervical sar-
coma [5]. SCC is most likely to develop from the ectocervix 
and adenocarcinomas arise from the endocervix [3]. Human 
papillomavirus (HPV) is the key factor as the infections are 
detected in approximately 99.7% of the CC; however, HPV-
negative aggressive CC is also identified. Persistent infections 
with 14 high-risk HPV genotypes are responsible for nearly 
all occurrences of cervical squamous cell carcinoma (CSCC) 
and adenocarcinoma [28]. Women infected with HPV develop 
precancerous phases with low-grade squamous intraepithelial 
lesions/CIN I (LSIL) and high-grade intraepithelial lesions or 
CIN II/CIN III (HSIL), and these high-grade lesions eventu-
ally lead to invasive CC over a period of time [6–8]. The role 
of HPV infection in tumor initiation and progression has been 
elegantly reviewed by Deligeoroglou et al. [29] and Stein-
bach and Riemer [30], and reports have been published on 
the mechanisms of immortalization of the host cells by HPV 
through signaling pathway dysregulation [11, 31–33], genomic 
instability [34, 35], alteration of the microbiome [36–39], and 
immune response modulation [40–44]. Therefore, this review 

only focuses on the cervical microbiome causing inflammation 
and discusses various events associated with CC metastasis.

Several genetic and epigenetic variations and tumor micro-
environment heterogeneity contribute to malignant transforma-
tion [12, 13]. The mutation burden, copy number variations, 
dysregulated expression of genes, microRNAs (miRNAs), 
long non-coding RNAs (lncRNAs), circular RNAs (circR-
NAs), and DNA methylation status vary among women dur-
ing different stages of CC [5, 9–11]. Further, the observed 
molecular landscape presents the interdependent regulatory 
mechanisms, which favor survival, development, progres-
sion, invasion, and metastasis. Early cancer cells develop into 
successive generations of cells with accumulated mutations, 
resulting in vigorous neoplasty. Metastasis begins with the 
spread of cancer cells from primary tumor sites and invading 
into the surrounding tissues. Furthermore, these cells can enter 
hematogenous or lymphogenous circulation as single cells or 
in clusters, represented by circulating tumor cells (CTCs). 
Cells then intravasate from the circulation and colonize at the 
secondary sites [14, 15]. In terms of biological behavior and 
genetics, these cells differ significantly from the primary tumor 
with an abnormal morphology and exponential growth [16, 
17]. Several events and number of molecules are associated 
with metastasis. These can also be the cervicovaginal micro-
biome [18], immune cells in the tumor microenvironment such 
as macrophages and dendritic cells in association with naive T 
cells [19], pH of the microenvironment [20], and differential 
expression of oncogenic pathway proteins, such as EGFR1, 
Wnt/β-catenin, NF-κB, AKT, MMP3, TGF-β that may pro-
mote metastasis [21–26]. Hence, comprehensive multi-omics 
analysis of CC at different stages can aid in devising effec-
tive strategies for CC classification, diagnosis, and treatment. 
Though the early detection and treatment of CC reduces the 
associated risk, metastatic and invasive stages with lymphatic 
dissemination have poor survival statistics. Therefore, new 
therapeutic approaches that aid in better prognosis of CC is 
inevitable. In this review, initially, we discuss briefly how 
HPV-mediated microbiome dysbiosis supports CC progres-
sion, followed by the mechanisms underlying the pathological 
processes during CC cell invasion and metastasis to distant 
sites through lymph nodes. Furthermore, we have enumer-
ated the somatic deregulation of key genes associated with the 
metastatic phenotype and their potential in preventing invasion 
and metastasis in CC. Hence, this study will aid in identifying 
potential therapeutic determinants to develop better treatment 
strategies and to prevent CC invasion and metastasis.
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Etiology of CC metastasis

Dysregulation of cervical microbiome

It has been established that the cervicovaginal microbi-
ome dysbiosis in concert with HPV infection contributes 
to CC initiation [18, 27]. The immune system at the cer-
vical region of the uterus is governed by immunocompe-
tent cells located along the epithelial lining of the cervix 
[46]. A tight regulation of innate and adaptive immunity 
is established in this region through a balance of the equi-
librium between the ability to mount a rapid defensive 
immune response against invading microbial pathogens 
and tolerance toward commensal bacteria. During CC 
progression, these concerted cellular interactions are dis-
rupted leading to a compromised immune response, result-
ing in low-grade chronic inflammation associated with 
increased susceptibility to viral and bacterial infection in 
various CIN stages Fig. 1 [47].

Transition of the cervical epithelium to squamous 
intraepithelial lesions (SIL) and CC via high risk-HPV 
(HR-HPV) changes the microbial diversity with an 
increase in the abundance of Fusobacterium species [48]. 
The immunosuppressive microenvironment initiated by 
the HPV infection is inhabited by Sneathia and other 

Fusobacterium species as it progresses to SIL. Later in 
the CC stage, Fusobacterium necrophorum colonizes 
abundantly and supports CC progression by modulating 
the cytokine profile in the tumor microenvironment [48]. 
Rubinstein et al. [49] reported that F. nucleatum is associ-
ated with colorectal carcinogenesis through FadA adhesin-
mediated phosphorylation of E-cadherin, resulting in the 
internalization of E-cadherin together with FadA. This in 
turn stimulates the accumulation of β-catenin in the cyto-
plasm leading to the transcriptional activation of NF-κB 
signaling and hence promoting tumor cell proliferation. 
Currently, there is no conclusive evidence supporting the 
role of microbiome dysbiosis in CC metastasis. There-
fore, further research is needed to obtain adequate knowl-
edge about the spectrum of the cervical microbiome and 
its molecular determinants to envisage preventive and 
curative strategies for CC cell migration, invasion, and 
metastasis.

Metastatic hallmarks

Metastasis is a long evolutionary multistep process that initi-
ates the dissemination of cancer cells. Most of the cells fail 
to develop into a fully-grown tumor at another site, while 
some stay alive but fail to produce any detectable clinical 
manifestations and few cells initiate metastasis by evading 

Fig. 1  The role of cervical epithelial cells in balancing the equilib-
rium of the local immune system. Cervical microenvironment and the 
local microbial diversity alter local and systemic immune response, 
which play an important role in the progression of CIN toward CC. 
Lactic-acid-producing bacteria acidify the vaginal milieu pH to 4.6 
during eubiosis, with lactic acid as the primary metabolite, thereby 

providing a non-inflammatory environment. The dysbiotic environ-
ment would have a lower redox potential during microbial vagino-
sis, a phenomenon that encourages the growth of a diverse bacterial 
species, resulting in the increased pH. Virulence factors produced by 
the diverse bacterial species undermine epithelial barrier integrity, 
degrade mucin, and create a pro-inflammatory milieu
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all the immune checks. It is highly unlikely that the entire 
process of metastasis is regulated by a single gene. The regu-
lation of metastasis involves activation and deactivation of 
various genes, and these alterations can be permanent or 
transient [50].

Several classes of genes have been identified, which are 
directly involved in metastasis including initiation of meta-
static phenotype, progression, and virulence [51]. Metasta-
sis-initiating genes help tumor cells to enter the circulation 
and promote cell motility, cell invasion, angiogenesis, and 
intravasation [52]. Further, metastasis-progression genes 
help in the colonization of primary tumor cells to a specific 
site by aiding its motility, invasion, circulatory survival, 
adhesion, and adaption to the new environment, as well as 
colonization [21]. On the other hand, metastasis-virulence 
genes play a role in colonization and impart aggressive-
ness to the tumor at the secondary site. These genes are 
rarely expressed at high levels in the primary tumors [53]. 
Recently, there is an increased focus on targeting specific 
pathway(s) involved in tumor growth and survival in the con-
text of cancer treatment. Dysregulated activation of genes 
for the Wnt/ β-catenin pathway (NEK-2 [54], NUSAP1 [55], 
MAGE-A3 [56]), PI3K/AKT signaling pathway (FAM83A 
[57], FAM83H [58], AKIP1 [59], KLF1 [60], FBLN-3 [61], 
TRIP4 [62], FERMT2 [63], SHP2 [64], RRM2B [65], LHPP 
[66]) and NF-κB signaling pathway (HN1 [26], FABP5 [67], 
IFI16 [68]) as presented in Table 1, is observed in CC and 
may contribute to cancer cell migration and lymph node 
metastasis.

