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Abstract
Cognitive dysfunction has been regarded as a complication of diabetes. Melatonin (MLT) shows a neuroprotective effect on 
various neurological diseases. However, its protective effect on cortical neurons in high glucose environment has not been 
reported. Our present study aims to observe the protective effect of melatonin on rat cortical neurons and its relationship with 
autophagy in high glucose environment. The rat primary cortical neurons injury model was induced by high glucose. The 
CCK-8, flow cytometry, Western blot and immunofluorescence methods were used to examine the cell viability, apoptosis 
rate and proteins expression. Our results showed that there were no differences in cell viability, apoptosis rate, and protein 
expression among the control, MLT and mannitol group. The cell viability of the glucose group was significantly lower 
than that of the control group, and the apoptosis rate of the glucose group was significantly higher than that of the control 
group. Compared with the glucose group, the glucose + melatonin group showed a significant increase in cell viability and a 
notable decrease in apoptosis rate. Melatonin concentration of 0.1–1 mmol/L can significantly alleviate the injury of corti-
cal neurons caused by high glucose. Compared with the control group, the glucose group showed a significant reduction 
of B-cell lymphoma 2 (Bcl-2) protein expression, while remarkable elevations of Bcl2-associated X protein (Bax), cleaved 
Caspase-3, coiled-coil, myosin-like Bcl2-interacting protein (Beclin-1) and microtubule-associated protein 1 light chain-3B 
type II (LC3B-II) levels. The neurons pre-administered with melatonin obtained significantly reversed these changes induced 
by high glucose. The phosphorylation levels of protein kinase B (Akt), mechanistic target of rapamycin kinase (mTOR) and 
Unc-51 like autophagy activating kinase 1(ULK1) were decreased in the glucose group compared with the control group, 
whereas significant increase were observed in the glucose + MLT group, compared with the glucose group. These data indi-
cated that melatonin has a neuroprotective effect on cortical neurons under high glucose environment, which may work by 
activating Akt/mTOR/ULK1 pathway and may be deeply associated with the downregulation of autophagy.
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Introduction

The incidence of diabetes has been increasing in recent 
years. Traditionally, diabetes complications mainly affect the 
kidney, retina, peripheral nerve and cardiovascular system. 
Recently, diabetes cognitive dysfunction has been regarded 
as a complication of the central nervous system of diabetes. 
“Diabetes encephalopathy (diabetic encephalopathy, DE)” 
was first proposed by Reske-Nielsen [1], means the changes 
in brain structure, function and metabolic state caused by 
long-term sustained hyperglycemia, which eventually causes 
nerve behavior and cognitive function defect. It is mainly 
manifested in the descent of comprehension ability, memory 
decline, cognitive dysfunction, accompanied by indifference, 
delayed behavior, and even the development of dementia. Its 
pathogenesis is related to glucotoxicity, insulin resistance, 
apoptosis of nerve cells, vascular diseases, oxidative stress, 
mitochondrial dysfunction, inflammatory response, amyloid 
deposition and synaptic changes of nerve cells [2]. With 
high incidence of DE, the search for new effective diagnos-
tic methods and therapeutic measures of DE has important 
clinical and social application value.

At present, DE has been recognized as an independent 
type of dementia, and the pathological changes of Tau 
protein hyperphosphorylation and amyloid protein depo-
sition have also been found in the brains of patients with 
diabetes. DE and Alzheimer’s disease (AD), Parkinson’s 
disease (PD), multiple sclerosis and huntingtin’s disease 
(HD) all belong to neurodegenerative diseases. Abnormal 
accumulation of proteins in cells formed in the affected 
brain regions is a common feature of these diseases [3].

When cells are stimulated by the outside environment, 
they form a membrane-like structure wrapped by a double 
membrane, transport misfolded proteins or abnormal cell 
components to lysosomal degradation and maintain cell self-
renewal, this process known as macroautophagy. Autophagy 
is essential for maintaining neuronal homeostasis by clearing 
damaged mitochondria and phagocytes, such as HD and PD 
related proteins [4]. Studies have shown that autophagy dis-
orders can lead to degenerative changes in neurons, such as 
Parkinson’s syndrome and amyotrophic lateral sclerosis [5]. 
Mitochondrial autophagy plays an important role in apop-
tosis of nerve cells. In the early stage of nerve cell injury, 
autophagy can remove harmful substances to protect cells 
from apoptosis. Excessive activation of autophagy may lead 
to excessive self-digestion, which in turn triggers the apopto-
sis process to initiate and promote apoptosis [6]. On account 
of involved in the pathogenesis of cognitive dysfunction, 
autophagy regulation has been regarded as a target for the 
therapy of neurodegenerative disease [4–6].

