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Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection leads to hyper-inflammation and amplified 
immune response in severe cases that may progress to cytokine storm and multi-organ injuries like acute respiratory distress 
syndrome and acute lung injury. In addition to pro-inflammatory cytokines, different mediators are involved in SARS-CoV-2 
pathogenesis and infection, such as sphingosine-1-phosphate (S1P). S1P is a bioactive lipid found at a high level in plasma, 
and it is synthesized from sphingomyelin by the action of sphingosine kinase. It is involved in inflammation, immunity, 
angiogenesis, vascular permeability, and lymphocyte trafficking through G-protein coupled S1P receptors. Reduction of the 
circulating S1P level correlates with COVID-19 severity. S1P binding to sphingosine-1-phosphate receptor 1 (S1PR1) elicits 
endothelial protection and anti-inflammatory effects during SARS-CoV-2 infection, by limiting excessive INF-α response and 
hindering mitogen-activated protein kinase and nuclear factor kappa B action. However, binding to S1PR2 opposes the effect 
of S1PR1 with vascular inflammation, endothelial permeability, and dysfunction as the concomitant outcome. This binding 
also promotes nod-like receptor pyrin 3 (NLRP3) inflammasome activation, causing liver inflammation and fibrogenesis. 
Thus, higher expression of macrophage S1PR2 contributes to the activation of the NLRP3 inflammasome and the release of 
pro-inflammatory cytokines. In conclusion, S1PR1 agonists and S1PR2 antagonists might effectively manage COVID-19 
and its severe effects. Further studies are recommended to elucidate the potential conflict in the effects of S1P in COVID-19.
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Introduction

Coronavirus virus disease 2019 (COVID-19) is the third 
global respiratory viral pandemic that was first reported 
in December 2019, following the Middle East respiratory 

syndrome coronavirus (MERS-CoV) and severe acute respir-
atory syndrome coronavirus (SARS-CoV) in 2012 and 2003, 
respectively [1, 2]. COVID-19 is caused by severe acute 
respiratory syndrome coronavirus type 2 (SARS-CoV-2), a 
single RNA virus from the Betacoronaviridae family [3, 4]. 
This virus exploits different receptors for entry into the host 
cells, angiotensin-converting enzyme 2 (ACE2) is reported 
as the main entry receptor. SARS-CoV-2 infection is asso-
ciated with the development of excessive immune response 
and hyper-inflammation in severe cases, which may progress 
to cytokine storm and multi-organ injuries (MOI) like acute 
respiratory distress syndrome (ARDS) and acute lung injury 
(ALI) [5–7].

In addition to the pro-inflammatory cytokines, different 
mediators are involved in SARS-CoV-2 pathogenesis and 
infection, like sphingosine-1-phosphate (S1P) [8, 9]. S1P 
is a bioactive lipid found at a high level in plasma, and it is 
synthesized from sphingomyelin by the action of sphingo-
sine kinase (Sphk1/2), ceramidase, and sphingomyelinase 
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[10]. S1P is metabolized to an inactive form by S1P lyase 
(SPL) (Fig. 1).

Characteristics of sphingosine‑1 phosphate

The main sources of S1P are erythrocytes, endothelial cells, 
and platelets to a lesser extent [10]. S1P activates G-protein 
coupled S1P receptors (SIPR) 1–5, with the endothelial cells 
highly expressing S1PR1-3. S1P is involved in inflammation, 
immunity, angiogenesis, vascular permeability, and lympho-
cyte trafficking [11]. Pharmacological inhibition of Sphk1/2 
halves S1P plasma concentration. Interestingly, Sphk1/2 null 
mice surprisingly show a higher S1P level since Sphk1/2 
participates in the redistribution of S1P between erythro-
cytes and endothelial cells [10].

S1PR1 is the most common and widely distributed of 
all the receptors for S1P. Dynamin-2 and clathrin mediate 
this receptor to activate the phosphatidylinositol 3-kinase 
(PI3K) pathway, which is essential for maintaining vascular 
permeability and stabilization [12]. S1PR1 improves innate 
immunity by activating macrophages and neutrophil migra-
tions, mast and eosinophilic cells, and inhibiting abnormal 
interferon-alpha (IFN-α) production during viral infec-
tions [13]. S1PR1 regulates innate and adaptive immune 
responses by controlling natural killer (NK) cell trafficking 
and macrophage polarization [13]. These downstream sign-
alings enhance endothelial protection and anti-inflammatory 
effects.