Lymph angiogenesis: progression of cervical cancer 
metastasis

Microvascularization is an early regulation, which is inevi-
table during the gradual progression of CSCC. Numerous 
signaling cascades, which can be attributed to the dysregu-
lation of various genes, contribute majorly for the devel-
opment of angiogenesis and lymphangiogenesis, which is 
indispensable for the progression of CIN toward invasive 
CSCC. Pathological changes associated with tissue inflam-
mation or tumor progression are involved in the aberrant 
angiogenic and lymphangiogenic development, which is a 
prerequisite for the dissemination of the tumor to distinct 
sites [92, 93]. Hematogenous and lymphogenous spread of 
tumor cells are the two major routes well studied for can-
cer dissemination and are associated with poor prognosis. 
Although blood and lymph vessels share same origin, they 
have differences in their structure and function. Lymphatic 
vessels are derived from the vascular endothelium, whose 
formation is regulated by Prospero homeobox protein 1 
(PROX1), a lymphatic specific transcription factor [93, 94]. 
Association of PROX1 with COUP-TFII upregulates the 
vascular growth factor receptor-3 (VGFR-3) signaling by 

vascular endothelial growth factor-C (VEGF-C) and allows 
the migration of cardinal vein lymphatic progenitor cells to 
form primary lymphatic plexus at the adjacent mesenchyme. 
This migration of the progenitor cells is balanced by the col-
lagen and calcium-binding EGF domain1 protein. Lymph 
angiogenesis is then initiated via VEGF-C signaling [93]. 
On the other hand, angiogenesis is regulated by VEGF-A 
through VEGFR-1 and VEGFR-2 receptor signaling [95]. 
The lymphatic vessels have approximately threefold wider 
lumen than the blood capillaries, and the tumor cells prefer 
to disseminate through the lymphatic system due to the high 
levels of hyaluronic acid, which gives protection from the 
blood serum toxicity and provides a safe path for the migrat-
ing cells. The low flow rate of the lymph causes minimum 
shear stress to the cells, which makes it an energy-efficient 
mechanism for the evading cells. The lymph endothelial 
cells with a leaky arrangement on the surface of the lym-
phatic capillaries and lacking basement membrane will in 
turn support the easy migration of the tumor cells to their 
target sites [94]. Metastasized tumor cells will have addi-
tional traits such as mutations and genetic heterogeneity to 
overcome the lymphatic barrier. Analysis of the tumor driver 
genes and their associated mutations are highly correlated 
with cell survival, cell fate, and maintenance of genome 
[96]. Genetic heterogeneity due to the unstable genome of 
the subpopulations of cells can expand and cope in adverse 
environment and affect tumor evolution. Genetically modi-
fied subpopulations can entirely suppress the growth of pri-
mary clones imparting resistance to therapy and immune 
checks [97]. In most solid tumors, metastasis through the 
lymphatic system is observed in the early stage where the 
infiltrated tumor cells can either migrate to different sites or 
remain dormant in the lymph vessel.

Molecular determinants of lymphatic dissemination 
in CSCC

The role of lymph node in CC is recognized and is included 
in the examination of lymph node metastasis (LNM) for 
staging the CC by the International Federation of Gynae-
cology and Obstetrics (FIGO) classification in 2018. Occur-
rence of LNM in the pelvic region reflect stage IIIC1 while 
that in para-aortic region reflect stage IIIC2 [98, 99]. CC is 
mainly known to metastasize utilizing three main routes—
direct invasion into the neighboring tissue, hematogenous 
dissemination, and lymphatic dissemination [5]. Pelvic 
and para-aortic lymph nodes are the first sites for tumor 
draining and nodal metastasis in CC [100, 101]. Further, 
high lymphatic vessel density (LVD) with elevated levels 
of lymphangiogenic factors such as VEGF-C and VEGF-D 
are identified in pre-invasive neoplasia (CIN3) [5, 102–104]. 
VEGF, an angiogenic factor with well-established prognostic 
value in gynecologic cancers [105], is overexpressed in early 
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Table 1  Major signaling pathways and genes reported in CC metastasis

No. Gene/protein Status Role Pathway Mechanism References

1 NEK2 Upregulation Oncogene Wnt/β-catenin signaling Lymph node metastasis [54]
2 NUSAP1 Upregulation Oncogene Wnt/β-catenin signaling Migration, EMT [55]
3 MAGE-A3 Upregulation Oncogene EMT and Wnt signaling Cell proliferation, migration and 

invasion
[56]

4 HSDL2 Upregulation Oncogene EMT signaling, Lipid metabolism Cell proliferation, migration and 
invasion

[69]

5 RACK1 Upregulation Oncogene EMT signaling Cell migration, invasion, lym-
phatic tube formation, lym-
phangiogenesis and lymph node 
metastasis

[70]

6 CD36 Upregulation Oncogene EMT signaling Metastasis and Invasion [72]
7 BCAR4 Upregulation Oncogene EMT signaling Cell proliferation, migration and 

invasion
[73]

8 ICAT Upregulation Oncogene EMT signaling Cell proliferation, migration and 
invasion

[74]

9 FAM83A Downregulation Tumor suppressor PI3K/AKT and TNF signaling Inhibition of cell migration and 
invasion

[57]

10 FAM83H Upregulation Oncogene PI3K/AKT signaling Cell proliferation, colony forma-
tion, migration, and invasion

[58]

11 AKIP1 Upregulation Oncogene PI3K/AKT/IKKβ signaling Cell proliferation, metastasis, 
EMT

[59]

12 KLF1 Upregulation Oncogene PI3K/AKT signaling Cell proliferation, metastasis and 
invasion

[60]

13 FBLN-3 Upregulation Oncogene PI3K-AKT-mTOR signaling Cell invasion [61]
14 TRIP4 Upregulation Oncogene PI3K/AKT and MAPK/ERK 

signaling
Cell migration, invasion, Reduced 

radiosensitivity
[62]

15 FERMT2 Downregulation Tumor suppressor AKT/mTOR signaling Inhibition of cell migration, 
Autophagy induction

[63]

16 SHP2 Upregulation Oncogene AKT signaling Lymph node metastasis, cisplatin 
resistance

[64]

17 RRM2B Upregulation Oncogene AKT signaling Cell migration, invasion, metasta-
sis and tumor progression

[65]

18 LHPP Downregulation Tumor suppressor AKT signaling Inhibition of cell proliferation, 
metastasis and apoptosis induc-
tion

[66]

19 OLFM4 Downregulation Tumor suppressor mTOR signaling Inhibition of EMT, migration, and 
invasion

[75]

20 HN1 Upregulation Oncogene NF-κB signaling Migration, invasion, and lym-
phangiogenesis

[26]

21 FABP5 Upregulation Oncogene Intracellular induced NF-κB 
signaling

EMT, lymphangiogenesis, Lymph 
node metastasis

[67]

22 IFI16 Upregulation Oncogene STING-TBK1- NF-κB signaling Cell migration and invasion [68]
23 CXCR7 Upregulation Oncogene CXCL12/CXCR7 signaling Cell proliferation and invasion [76]
24 PBK Upregulation Oncogene ERK/c-Myc signaling Cell invasion and migration [77]
25 RAP2B Upregulation Oncogene ERK1/2 signaling Cell proliferation, migration, inva-

sion and metastasis
[78]

26 SND1 Upregulation Oncogene SND1-induced FOXA2 ubiquit-
ination

Cell migration, invasion and EMT, 
Lung metastasis

[79]

27 SEMA4C Upregulation Oncogene TGF-β1-induced p38 MAPK 
activation

EMT induction, invasion and 
metastasis

[80]

28 SIRT3 Upregulation Oncogene Fatty acid metabolism Cell migration and invasion [81]
29 NSD2 Upregulation Oncogene TGF-β1/ TGF-βRI/ SMADs 

signaling
Cancer progression and metastasis [82]