Studies have shown that the hyperglycemic state of dia-
betes leads to excessive activation of autophagy, which 

damages the target organs. For example, in diabetic retin-
opathy, excessive activation of autophagy by neurons 
leads to increased apoptosis of retinal nerve cells, while 
inhibiting their autophagy activity can reduce hypergly-
cemia toxicity and improve retinal function [7]. Animal 
experiments showed that the cognitive dysfunction of 
diabetes also has excessive activation of autophagy, and 
inhibiting the autophagy activity can improve its cogni-
tive function [8]. Therefore, we speculated that the use 
of drugs or other methods to inhibit neuronal autophagy 
could delay the occurrence and development of diabetic 
cognitive dysfunction.

Melatonin is a hormone synthesized and secreted by pin-
eal gland, which has the physiological functions of regulat-
ing sleep, immune regulation, anti-inflammatory and anti-
oxidant. Melatonin has a neuroprotective effect, which can 
ameliorate brain tissue edema and injury, inhibit neuronal 
apoptosis, reduce oxidative stress, prevent Aβ aggregation, 
and so on. It shows protective effects on PD, stroke, AD 
and etc. in animal model tests [9, 10]. Animal experiments 
show that melatonin can regulate autophagy and play a neu-
roprotective role in the rat model of ischemia reperfusion 
injury [11]. However, whether there is protective effect of 
melatonin on cortical neurons in high glucose environment 
has not been reported. Therefore, in our study, the cortical 
neurons in the high glucose environment were used as the 
model to simulate the central neuropathy of diabetes mel-
litus and investigate the protective effect of melatonin and 
its related mechanisms.

Materials and methods

Materials

Female SD rats with pregnancy 18 days weighing 250–280 g 
were purchased from Hunan Slake Jingda Experimen-
tal Animals Limited Liability Company. (license number 
of animal center: SCXK(Xiang) 2016-0002, grade: SPF). 
Melatonin (M5250) purchased from Sigma-Aldrich, using 
Dimethyl sulfoxide (DMSO) solution to dissolve it. Dul-
becco’s modified Eagle’s medium (DMEM, C11996600BT), 
Neurobasal medium (21103-049), B27 supplement (50×) 
(17504-044), Glutamax™-1(100×) (35050-061) were from 
Gibco. Fetal bovine serum (FBS), trypsin, penicillin–strep-
tomycin and l-glutamine were from Gibco. Poly-l-lysine 
(molecular weight 15,000–30,000), glucose, Cell Count-
ing kit-8 (CCK8) (CA1210) was purchased from Solarbio. 
Apoptosis detection kit (556547) was purchased from BD 
Pharmingen Company. Bcl-2 (sc-7382) and Bax (sc-20067) 
antibody were purchased from Santa Cruz Biotechnology 
(CA, USA). Cleaved caspase-3 (9664S), LC3B (2775S), 
Beclin-1 (3738S), p-mTOR (5536S), mTOR (2983S), p-Akt 
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(4046S), Akt (9272S), p-ULK1 (14202) and ULK1 (8054) 
antibody were purchased from Cell Signaling Technology. 
p-Beclin-1 (ab183335) antibody was purchased from Abcam 
(Cambridge, UK). β-Tubulin (MA5-11732) antibody was 
purchased from Invitrogen. Goat anti-rabbit IgG (31460), 
goat anti-rat IgG (31430), PVDF membrane (88518), protein 
quantitative reagent (A33972), and enhanced chemilumines-
cence reagent (34580) were purchased from Thermo Fisher.