Emerging evidence from previous and recent studies 
demonstrates that S1P via S1PR1 causes vasodilation and 
endothelial protection through a nitric oxide (NO) depend-
ent pathway and modulation of Ca + 2 transports [14, 15]. It 

has been illustrated experimentally that S1P-deficient mice 
subjected to anaphylaxis exhibit high vascular leakage and 
mortality. In this condition, the administration of erythro-
cytes, a main source of S1P, restored endothelial function 
and integrity in S1P-deficient mice [16]. Therefore, S1PR1 
elicits barrier and cardioprotective properties through anti-
inflammatory activity.

On the other hand, S1PR2 in response to S1P opposes 
the effect of S1PR1. It induces phagocytosis independent 
of complement activation by inhibiting S1PR1-mediated 
signaling pathways while inducing vascular permeability 
and endothelial dysfunction [17]. Thus, the expression bal-
ance between S1PR1 and S1PR2 may affect the endothelial 
response to S1P. A better consideration and understanding 
of how S1P produces beneficial or harmful effects on disease 
and health should be related to the receptor types.

S1P binding to S1PR2 also antagonizes S1PR1 action via 
activation of the G12/13-Rho-Rho kinase (ROCK) pathway, 
which induces endothelial permeability [17]. Endothelial 
dysfunction is developed during acute inflammation with the 
progression of adhesion molecules. S1PR2 is instrumental in 
vascular inflammation and inhibition of S1PR1, promoting 
the development of endothelial dysfunction, vascular inflam-
mation, and ischemic-reperfusion injury [18].

Role of S1P pathway in viral infections

The SphK1/2/S1P axis has a potential role in the genera-
tion and release of pro-inflammatory cytokines and vascular 
integrity. S1P plays an integral role in regulating viral repli-
cation, adaptive/innate immune response, and hyperinflam-
mation [19]. Activation of Sphk1/2 accelerates infections 

Fig. 1  Pathway of sphingosine-
1-phosphate (S1P). Sphingosine 
is converted by sphingosine 
kinase (Sphk1/2) to S1P, which 
leads to a cellular response 
through S1P receptors (S1PR1-
5). Sphingosine lyase (S1PL) 
metabolises S1P to inactive 
metabolites
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such as respiratory syncytial virus (RSV) and cytomeg-
alovirus (CMV) infections, while its inhibition truncates 
viral replication of measles virus (MV) and influenza A 
virus [20]. The SphK1/S1P axis facilitates viral entry and 
improves viral replication. S1P acts as a co-receptor modu-
lating viral entry, intracellular replication, and affects anti-
viral immune response [19]. It has been demonstrated that 
cells over-expressing SphK1 are highly susceptible to differ-
ent viral infections compared to normal cells [21]. Recently, 
SphK1 has been shown to be co-localized with viral RNA, 
so inhibition of Sphk1/2 may impair and limit viral replica-
tion [21].

Different viruses, such as dengue virus, RSV, CMV, mea-
sles, hepatitis C virus (HCV), hepatitis B virus (HBV), and 
influenza virus use the SphK1/2/S1P axis in their replica-
tions [22]. Notably, influenza virus infection promotes the 
expression of SphK1/S1P with subsequent expression and 
activation of inflammatory signaling pathways [23]. Besides, 
MV provokes the expression of SphK1/2/S1P through induc-
ing heat shock protein 90 (HS90) expression and mechanis-
tic targeting of the rapamycin (mTOR) pathway, which are 
critical for viral replication [24].

These verdicts suggest that the SphK1/2/S1P axis has 
an important role in viral replication and that inhibitors of 
this intracellular axis may restrict viral load by inhibiting 
viral replication. Targeting the SphK1/2/S1P axis could be 
an effective strategy against viral infections and associated 
hyperinflammation and endothelial dysfunction.

Role of S1P pathway in COVID‑19

The SphK1/2/S1P axis is also involved in promoting the rep-
lication of SARS-CoV-2 and the release of pro-inflammatory 
cytokines [22]. Pan et al. [25] suggest that the SphK1/2/
S1P pathway promotes the invasion of SARS-CoV-2 into the 
central nervous system (CNS) through the olfactory path-
way by expressing S1PR1. It has been observed that low 
levels of plasma S1P were correlated with COVID-19 sever-
ity and can be regarded as a biomarker of disease severity 
[26]. In their prospective case–control study involving 111 
COVID-19 patients and 47 healthy controls, Marfia et al. 
found that the reduction in circulating S1P level is correlated 
with COVID-19 severity [27]. The underlying mechanisms 
were due to either injury to endothelial cells, erythrocytes, 
and platelets, which are major sources of circulating S1P, or 
reduction of S1P transporters like high-density lipoprotein 
(HDL) and albumin [27].