30 ZFP42 (REX1) Upregulation Oncogene JAK2/STAT3-signaling Metastasis, EMT induction [83]
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stage of CSCC and is positively correlated with microvessel 
density (MD) at the early stage of CSCC. This suggests the 
role of VEGF as a potential marker for developing benign 
tumor to an invasive state. VEGF is also linked to the inci-
dence of LNM of CSCC [106, 107]. Studies have also shown 
that hypoxia-induced transcription factor (HIF-2α) with its 
increased expression in association with VEGF reduces the 
patient survival rate in CSCC. This correlation between 
HIF-2α and VEGF was clearly observed in tissue samples 
with high FIGO stages of LNM [108]. VEGF activation can 
also be mediated by the guanine nucleotide exchange fac-
tor (GEF) NET1 in CSCC without influencing MMP2 and 
MMP9 expression. NET1-mediated activation of RHOA, 
FAK, JNK, NF-κB and Wnt signaling was observed during 
the initiation and progression of various cancers. Among 
the risk factors, LNM indicates poor prognosis at early or 
late stages of CSCC [109] and higher the risk of recurrence. 
Similarly, along with VEGF expression, metabolic param-
eters such as total lesion glycolysis (TLG) are significantly 
higher during lymphatic metastasis of CSCC. Therefore, 
combined evaluation of the TLG and VEGF may help in 
predicting the LNM [110].

The receptor for activated C kinase 1 (RACK1), a 
scaffold protein overexpression in CC, showed increased 
ability for lymph node metastasis. HPV16/18 proteins 
E6 and E7 have shown significant association with the 
upregulation of RACK1 in CC with an increased expres-
sion of N-cadherin and SNAIL and downregulation of 
epithelial markers such as E-cadherin and ZO-1 [70]. E6 
stabilizes RACK1 through O-GlcNAcylation at Ser122 
and promotes tumor invasion and metastasis by inhibiting 
miR1275, which inhibits LGALS1 gene that encodes galac-
tin1. Therefore, inhibition of miR-1275 increases galac-
tin1 expression, which in turn activates MEK/ERK, FAK 
and AKT signaling involving integrin-β1 and promotes 
LNM in CSCC [70, 71]. Previous evidence has shown that 
the galectin1 activates NRP1 signaling to phosphorylate 

VGFR2 during endothelial vascular cell migration and 
angiogenesis [111]. Additionally, the activation of miR-
221-2p is also positively correlated with LNM through 
the downregulation of THBS2 protein [112]. The enriched 
expression of miR-221-3p found in CSCC-secreted 
exosomes inhibits the expression of VASH1 by lymphatic 
endothelial cells and induces lymph angiogenesis and 
LNM. The increased density of peritumoral lymphatic ves-
sel density (PLVD) than MVD indicates that CSCC prefers 
lymphatic mode of metastasis than hematogenous dissem-
ination. miR-221-3p also increased the phosphorylation 
of AKT and ERK1/2 proteins independent of VEGF-C, 
demonstrating that miR-221-3p—VASH1 axis share com-
mon pathway with VEGF-C in lymphatic vessel sprouting 
and metastasis [113]. This indicates that miR-221-3p is 
involved in context-dependent activation of microvessel 
development. The molecular changes in the tissue biopsy 
show an upregulation in EMT-inducing transcription fac-
tors TWIST1 and SNAIL in association with metastasis 
and lymphovascular space invasion (LVSI) Fig. 2 [114]. 
Further, studies have correlated the expression of lncRNA 
with cellular invasion in CC, which explains their poten-
tial role as a biomarker for cancer metastasis. Mining the 
lncRNA profile of human cancer revealed 234 lncRNAs 
associated with pelvic lymph node metastasis (PLNM). 
Among these lncRNAs, MIR100HG and AC024560.2 are 
highly associated with the deregulation of gap junction 
proteins. The aberrant expression of gap junction proteins 
assists LNM in ductal breast cancer, oral SCC and ovar-
ian adenocarcinoma. Validating the expression of these 
lncRNAs in CC tissues may provide promising evidence 
for their diagnostic potential at an early stage [121]. 
Another study by Shang et al. [127] demonstrated the role 
of lncRNA regulation in fatty acid metabolism and tumor 
metastasis in cancer stem cells (CSCs). Reprogramming 
of fatty acid metabolism by lncRNAs mediated through 
FABP5 in CC activates VEGF-C and promotes LNM.

Table 1  (continued)

No. Gene/protein Status Role Pathway Mechanism References

31 CSN6 Upregulation Oncogene Autophagic degradation of CTSL Cell migration and invasion [84]
32 S100A7 Upregulation Oncogene RAGE mediated ERK signaling Migration, invasion, Metastasis 

and EMT induction
[85]

33 TRIO Upregulation Oncogene RhoA/ROCK signaling Cell migration and invasion [86]
34 SH3BP1 Upregulation Oncogene SH3BP1/Rac1/Wave2 signaling Invasion, migration, and chemore-

sistance
[87]

35 YB-1 Upregulation Oncogene YB-1/SNAIL/epithelial-mesenchy-
mal transition axis

Cell invasion, EMT induction [88]

36 EZR Upregulation Oncogene – Cell migration and invasion [89]
37 EHMT2 Upregulation Oncogene – Cell proliferation, adhesion and 

invasion, Apoptosis induction
[90]

38 ZAC1 Upregulation Oncogene – EMT induction, Migration [91]
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Tumor microenvironment in lymphatic 
dissemination of CSCC

Tumor-associated macrophages (TAMs), matrix metallo-
proteinases, interleukin-2 (IL-2) and TGF-β present in the 
microenvironment are the key factors involved in lymphatic 
dissemination [115–119]. Oany et al. [120] reported the 
upregulation of immune and inflammatory response genes 
in CC. High percentage of protein tyrosine phosphatase 
receptor-type  C+  (PTPRC+) cells in cervical tumor are asso-
ciated with enhanced tumor-infiltration by T-BET+ cells and 
 FOXP3+ cells [120]. In addition, the tumor microenviron-
ment participates in tumor dissemination by increasing the 
permeability of the endothelial barrier of the lymphatic ves-
sels [106]. Recently, research has advanced in elucidating 
the role of cancer associated fibroblasts (CAFs) in tumor 
progression. Reconstitution of CAFs enables the non-met-
astatic tumor to undergo proximal LNM in CC cells co-
transplanted in athymic mice [122]. Wei et al. [124] dem-
onstrated that the metastasis of CSCC to the lymph node 
is highly influenced by the subpopulations of CAFs in the 
tumor microenvironment. They have identified a specific 
subset of CAFs with elevated periostin expression, which 
activates integrin αvβ3 and αvβ5 signaling and triggers the 
phosphorylation of FAK (Tyr397) and SRC (Tyr416) that 
results in the direct degradation of VE-cadherin. These may 
breach the endothelial barrier and establish LNM in CSCC. 
Therefore, identifying protumorigenic CAFs and targeting 
the FAK-SRC axis could form an efficient target for the 
prevention of tumor metastasis [124]. Another important 
factor associated with lymph metastasis is the extracellular 
matrix (ECM) remodeling. ECM component includes net-
work of collagen, fibronectin, laminin, elastin and proteo-
glycans, which provide structural and mechanical stability 

to the tissue and regulate the availability of cytokines and 
growth factors in the microenvironment. In CSCC, HPV E6/
E7 modulates carcinogenic process by regulating the ECM 
protein CTHRC1 and upregulating its expression in CC 
tissue. E6/E7 expression activates POU2F1 by inhibiting 
p53, which in turn activates CTHRC1-mediated Wnt/PCP 
signaling pathway and promotes cancer cell migration and 
invasion [125]. Studies have also showed that overexpres-
sion of MMP-2 (gelatinase A) and MT1-MMP (collagenase) 
by HPV16 E6/E7 facilitates ECM degradation and cancer 
invasiveness [126].

Immune evasion of CSCC in LNM

Primary lesions disseminate into the lymphatic drainage 
through sentinel lymph node (SLN) [128]. The migratory 
antigen-presenting macrophages or dendritic cells activate 
 CD8+T cells in lymph node tumor-draining site, which pro-
vides first line of defense [128–130]. However, developing 
tumor cells target tumor-draining lymph nodes (TDLNs) 
to create a pre-metastatic niche with suppressed immune 
response, harboring dysfunctional anti-tumor T cells [131]. 
The increase in the level  CD1a+ dendritic cells at the TDLN 
provides evidence that dendritic cell maturation is inhibited 
at the lymph node by tumor-derived growth factors, such as 
prostaglandin-E2 (PGE2), TGF-β, IL-6, and VEGF [128, 
132–136]. Further, blood vessel remodeling, lymphangi-
ogenesis, and increased chemokine and cytokine secretion 
alter the immune cell composition and give rise to a ‘tumor-
supportive’ microenvironment [131]. Moreover, high Treg 
counts along with increased cytokine release and a consist-
ent immune suppressive microenvironment were observed 
with high levels of TNF-α, IL-6, IL-10 and reduced IFN-γ 
expression [128]. Metastasis was preceded by low  CD8+T 

Fig. 2  Illustration show-
ing the molecular signaling 
mechanisms by which CSCC 
undergoes epithelial–mesenchy-
mal transition, lymph angio-
genesis, and metastasis via the 
lymphatic system
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cell/FoxP3+Treg ratios, creating pre-metastatic niches in 
the tumor-draining lymphatic basin [137]. The recruit-
ment [138] and polarization of  CD14+ monocytes into the 
suppressive PD-L1+M2-like macrophages (co-expressing 
CD14 and/or CD163) by primary tumor cells (possibly via 
the secretion of CCL2) prevent the antigen presentation 
and immune response in the lymphatic niche [139]. These 
M2-macrophage-like cells are not only incapable of gener-
ating proper  CD8+ T cell responses but favor Treg expan-
sion, and facilitate the production of pro-angiogenic and 
pro-tumor-invasive factors [128, 140, 141]. Elevated rates 
of Tregs and CD4/CD8 T cell ratios were observed prior 
to metastatic involvement in cervical TDLN [142]. As the 
metastasis progresses in TDLN, myeloid regulatory cells 
and memory T cells accumulate resulting in the release of 
exosomes carrying immune modulatory elements and solu-
ble mediators, leading to “tumor-supportive” microenviron-
ment [131, 142, 143]. The accumulation of Tregs inhibits 
lymph node-resident conventional dendritic cell (LNR-cDC) 
activation causing the conversion of Ag-specific naive T 
cells into Tregs in TDLN [143, 144].

Transcriptomic analysis of CC data from The Cancer 
Genome Atlas (TCGA) by Yang et al. [145] suggested the 
association of LNM with upregulation of immune biomark-
ers. In high-risk group, LNM was associated with FABP4 
and CXCL2 upregulation, while TEKT2 and LPIN2 were 
downregulated [145]. Upregulation of FABP4 promotes 
EMT by activating AKT pathway [146], whereas CXCL2 
promotes tumor growth and angiogenesis via NF-κB signal-
ing [147]. Expression of CXCL2 is positively correlated to 
the neutrophil activation and poor prognosis. Additionally, 
the expression of PD-L1 was upregulated in high-risk group 
and promotes CC metastasis to the lymph node [69, 148]. 
PD-L1 is characterized for its role in masking the tumor cells 
by binding to the PD-1 receptor expressed on the T cells and 
inhibiting immune response, thereby creating an immuno-
suppressive microenvironment [149]. PD-1 phosphorylates 
and activates PD-L1-integrinβ4 (ITGB4) signaling path-
way followed by the activation of AKT-GSK3 pathway. 
This results in the upregulation of SNAI1 and MMP1 and 
decrease in the cytokine production [150]. The PD-L1-inte-
grin axis also increases the glucose metabolism and tumor 
cell proliferation through SNAI1-mediated downregulation 
of SIRT3 in CC [148], suggesting that the reprograming of 
Warburg effect is essential for the tumor cell dissemination.

Migration and colonization of CSCC to distinct 
organs

According to the SEER database analysis from 2010 to 
2015, there are four major sites for CC metastasis. Lungs 
are the usual site of metastasis and colonization with a rate 
of 56% followed by liver with 16%, bone with 23%, and 

brain with 2% [151]. Cox multivariate analysis of the patient 
data obtained from SEER database confirm that increasing 
age, non-squamous type, advanced stage, metastasis through 
pelvic lymph node and poor differentiation are risk factors 
for lung metastasis [152]. It was reported that the pulmonary 
metastasis occurs heterogeneously and in most of the cases 
the patients are asymptomatic [152, 153]. Studies on the 
metastatic niches of CC in large population showed lungs 
as the most usual site for colonization. Major challenge is 
to differentiate lung SCC from metastasized CSCC. It is 
reported that HPV modulates p16 upregulation and sup-
presses pRB-E2F signaling by inhibiting CDK4 cyclin-
dependent kinase. In CSCC, p16 expression is relatively 
higher than pulmonary SCC as it is upregulated by HPV 
infection [153, 154]. Therefore, along with p16 expres-
sion, the presence of HPV DNA is used for differentiating 
the metastasized SCC from the lung SCC [154]. When the 
malignant tumor cells enter metastasis, the surviving cells 
may infiltrate to the distant organs. These infiltrated cells 
relapse at their new niche, eventually proliferate to form 
tumor, and distort the function of the host organ. Coloniza-
tion of the host organ is the slowest step of tumor dissemina-
tion, and there is no adequate reference for the mechanism 
by which CSCC infiltrate to its distant organs. But recent 
advances in the technologies to access the detailed insight 
of the CTCs help to conceptualize the triggers for organ 
infiltration [155]. CTCs modify the chemokine gradient for 
tumor invasion and colonization. This invasive front is com-
prised of myeloid progenitor cells, TAMs, CAFs and newly 
formed blood vessels [156] along with Notch, Wnt, TGF-β 
and cytokines signaling [157].

Cytokine–chemokine gradient driving tumor 
invasion to host niche

Disseminating tumor cells (DTCs) migrate as single cells or 
as a group. The success in the establishment of tumor metas-
tasis depends on the ability of CTCs to overcome various 
hindrance in the hematogenous or lymphogenous pathways. 
Emerging studies have shown that collective migration of 
the metastatic cells has higher invading ability and success-
fully establishes tumor migration to distinct organs. They 
move in clusters possessing strong adhesion along with the 
tumor microenvironment, which may provide resistance 
toward clinical interventions [155, 158, 159]. Recently, 
Pein et al. [159] demonstrated the role of metastasis-asso-
ciated fibroblasts (MAFs) in migration and colonization of 
breast cancer cells to the lungs by modulating the expres-
sion of chemokines. For the evolution of a supportive niche 
in the lungs, migrating breast cancer cells secrete inter-
leukins IL-1α/β. Additionally, they also observed a subset 
of lung fibroblasts that expresses CXCR3, which binds to 
CXCL9/10. The secreted interleukins induce chemokines 
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CXCL9/10 in the MAFs via NF-κB signaling. CXCL9/10 
fuel the proliferation and metastatic outgrowth in lungs by 
activating the MAFs and support the colonization of CTCs 
in the lungs [159]. Chemotactic signals modulate the interac-
tion of the cancer cells within the cluster and its migration 
into host organ. Another study on the role of CXCL17 in 
the lung metastasis of the breast tumor cells provides addi-
tional evidence to substantiate the chemokine facilitation of 
tumor dissemination. CXCL17 induces accumulation of the 
 CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) 
in the lungs and promote tumor angiogenesis and extrava-
sation of cancer cells to the lungs through the overexpres-
sion of PDGF-BB [160]. These explain the engagement of 
chemotactic signals in the colonization of primary tumors 
and could be the possible mechanism supporting CC metas-
tasis and colonization in pulmonary tissue. Another study 
demonstrated that the overexpression of NRAS in the CTCs 
promote lung colonization by IL-8 mediated the expression 
of CXCL5 and pro-platelet basic protein (PPBP). These fac-
tors may target the CXCR1 receptor of pulmonary blood 
vessel and facilitate the adhesion of the tumor cells to the 
lung vasculature as well as the recruitment and homing of 
CXCR2 receptor-expressing myeloid cells to the microen-
vironment. Thus, chemokine secretion-mediated activation 
of CXCR1/2 receptor at the metastatic site helps the CTCs 
to form pre-metastatic niche in the lungs [161].