Moreover, S1P is increased within the erythrocytes 
by upregulation of Sphk1/2 in COVID-19 patients as an 

adaptive response to maintain endothelial integrity and pre-
vent tissue hypoxia [28, 29]. However, hemolytic anemia and 
abnormal erythrocrine function in severe COVID-19 may 
affect the circulating S1P [30, 31]. S1P is rapidly synthe-
sized from endothelial cells and hemopoietic cells to com-
pensate any reduction in plasma S1P [11]. Though, in severe 
COVID-19 due to the suppression of hemopoietic tissues by 
high circulating IL-6, serum S1P is reduced and correlates 
with disease severity [27].

Despite these robust findings, these observations did 
not discuss the receptor-dependent effects of S1P and fur-
ther insight into the resultant benefits or detriments. Naz 
and Arish, 2020 reported that S1P limits excessive IFN-α 
response in SARS-CoV-2 infection by down-streaming 
of nuclear factor kappa B (NF-κB) and mitogen-activated 
protein kinase (MAPK) [32]. Thus, activation of S1PR1 
and inhibition of S1PR2 could be beneficial in COVID-19 
sufferers, as S1P analogue(s) might be helpful in treating 
COVID-19.

S1PR2 contributes to TNF-α-induced pro-inflammatory 
response and NF-κB activation, developing endothelial 
permeability and dysfunction [33–35]. Hou and colleagues 
revealed that S1P through S1PR2 promotes nod-like recep-
tor pyrin 3 (NLRP3) inflammasome activation, causing liver 
inflammation and fibrogenesis [36]. Thus, higher expression 
of S1PR2 by macrophages contributes to the activation of 
the NLRP3 inflammasome and pro-inflammatory cytokine 
release. It has been shown that NLRP3 inflammasome and 
pro-inflammatory cytokines are highly activated in COVID-
19 and are linked with the development of cytokine storm 
and ALI/ARDS [37–39]. Different studies revealed that the 
SphK-S1P-S1PR axis plays a role in accelerating inflam-
mation and growth of endometriotic cells by increasing the 
expression of IL-6 and other pro-inflammatory cytokines 
[40]. As well, 1P has been shown to regulate cyclooxyge-
nase-2 (COX-2)/prostaglandin E2 (PGE2) expression and 
IL-6 secretion in various respiratory diseases [41]. However, 
the mechanisms underlying S1P-induced COX-2 expression 
and PGE2 production in human tracheal smooth muscle cells 
(HTSMCs) remain unclear [42]. However, S1P-induced 
COX-2 expression and PGE2/IL-6 generation was mediated 
through S1PR2 [42].

S1P inhibits ALI via S1PR1, whereas S1PR2 causes ALI 
and pulmonary edema [43]. Zhu et al. found that ApoM 
produces a protective effect against ALI through S1P/S1PR1 
[44]. These findings suggest receptor-dependent effects of 
S1P in inducing ALI in COVID-19. Moreover, S1PR2 is 
induced during hypoxia [45], a cardinal feature of patients 
with severe COVID-19 [46]. In their research, Michaud 
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et al. observed that S1P is regarded as a novel non-hypoxic 
stimulus that induces hypoxia-inducible factor (HIF-1) [47]. 
It has been proposed that high HIF-1 may protect against 
COVID-19 severity by decreasing ferritin and modulating 
ACE2 expression [48, 49]. Hence, the protective role of S1P 
in COVID-19 is exerted through S1PR1 binding and respon-
sive downstream effect.