The incidence of bone metastasis in CC is relatively rare 
and increases with the advanced stage. Previously, Matsuy-
ama et al. [162] reported the association of bone metastasis 
of CC with its clinical stages among stage I (4%), stage II 
(6.6%), stage III (8%) and stage IV (22.9%) [162] of bone 
metastasis with high frequency to the lumbar spine and to 
the pelvic bones [162, 163]. A case report of 70-year-old 
women with FIGO stage IIIA also showed metastasis within 
fibula, calcaneum and right tibia [164]. The ECM composi-
tion of the bone favors the cancer cells to colonize and pro-
liferate in the bone as it tightly controls the bone remodeling. 
The major organic component of bone ECM is collagen1, 
which is involved in providing bone strength and stiffness 
[165] and also supports survival, proliferation and differ-
entiation [166]. The accumulation of collagen type I at the 
pre-metastatic niche of the host organ distorts the alignment 
of ECM and supports the colonization of CTCs [165, 167]. 
Like the lung colonization of breast cancer cells, chemotac-
tic paracrine signaling of CXCL5 induces bone metastasis 
via activation of CXCR2 receptor on the bone marrow [168]. 
Primarily, chemokine gradient produced by the CTCs shapes 
the tumor microenvironment at the host pre-metastatic niche, 
promoting angiogenesis and recruiting antitumoral leuko-
cytes, TAMs and MDSCs to support the metastatic invasion 
of host site. The studies have shown that the secretion of 
endothelin-1 by the circulating breast cancer cells modulates 
TGF-β production in osteoblast leading to bone metastasis 

[169]. The metastasis of cervical cancer directly to the brain 
is a rare occurrence [170, 172]; instead, spreading of the 
tumor cells to the lungs as it is the most common site and 
subsequently to the brain is observed [170]. Another possi-
ble pathway for dissemination is from the pelvic veins to the 
vertebral venous plexus and then to the brain parenchyma 
via the venous sinus of the brain [171].

Liver metastasis was found to be significantly correlated 
to brain, lung and bone metastasis, as liver has rich blood 
supply from portal as well as arterial venous system making 
cancer cells to spread easily [173]. The incidence of liver 
metastasis is equally low, accounting for only 1.2–2.2 per-
cent of all cases and only 5% of the case developed hepatic 
metastasis alone without any extrahepatic comorbidity 
[174]. The liver metastasis occurs later in the progression of 
primary CC; thus, early surgical excision of primary lesions 
can successfully prevent hepatic metastasis [175]. Current 
understanding on the mechanism of distinct organ metastasis 
by CC cells is very limited. Further studies are warranted to 
establish the characteristic features associated with CTCs 
of CSCC and its colonization and will help to unravel the 
mechanisms promoting CC cell migration and colonization.

Genetic and epigenetic features in cervical cancer 
metastasis

Initiation and development of CC is a complex process [8]. 
Although HPV infection is the critical determinant for the 
risk of developing CC, not all women infected with HPV 
develop CC. Host genetic variants and environmental fac-
tors also add to the risk towards the susceptibility to CC 
[176]. Further, the genomic and epigenomic profiling of CC 
at different stages along with the gene expression analysis 
supports the role of these events in CC initiation, progres-
sion, invasion and metastasis [9, 10]. Hence, comprehensive 
genomic and epigenomic land scape of CC can help in strati-
fication of affected individuals and may facilitate effective 
treatment strategies [10].

Genetic predisposition in cervical cancer

A large number of genetic variations are observed in CC, 
and the burden of variations increases with high grade and 
severity of the disease [9]. The genetic variations observed 
in cancer may be the germline that predispose individual 
for risk of CC [179]. Previous candidate gene-based studies 
reported polymorphisms in genes associated with immune 
response [human leukocyte antigen (HLA), tumor necrosis 
factor-α (TNF-α), interferon-γ (IFNG), cytotoxic T-lym-
phocyte antigen-4 (CTLA- 4), interleukins (IL-1β, IL-12β, 
IL-10)]; pathogen gene response [Toll-like receptor (TLR2, 
TLR3, TLR4, and TLR9]; DNA repair or cell cycle [ATM, 
BRIP1, CDKN1A, CDKN2A, FANCA, FANCC, FANCL, 



2590 Molecular and Cellular Biochemistry (2023) 478:2581–2606

1 3

XRCC1, XRCC3]; apoptosis (FAS, FASL, CASP8, TP53, 
MDM2); antigen-processing gene (LMP, TAP, ERAP); xeno-
biotic metabolism, and other processes are associated with 
CC susceptibility [177]. With the advent of high-throughput 
technologies, genome-wide association studies (GWAS) 
have been conducted across the population of different 
ethnicity, and multiple CC susceptibility loci have been 
identified that overlap among the different populations. The 
most significant loci are 6p21.3 [HLA locus]; 2q13 (PAX8), 
5p15.33 (TERT-CLPTM1L), and 17q12 (GSDMB). Poly-
morphisms in ARRDC3, INS-IGF2, SOX9, TTC34, ACACB 
have also been associated with a risk of developing CC; 
however, this remains to be validated [176, 178]. Several 
of these polymorphic genes are potential candidates for 
immune evasion in distant sites and hence have the ability 
to promote metastasis.

Although mutations are prevalent in CC, only a few can 
act as driver mutations, which are expected to initiate and 
promote growth, and these are common mutations identified 
in cancer invasion and metastasis [9]. Additionally, HPV 
infection can result in increased mutational spectrum [41]. 
Furthermore, when metastasized to unrelated lineage micro-
environment, the tumor cells can acquire new mutations [9], 
which are genotypically favorable for malignant cells [180]. 
Genomic profiling of CC patients reported frequent mutation 
in EP300, MUC4, MUC16, SYNE1, KMT2C, PIK3CA, FLG, 
KMT2D, DST, MAPK1, and TTN [10]. Also, the mutation 
signatures depict DNA mismatch repair deficiency (COS-
MIC Signature 6), APOBEC cytidine deaminase (COSMIC 
Signature 2), and spontaneous deamination of 5-methyl 
cytosine (COSMIC Signature 1) pattern [10]. Integrated 
molecular profiling of primary and recurrent/metastatic CC 
from same individual reported elevated mutation burden and 
copy number alteration. Mutations in epigenetic regulators 
such as NSD1, ARID1A, CTCF, ARID1B, KMT2C, SETBP1, 
PBRM1, and KMT2D were specific to recurrent/metastatic 
CC [9]. APOBEC-related mutation signature along with 
reduced expression of APOBEC3A was also observed for 
recurrent/metastatic CC. Also, in some cases of CC, nuclear-
encoded sigma factor 6 (SIG6) mutation is associated with 
defect in mismatch DNA repair [9].

Epigenetic alterations in cervical cancer

Non-coding regions within the genome have a major impact 
on the progression of cancer. Deregulated expression of 
small miRNAs as well as lncRNAs and circRNAs has been 
associated with distinct stages of CIN and development of 
CC [11]. Specifically, miR-27a, miR-21, miR-34, miR-196a, 
and miR-34a are highly expressed in SCC [182, 183]. The 
dysregulation of miRNA expression, its role in CC patho-
genesis, invasion, and metastasis are well reviewed earlier 
[184–187]. Zhang et al. [1] reported that the downregulation 

of miR-320 upregulates MCL-1 leading to the progression of 
CC by evading apoptosis signaling [1]. Expression of miR-
320a is also correlated with the downregulation of FOXM1. 
However, circCLK3 sponges miR-320a, thus resulting in 
increased FOXM1 expression and significant promotion 
of cell metastasis in vitro as well as in vivo [194]. miR-
320a is also correlated with LNM [195]. Similarly, circS-
LC26A4 and circGSE1 promote CC progression through 
miR-1287-5p/HOXA7 axis and miR-138-5p/Vimentin, 
respectively [196, 197]. CircNRIP1 sponges miR-629-3p 
and promotes invasion and migration by regulation of 
PTP4A1/ERK1/2 pathway [198]. The HOX Antisense Inter-
genic RNA (HOTAIR), a lncRNA, inhibits p21 expression, 
regulates expression of MMP-9, VEGF and genes related to 
EMT, all of which are essential for migration and invasion of 
CC [5, 188]. Recently, eight lncRNA signatures, including 
LINC01990, RUSC1-AS1, LINC01411, H19, LINC02099, 
LINC00452, C1QTNF1-AS1, and ADPGK-AS1, involved 
in poor prognosis have been identified through an integrated 
multi-omics approach [189]. Additionally, constitutive 
expression of HPV16-E7 protein enhances the expression 
of lncRNAs such as CCEPR [191], MALAT1 [192], and 
TMPOP2 [193], thereby promoting CC progression and 
potentially aiding in metastasis.

Our bioinformatic analysis of TCGA data of CC revealed 
reduced expression of miR-28-5p in CC patient (unpub-
lished data). miR-28-5p is located at 3q27.3, which is fre-
quently gained in CC. The significant downregulation in CC 
could be due to circRNA ArfGAP with FG repeats 1 (cir-
cAGFG1), which binds to miR-28-5p and targets HIF-1α, 
thus promoting proliferation, invasion, and migration as 
well as suppression of apoptosis by escalating glycolysis 
through circAGFG1/miR-28-5p/HIF-1α axis as observed in 
non-small-cell lung cancer (NSCLC) [199]. Furthermore, 
lncRNA CDKN2B antisense RNA 1 (CDKN2B AS1) which 
is known to be upregulated in colorectal cancer has been 
reported to bind miR-28-5p in order to regulate proliferation 
as well as apoptosis inhibition [200]. Similar mechanisms 
of regulation may be evident in CC hence downregulation 
of miR-28-5p could promote CC progression and invasion. 
This evidence also suggests the intricate and interrelated 
regulatory pathways that exist for the suppression or the pro-
gression of CC [38, 45, 181, 201, 202].

Metastasis‑regulated differentially expressed genes

GSE26511 dataset from TCGA including 39 samples (20 
CC-lymph node-negative samples and 19 CC-lymph node-
positive samples) was analyzed by Ge et al. [204]. Approxi-
mately 1,263 genes were differentially expressed, and these 
genes were associated with signaling pathways, cell cycle 
processes, immune response, regulation of immune system 
processes, inflammatory response, and cell activation [204]. 
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In PLNM, p120-associated non-canonical β-catenin path-
way and TGF-β were important [204]. Further investiga-
tion of cancer-associated pathways revealed dysregulation 
of five pathways (NFAT, TGF-β, ALK, PAR1, and BAD) in 
CC-lymph node-negative samples, while CC-lymph node-
positive samples showed deregulated glycosphingolipid 
biosynthesis neolacto-series and β-catenin pathways [204].

Dataset analysis of 116 non-metastatic and 10 metastatic 
samples from “TCGA” indicated differential expression of 
transcription factor NR5A2 in metastatic tissue compared to 
non-metastatic tissue of CC [3]. Earlier, NR5A2 had been 
identified to contribute in developing CC during GWAS [10, 
205]. NR5A2 plays an important role in maintaining pluri-
potency in embryonic stem cells (ESCs) [206] and repro-
gramming of somatic cells into induced pluripotent stem 
cells (iPSCs) [207]. The genetic heterogeneity among the 
CC, recurrence and radio/chemotherapy resistance, tumor 
invasion and metastasis are attributed to the presence of 
CSCs [208, 209]. CSCs have self-renewal and multi-lineage 
differentiation abilities [210]. Significant and positive cor-
relation was observed between NR5A2 and vimentin [3]. 
Vimentin is the biomarker of EMT, which is the first step for 
invasiveness and metastasis [211]. EMT is characterized by 
the reduced expression of E-cadherin (epithelial marker) and 
increased expression of N-cadherin and vimentin (mesen-
chymal marker) [3, 212]. Thus, NR5A2 positively regulates 
vimentin and activates EMT signaling pathway in metastatic 
CSCC [3]. Transcription factors associated with EMT, such 
as SNAI (SNAI1 and SNAI2), ZEB (ZEB1 and ZEB2), and 
TWIST (TWIST1 and TWIST2), can suppress expression 
of E-cadherin and regulate the EMT through different path-
ways [213]. Matrix metalloproteinase-1 (MMP1) degrades 
ECM during both physiologically normal and disease pro-
cesses. In CC, it is upregulated and aids in cancer cell inva-
sion, migration and proliferation via EMT. MMP1 is closely 
linked with LNM [203, 214]. Differential gene expression 
analysis of primary and recurrent/metastatic CC from the 
same individual suggested upregulation of activated anti-
tumor immunity gene in primary CC and genes involved in 
EMT and angiogenesis in recurrent/metastatic CC. While 
CXCL9, SPEG, MUC21, and APOBEC3A were downregu-
lated, POSTN was upregulated in metastatic CC compared 
to primary tumor [9, 203].

We performed in silico analysis with the limma R pack-
age [216] for identification of differentially expressed genes 
(DEGs) in five datasets of metastatic cervical cancers depos-
ited in the Gene Expression Omnibus database [215]. Genes 
with common expression patterns in all the datasets were 
selected for subsequent analyses. The filtering threshold 
of p-value < 0.05 and logFoldChange > 1.5 for upregula-
tion, logFoldChange < -1.5 for downregulation was set as 
the standard filter. The genes that fall under the standard 
filter criteria were selected as DEGs. We have identified 

70 upregulated and 46 downregulated genes in at least two 
datasets. The overlapping DEGs identified in more than two 
of the selected datasets were extracted and represented in 
the UpSetR plot Fig. 3a with the UpSetR package [217]. 
Further, protein–protein interaction (PPI) network was con-
structed for the overexpressed Fig. 3b and downregulated 
genes Fig. 3c using Search Tool for the Retrieval of Interact-
ing Genes (STRING) [218]. Additionally, we have used the 
Maximal Clique Centrality (MCC) algorithm of CytoHubba 
[219] to identify the hub nodes in the co-expressed network. 
The densely interacting genes with a score ≥ 0.4 were filtered 
for the hub genes, and top 10 genes were identified based on 
the MMC score. Among the hub genes identified with a high 
MMC score, KRT6B, TGM3, ALOX12B, and CRCT1 were 
found to be upregulated Fig. 3d and DDX58, IFI44, OAS2, 
IFI44L, and IL15 Fig. 3e were downregulated in metastatic 
CC.

Further, the gene ontology study identified that the upreg-
ulated genes were primarily involved in protein binding and 
serine-type peptidase activity and the downregulated genes 
were involved in catalytic activity, localization, and immune 
response Fig. 4a, b. The functional enrichment analysis of 
the DEGs was performed for molecular function, biological 
process, and cellular component using g.Profiler tool [220] 
with a p-value cut-off score of 0.05.

When pathway analysis was performed on the DEGs from 
WikiPathways using EnrichR tool [221] with p-value > 0.05 
set as the cut-off, suggesting that the upregulated genes 
were significantly involved in Wnt signaling, chromosomal 
and microsatellite instability in colorectal cancer, apopto-
sis modification and signaling Fig. 5a. The downregulated 
genes showed association with the TGF-β signaling path-
way, host–pathogen interaction of human coronavirus-
interferon-induced pathways regulating Hippo signaling, 
MAPK and NF-κB signaling pathways Fig. 5e. Further, 
using NetworkAnalyst [222], we predicted host–microbiome 
protein–protein interactions based on the domain–domain 
binding from the MicrobioLink database [223]. Host–micro-
biome interaction analysis uncovered four upregulated genes 
among the DEGs, such as CNKSR3, CSNK1A1, EPHB3, and 
IL1R2, interacting with multiple microbial protein domains 
Fig. 5b and four downregulated genes, SPTBN1, CFI, DST, 
and SYT1 interacting with two microbial domains Fig. 5f. 
Mutations in CC dataset from TCGA were obtained for the 
DEGs and visualized using MAFTools [224]. The mutation 
frequency for the up- and downregulated genes is shown in 
Fig. 5c, d and Fig. 5g, h, respectively. The analysis revealed 
mutations in IDS, MAP4K4, COL4A2 and KHDRBS1 among 
the upregulated and, in SPTBN1 and DST among the down-
regulated genes Fig. 5i–n.