S1P via activation of S1PR2 inhibits the egress of lym-
phocytes from lymphoid organs, which causes lymphopenia, 
a condition linked with COVID-19 severity [50, 51]. Fin-
golimod, a modulator of S1PR, can sequester lymphocytes 
in the lymph nodes, preventing them from contributing to 
the development of autoimmune disorders such as multiple 
sclerosis [52]. This medication is an analogue of sphingo-
sine phosphorylated by Sphk to yield phospho-fingolimod. 
This intermediate, upon binding to SIPR1, induces the 
internalization of S1PR1 and sequestration of lymphocytes 
[53]. Various studies have also reported a rise in mice and 
humans' blood pressure following long-term treatment with 
fingolimod [54, 55]. Furthermore, higher expression of 
S1PR2 in the lung may lead to pulmonary vasoconstriction 
and the development of pulmonary hypertension [56], which 
are hallmarks of severe COVID-19 [57]. Besides, expres-
sion of S1PR2 causes disruption of endothelial integrity 
and the development of endothelial dysfunction by reduc-
ing endothelial nitric oxide synthase (eNOS) and NO avail-
ability, triggering the release of pro-inflammatory cytokines 
[58]. Bonaventura et al. observed that endothelial dysfunc-
tion is a potential cause of immunothrombosis and ALI/
ARDS progression [59, 60]. It has been reported that both 
S1PR1 and S1PR2 promote platelet activation and thrombin 
formation [61]. On that account, S1P-induced endothelial 
dysfunction and coagulopathy could increase COVID-19 
severity. However, glucocorticoid anti-inflammatory effects 
are partially mediated by the activation of Sphk1 and activa-
tion of the S1P/S1PR2 complex [62], making them effective 
in COVID-19 by inhibiting IL-6-induced S1P release [27].

During inflammation, tumor necrosis factor-alpha (TNF-
α) activates Sphk1/2 in the endothelial cells, increasing 
S1P synthesis, and expression of S1PR2 [33]. This effect 
triggers the development of endothelial dysfunction and 
immunothrombosis in COVID-19 through an S1PR2-
dependent pathway [33]. Targeting of Sphk1/2 by specific 
inhibitors may inhibit S1PR2-mediated hyperinflamma-
tion and endothelial dysfunction [22]. However, inhibiting 
Sphk1/2 may have a negative impact on SARS-CoV-2 infec-
tion because using the S1P analogue FTY720/fingolimod 
reduces hyperinflammation and limits immune response 
exaggeration during SARS-CoV-2 infection [63]. Similarly, 
the sphingolipid derivative, ceramaid-1 phosphate, exhibits 
immunoregulatory and antiviral effects by which it enhances 
antigen presentation and autophagy with activation of T cell 

response that may be beneficial in the case of SARS-CoV-2 
infection [63].

Moreover, SARS-CoV-2-induced up-regulation of the 
renin-angiotensin system (RAS) promotes the progression 
and elevation of circulating angiotensin 2 (Ang-II), promot-
ing the release of pro-inflammatory cytokines with the sub-
sequent development of endothelial dysfunction, vascular 
inflammation, and ALI/ARDS [60, 64, 65]. It is worth not-
ing that S1P via S1PR1 can cause cardiac remodeling and 
fibrosis by inducing the release of Ang-II and IL-6 [66]. 
Meissner and his colleagues, 2017 illustrated that S1P is a 
kingpin in the pathogenesis of Ang-II-induced hypertension 
[67]. These findings suggest that S1P could be a detrimental 
factor in increasing cardiovascular instability in COVID-19. 
Furthermore, S1P is involved in SARS-CoV-2 pathogene-
sis and infection through transmembrane protease serine 2 
 (TMPRSS2)/ACE2 axis induction. In addition, activation 
of protective ACE2 is associated with the expression of S1P 
and S1PR [63, 68] (Fig. 2).

Modulation of the S1P pathway

The intonation of S1P receptors through agonists and antag-
onists is a common clinical intervention to achieve clinical 
utility. A common example is FTY720, an S1PR1 agonist 
that elicits an immunosuppressive effect through the inhibi-
tion of lymphocyte recirculation [69]. FTY20-P, the phos-
phorylated derivative of FTY20, binds to S1PR1 and acts 
as a functional agonist. FTY20-P is more potent than S1P 
in inducing the degradation and internalization of S1PR1. 
It also possesses anti-angiogenic and immunosuppressive 
properties, making it relevant for different inflammatory 
and autoimmune disorders [70]. S1P1 agonists attenuate 

Fig. 2  Role of S1P in SARS-CoV-2 infection. S1P through S1PR1 
induces transmembrane protease serine 2  (TMPRSS2), which acti-
vates the expression of ACE2, inducing the synthesis of S1P and acti-
vating sphingosine kinase1/2 (Sphk1/2)
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the expression and release of pro-inflammatory cytokines 
including IL-6 during pathogenic influenza virus infection 
[71].