Protein expression analysis was performed for DEGs 
using Human Protein Atlas [225], revealing significant 
difference in the expression of IDS, MAP4K4, COL4A2, 
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KHDRBS1 in CC and normal cervical epithelial tissues 
Fig. 6. IDS encoding iduronate 2-sulfatase (ID2S) was over-
expressed in CC epithelial tissue compared to the normal 
tissue with an unknown mutation status. ID2S is primarily 
reported in mucopolysaccharidosis, and its association with 
the regulation of breast cancer metastasis has been reported 
[226, 227]. MAP4K4 is a threonine/serine kinase [228] that 
plays a significant role in a variety of physiological pro-
cesses, including embryonic development, immunological 
response, inflammation, insulin sensitivity, and metabolic 
diseases [229–232]. Overexpression of MAP4K4 is asso-
ciated with the activation of NF-κB and JNK signaling 
pathway and EMT induction in hepatocellular carcinoma 
(HCC) [233]. Studies have also shown that SOX6 is a down-
stream target of MAPK4 that triggers autophagy in CC and 
it functions through the inhibition of the PI3K-AKT-mTOR 
pathway and activation of the MAPK/ERK pathway [234]. 
MAP4K4 is reported as one of the potential metastatic genes 
in colorectal cancer metastasis [235] and CC [236]. Down-
regulation of MAP4K4 in cancer cell lines inhibits cell pro-
liferation and cell growth [237, 238], apoptosis induction 
[239, 240], and migration and invasion [241].

COL4A2 encodes type IV collagen and impacts cancer 
progression and pathogenesis. In HCC, COL4A1 overexpres-
sion promotes metastasis [242]. COL4A1 overexpression is 
positively correlated with dendritic cells and macrophage 
expression in CC [242]. Suppression of COL4A2 inhibits 
migration and proliferation in triple-negative breast cancer 
[243]. Elevated expression of KHDRBS1/SAM68 detected in 
CC tissues with pelvic node metastasis and was not found in 
normal tissues [244]. The RNA-binding protein (RBP), SRC 
associated in mitosis of 68 kDa (SAM68), is a member of 
signal transduction and activation of RNA (STAR) family. 
It contains a functional RNA-binding KH domain and binds 
to single-stranded nucleic acids. During mitosis, SAM68 is 
tyrosine-phosphorylated and associated with Src. The tyros-
ine phosphorylation mediates the interactions with SH2- and 
SH3-containing proteins. It participates in cell growth and 
differentiation [245]. SAM68 is reported to play a dual role 
in cancer, i.e., tumor suppressor as well as an oncogene. 
Under the influence of extracellular stimuli, the level of 
SAM68 expression and phosphorylation influences tumor 

progression. For example, SAM68 phosphorylation inhib-
ited cell proliferation induced by breast tumor kinase (BRK) 
[246]. SAM68 expression is elevated in CC, and its cytoplas-
mic location is linked to LNM. EMT induction is mediated 
via AKT/ GSK-3/SNAIL when SAM68 is downregulated, 
indicating its oncogenic function in cervical cancer [244]. 
Further, SAM68 expression levels were elevated in non-mel-
anoma skin cancer tissue samples, and the increased expres-
sion was associated with enhanced growth and proliferation 
of A431 cells, while knocking down of SAM68 in malignant 
keratinocytes increases the sensitivity to DNA damage and 
decreases tumor burden [247].

SPTBN1 is a member of the β spectrin family and is 
important for the stability of lateral membrane. It also func-
tions as a TGF-β adaptor protein and modulates Smad com-
plex [248]. SPTBN1 has been associated with several malig-
nancies, and its expression varies according to the stage and 
type of cancer. SPTBN1 expression decreased significantly 
with the progression of epithelial ovarian cancer. The 
decreased expression resulted in cell proliferation, migra-
tion, and increased vimentin expression [249]. It inhibited 
the progression of ovarian cancer via the JAK/STAT3 path-
way. Its expression was much lower in more invasive ovarian 
cancer cell lines, suggesting that it may play a role in tumor 
aggressiveness [249]. Further, the BAP31/SPTBN1 complex 
was found to regulate CC progression via the TGF-β/ SMAD 
signaling pathway under the regulation of miR-362 [250]. In 
primary breast cancer tissues, the SPTBN1 expression was 
shown to be considerably downregulated as compared to 
normal, and it was identified to be a potent inhibitor of EMT 
and breast cancer progression [251]. Similarly, SPTBN1 is 
downregulated in HCC and loss of its expression stimulates 
Wnt signaling, thereby promoting the acquisition of stem 
cell-like characteristics, and eventually, contributing to the 
growth of malignant tumors [252].

Further, analysis from two datasets (GSE6791 and 
GSE9750), various isoforms of kallikreins (KLKs) -KLK8, 
KLK7, KLK10) were found upregulated in metastasized 
CC. Kallikrein (KLK) proteins are a subgroup of serine 
proteases. KLKs play an important role in carcinogenesis 
by altering cell proliferation, EMT, compromising oxygen 
balance, and degrading ECM. They also allow tumor cell 
detachment by infiltrating through ECM barriers and pro-
moting metastatic dissemination [253]. Kallikrein-related 
peptidase 8 (KLK8) is one such protein that has been iden-
tified to be highly expressed in cervical, ovarian and endo-
metrial cancers, indicating that it could be a viable target for 
therapy [254, 255]. KLK8 induced colorectal cancer devel-
opment by triggering EMT [256]. The wound healing and 
Transwell migration assays revealed that KLK8 promoted 
cell proliferation, invasion and metastasis [256]. The upregu-
lation was also associated with metastasis of head and neck 
SCC to cervical lymph nodes [257]. Further, it was identified 

Fig. 3  Differential gene expression and pathway analysis a An 
UpSetR plot of DEGs between metastatic and non-metastatic 
CC tissues retrieved from GEO database (DEGs; with log-fold 
change > =|1.5| and p-value <  = 0.05 cut-off) across five CC stud-
ies, b Protein–protein interaction network of the upregulated genes, 
c protein–protein interaction network of the downregulated genes, d 
top 10 hub genes upregulated in metastatic CC, e top 10 hub genes 
downregulated in metastatic CC. The hub genes are identified by the 
highest number of connections in the network. The color scale ranges 
from yellow (fewer interacting) to red (higher interacting) indicating 
the relative importance of the hub genes

◂



2594 Molecular and Cellular Biochemistry (2023) 478:2581–2606

1 3

Fig. 4  Functional enrichment analysis between metastatic and non-
metastatic genes in CC a GO terms identification on the upregulated 
genes in molecular function, biological process and cellular compo-

nent, b GO terms identification on the downregulated genes in molec-
ular function, biological process and cellular component
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to be significantly downregulated in breast cancer tissues 
[258]. Though the mechanisms of metastasis progression 
are not fully understood, it can degrade collagen type IV and 
fibronectin, both of which are required for cancer invasion 
and metastasis [259].

In CC tissues and serum, kallikrein 7 (KLK7) levels were 
reported to be higher, both of which are associated with 
tumor growth, invasion and metastasis [260, 261]. KLK7 was 
found to be regulated by histone modifications and promoter 
methylation. Trichostatin A (TSA) enhanced KLK7 expres-
sion in cervical and pancreatic cancer cell lines, and the 
transcription factor specificity protein 1 (SP1) supported the 
effect of TSA on KLK7 by transcriptional activation [262]. 
KLK7 facilitates various processes involved in cancer, such 
as cell growth, proliferation, migration, angiogenesis via 
hydrolyzing cytokines, ECM, and membrane proteins [263]. 
Overexpression of KLK7 in pancreatic cancer was associ-
ated with urokinase-type plasminogen activator receptor 
(uPAR), which inhibited cellular adherence to vitronectin 
[264]. Further, in melanoma, KLK7 overexpression inhibited 
cell adhesion by lowering integrin expression and inducing 

spheroid formation by increasing MCAM/CD146 expression 
[190]. The expression in oral SCC was similarly shown to 
increase as the malignancy progressed from stage I to stage 
IV [265]. The brain cancer cells also showed high KLK7 
expression, which significantly induced the invasion and 
metastasis [266].

KLK10 is another member of serine protease family 
closely related to glandular kallikreins [267]. The gene was 
found to be downregulated in breast and prostate cancer 
cell lines, and tumor growth was inhibited in vivo upon its 
overexpression, indicating its tumor-suppressor function 
[268]. Its expression is regulated via CpG hypermethyla-
tion in ovarian, breast, prostate cancer as well as in acute 
lymphoblastic leukemia [269, 270]. Further, overexpression 
of KLK10 reduced the proliferation and invasive potential 
of tongue cancer cells [271]. Metastasis-associated protein 
2 (MTA2) has been linked to metastasis and tumor growth. 
Downregulation of MTA2 prevented migration and invasion 
while increasing KLK10 expression via SP1 transcription 
factor in CC cell lines [272]. KLK10, on the other hand, 
was found to be upregulated in colorectal cancer, the loss of 

Fig. 5  Pathway and network analysis a Top ten significant pathways 
enriched for pathway analysis through WikiPathways in upregulated 
genes, b host–Microbiome protein–domain interaction on upregu-
lated genes, c mutation frequency of upregulated genes, d mutated 
genes which are upregulated in metastatic CC, e top ten significant 
pathways enriched for pathway analysis through WikiPathways in 

downregulated genes, f host–microbiome protein–domain interac-
tion on downregulated genes, g Mutation frequency of downregulated 
genes, h mutated genes which are downregulated in metastatic CC i-n 
Needle plot for the mutations in IDS, MAP4K4, SPTBN1, COL4A2, 
KHDRBS1 and DST
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expression of which induced apoptosis, caspase 3 activity, 
and inhibited proliferation via the PI3K/AKT/mTOR signal-
ing pathway [123].

Protocadherins (PCDH) belong to the non-classical sub-
family of cadherins. These are highly expressed in brain and 
mediate cell to cell interactions [273]. Several studies have 
reported that PCDH is abnormally expressed in numerous 
malignancies and show either a carcinogenic or anti-tumor 
effect [274], suggesting distinct family members with effects 
that are tumor dependent. PCDH7 was found to be overex-
pressed in NSCLC and reported to show oncogenic activity 
by hyperactivating MAPK pathway [275]. PCDH7 expres-
sion was also shown to be upregulated in prostate cancer 
cells [276]. Colony formation, migration, and invasion were 
all impeded by the loss of its expression. It may play a role 
in the activation of the AKT and ERK pathways during the 
advancement of prostate cancer [276]. The expression was 
reduced in gastric cancer, particularly in cases of LNM. 
Cell migration, invasion, and E-cadherin expression were 
all considerably reduced because of PCDH7 downregula-
tion [277]. Furthermore, in CC, decreased expression of 
PCDH7 was linked to cancer cell metastasis, migration and 
invasion [278]. The role of MAP4K4, SPTBN1, PCDH7, 
KLK7, KLK8, KLK10 and SAM68, which were identified 
to be differentially expressed among metastatic compared 
to non-metastatic CC in our bioinformatic analysis and their 
effect on the metastatic progression of various other type of 
cancer is summarized in Table 2.

Conclusion

The pathogenesis of CC is intricate and interconnected to 
the key determinants of molecular interactions and bio-
logical effects. HPV infection along with other risk fac-
tors is known to initiate the CC by recreating aberrant 
local microenvironment. Further, genetic and epigenetic 
modifications along with altered gene expression may 
favor the progression and metastasis of the cancer cells. 
The role of microbiota is significant in the modulation of 
microenvironment to facilitate the infection by HPV and 
also to promote metastasis of the tumor. Hence, under-
standing and elucidating the functional properties of the 
diverse species in the cervix will aid in deciphering the 
role of cervical microbiota (viral, fungal and bacterial) 
in the progression of CIN to CC and metastasis. Senti-
nel lymph nodes are the first nodes to receive lymphatic 
drainage from the primary lesion and promote LNM due 
to immune suppression by the tumor microenvironment. 
Further, lymphatic system can facilitate metastasis to dis-
tant organs, such as bone, lung, liver, and brain. Hence, 
identification of LNM and modulation of its microenviron-
ment is required to prevent metastasis to distant organs and 
to provide effective treatment. Number of molecular path-
ways and their downstream functions are altered because 
of viral proteins, HPV integration, somatic mutation, copy 
number variation, epigenetic alteration, differential expres-
sion of the genes, miRNAs, lncRNAs and circRNAs, and 

Fig. 6  Immunohistochemistry image representation from Human 
Protein Atlas for IDS, MAP4K4, COL4A2, KHDRBS1, showing sig-
nificant upregulation in CC and downregulation in normal cervix tis-

sue. SPTBN1 and DST showed downregulation or not detected in CC 
with concurrent upregulation in normal tissue
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interestingly, each of these factors is interconnected such 
that they favor incremental evolution, development and 
progression of CC. Implication of multi-omics approach 
to determine the genomic landscape can aid the stratifica-
tion of CC patients and formulating effective treatment 
strategies.
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Table 2  Evidence for the role of shortlisted differentially regulated genes on the metastatic progression of various cancer types

Protein (Expression status) Cancer type Observation Reference

MAP4K4 (Upregulated in cancer) Hepatocellular carcinoma EMT, migration to lungs, proliferation, invasion, activate JNK, 
NF-κβ pathway

[233]

Cervical cancer Induces autophagy by inhibiting PI3K-AKT-mTOR pathway and 
activate MAPK/ERK pathway

[234]

B cell lymphoma Prevent apoptosis, induces EMT [279]
Pancreatic cancer (PDAC) Cell proliferation [280]

SPTBN1 (Upregulated in cancer) Breast cancer Prevent EMT and breast cancer proliferation [251]
Hepatocellular carcinoma Activates Wnt signaling and promotes stem cell like features [252]
Ovarian cancer SPTBN1 activates the JAK/STAT3 and mesenchymal transforma-

tion
[249]

Cervical cancer SPTBN1 activates TGF-β/ Smad pathway to exert anti-tumor effect [250]
PCDH7 (Downregulated in cancer) Cervical cancer Down regulated in cervical cancer contributes to migration and 

invasion
[278]

Gastric cancer Cell migration and invasion is inhibited through E-cadherin [277]
KLK8 (Upregulated in cancer) Cervical cancer Immunohistochemistry staining conformed TADG-14 overexpres-

sion in cervical cancer specimens
[254]

Colorectal cancer Promote EMT and CRC progression effect is mediated PAR1-
dependent pathway

[256]

Cervical cancer KLK8 expression is correlated with the precancerous and cancer-
ous stages of HPV infection

[281]

KLK7 (Upregulated in cancer) Cervical cancer Correlated lymph node metastasis, and stromal invasion [260]
Melanoma Switch from proliferative to invasive phenotype, downregulation of 

cell adhesion molecules, homotypic cell adhesion and interaction 
with the extracellular matrix

[282]

Prostate cancer Promotes invasion and metastasis through inducing EMT [283]
KLK10 (Downregulated in cancer) Cervical cancer miR-199 b-5p on promoting cervical cancer progression by inhibit-

ing KLK10 expression
[284]

Prostate cancer Downregulation of Bcl-2 promotes apoptosis [285]
SAM68 (Upregulated in cancer) Cervical cancer EMT, pelvic lymph node metastasis in cervical cancer patients [244]

Breast cancer Lymph node metastasis and cancer progression [286]
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permitted by statutory regulation or exceeds the permitted use, you will 
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