Similarly, ponesimod is a potent and orally active S1PR1 
agonist, effective against lymphocyte-mediated inflamma-
tion, and used to manage autoimmune diseases [72]. Accord-
ing to Burg et al. in experimental mice with immune com-
plex-induced endothelial dysfunction. ApoM-Fc, an S1PR1 
agonist, attenuates the activation of polymorphonuclear 
neutrophils-induced endothelial dysfunction, suggesting 
S1PR1 agonists limit neutrophil escape from capillaries and 
enhance endothelial cell barriers, concomitantly preventing 
immune-mediated vascular injury [73]. Another S1PR1 
agonist of interest is CYM-5442. When used in combina-
tion with the antiviral oseltamivir, it greatly protects against 
H1N1-induced ALI through the inhibition of activated 
MAPK and NF-κB signaling pathways [74]. In this regard, 
S1PR1 agonists may be useful in treating COVID-19 by 
dampening the exaggerated immune response and endothe-
lial dysfunction that are hallmarks of SARS-CoV-2 infec-
tion [34]. Likewise, the S1PR1 agonist fingolimod could 
be a potential agent against SARS-CoV-2 infection-induced 
ALI/ARDS by inhibiting pulmonary vascular endothelial 
dysfunction and inflammatory infiltrate [74].

On the other hand, blocking of inflammatory S1PR2 by 
selective antagonists may reduce complement activation, 
vascular permeability, endothelial dysfunction, TNF-α-
induced pro-inflammatory response, and NF-κB activa-
tion [18, 33]. JTE-013 is the only S1PR2 antagonist with 
well-understood and recognized pharmacology, such as low 

potency and selectivity [75]. Recently, other S1PR2 antago-
nists such as CYM-5520 and CYM-5578 have been identi-
fied, but there is a dearth of information in terms of charac-
terization and understanding of their biological mechanisms. 
S1PR2 antagonists could be of value in reducing pulmo-
nary hypertension and lung fibrosis. They may also attenu-
ate endothelial dysfunction and restore vascular endothelial 
barriers [76]. As a consequence of their anti-inflammatory 
and endothelial cell-protective effects, S1PR2 antagonists 
might be of great value in managing COVID-19.

These observations highlight that S1P has a dual role in 
different viral infections, including SARS-CoV-2. Despite the 
different implications for the role of the SphK1/2/S1P axis 
in the enhancement of viral infections, S1P exerts a protec-
tive role through an S1PR1-dependent pathway against the 
propagation of endothelial dysfunction and the release of pro-
inflammatory cytokines. However, S1P via an S1PR2-depend-
ent pathway provokes an inflammatory reaction and the induc-
tion of endothelial permeability. Therefore, S1PR1 agonists 
and S1PR2 antagonists could be a novel therapeutic strategy 
against SARS-CoV-2. In this sense, this brief review, unlike 
other studies that focused on the level of SIP in COVID-19, 
provides a new idea regarding the receptor-dependent effect of 
SIP. S1PR1 agonists and S1PR2 antagonists may offer a novel 
approach to COVID-19 management by modulating the exag-
gerated immuno-inflammatory response against SARS-CoV-2 
infection, as well as the associated endothelial dysfunction and 
triggered inflammatory signaling pathways (Fig 3).

Fig. 3  Role of S1P receptors in 
COVID-19. S1P via the activa-
tion of S1P receptor 1 (S1PR1), 
activates phosphoinositol 3 
kinase (PI3K), which maintains 
vascular permeability and inhib-
its the development of endothe-
lial dysfunction (ED). The 
activation of S1PR1 stimulates 
interferon alpha (INF-α) which 
inhibits viral infection and 
decreases viral load. This acti-
vation inhibits the development 
of acute lung injury (ALI) and 
acute respiratory distress syn-
drome (ARDS). The activation 
of S1PR2 induces the release 
of pro-inflammatory cytokines 
(PIC) and the development of 
hyperinflammation. S1PR2 also 
triggers vascular permeability 
with the development of ED. 
Thus, the activation of S1PR2 
increases the risk of develop-
ment of ALI/ARDS
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Conclusion

This review demonstrates the S1P’s potential role in COVID-
19 with reference to its receptor-dependent effects. These 
observations give a controversial picture of the potential role 
of S1P in COVID-19 due to poor evaluation of receptor-spe-
cific effects. In contrast to the adverse consequences of the 
S1P-S1PR2 binding, which include endothelial dysfunction 
and the production of coagulopathy, the S1P-S1PR1 binding 
has protective effects. Therefore, S1PR1 agonists and S1PR2 
antagonists, regardless of S1P level, might be a novel therapeu-
tic approach for managing COVID-19 and its severe effects. 
Further studies are recommended to find agents with dual 
S1PR1 agonists /S1PR2 antagonists’ activity and elucidate 
their effects on COVID-19. Elucidating the potential conflict 
in the effects of S1P in COVID-19 is highly recommended.
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