Primary culture of cortical neurons from fetal rats

Experimental protocols for animal studies were approved 
by the local ethics committee. Primary cortical neurons 
were isolated and cultured from day E18 Sprague Dawley 
rat embryos. Anatomical microscope was used to dissect 
the cortex of rats and put it into Hank’s anatomical solu-
tion. Cortex tissues were digested in 0.125% trypsin 18 min 
at 37 °C water bath, meanwhile oscillation of 2–3 times. 
DMEM medium containing 10% FBS serum was used to 
terminate digestion. Centrifuge for 10 min at 1000 rpm/min, 
and the cells were resuspended with the density of  105/mL 
and inoculated in the Poly-l-lysine-coated (0.1 g/L) plates, 
and then cultured in DMEM supplemented with 10% fetal 
bovine serum, l-glutamine (200 nM), 50 U/mL penicillin 
and 50 μg/mL streptomycin at 37 °C and 5%  CO2 incubator. 
This medium was removed after 4 h and replaced with Neu-
robasal medium containing 2% B27 supplement. Half the 
medium was removed every 3 days in culture and replaced 
with fresh Neurobasal medium with supplements. After 6 
days in the supplemented Neurobasal medium, the primary 
cortical neurons were used for the experiment.

Cell immunofluorescent staining

Neuronal nuclear protein (NeuN) immunostaining was per-
formed to evaluate the purification rate of cortical neurons. 
Immunofluorescence of other proteins Bax, Bcl-2, Beclin-1, 
LC3B and cleaved caspase-3 was performed. The culture 
medium was removed and the neurons were rinsed for 5 min 
three times in cold phosphate buffered saline (PBS). Cells 
were fixed with 4% paraformaldehyde for 30 min, permeabi-
lized in PBS containing 0.2% Triton for 30 min, and blocked 
with 10% normal goat serum for 1 h. Cells were incubated 
with mouse anti-Bax, Bcl-2, Beclin-1, LC3B and cleaved 
caspase-3 primary monoclonal antibody (1:50) for 2 h at 
37 °C and washed three times in PBS (5 min per wash), then 
incubated with goat anti-mouse secondary antibody conju-
gated to FITC (1:500) for 1 h at 37 °C and washed three 
times in PBS (5 min per wash). Cells were incubated with 
DAPI (1:1000) for 5 min at room temperature and examined 
for fluorescence using a standard fluorescence photomicro-
scope (DM IRE2, Leica Microsystems, Cambridge, UK).

Experimental groups

The cells were divided into control group (Ctrl), melatonin 
group (MLT), Mannitol group (100  mmol/L), Glucose 
group (100 mmol/L), and Glucose + MLT group. The pri-
mary fetal rat cortical neuron cells were mature after 6 days. 
Melatonin was added for pretreatment for half an hour, and 
then glucose or mannitol was added for treatment for 48 h. 
After that, neurons were collected for experimental detec-
tion (Fig. 1A). The concentrations of melatonin in MLT and 
Glucose + MLT groups were 0.1, 0.3, 1, 3, 10 microns/L 
in the cell viability assessment. The final concentrations of 
melatonin in the subsequent experiments were 0.1 μmol/L.

Cell viability assessment

Cell viability was quantified by CCK-8 assay. The cells were 
inoculated in 96-well plate with a concentration of 1 ×  105/
mL, and the treated cells were cultured for 48 h after 7 days. 
10 μL CCK-8 was added to each hole, and cultured for 2 h, 
and the light absorption value was measured at 490 nm on 
a plate reader, and the neuronal cell viability was calculated 
as a mean percentage of the control group. All experiments 
were carried out in quadruplicate.

Detection of apoptotic cells by Annexin V‑FITC/PI 
flow cytometry

1.5 ×  106 cells per pore were plated in six well plates. The 
cells were cultured for 6 days and then treated with drugs for 
48 h. Cells were trypsinized and harvested by centrifugation 
and then followed the instructions of Annexin V-FITC/PI kit 
to incubate with Annexin V-FITC and PI for 15 min at room 
temperature, away from light. Apoptosis rate was examined 
by flow cytometry in 30 min. The experiment was repeated 
three times with four duplicate holes in each group.

Western blot analysis

Primary fetal cortical neurons were processed and cells 
were collected. The protein concentration in each sample 
was determined by the bicinchoninic acid (BCA) protein 
assay and equal amounts of protein per lane were loaded 
onto the gel. Briefly, samples were electrophoresed on 10% 
SDS–PAGE gels and transferred to polyvinylidene difluoride 
membranes. After blocking with Tris hydrochloric acid 
buffered saline (TBS) containing 0.1% Tween 20 and 5% 
nonfat milk, the membranes were incubated overnight at 
4 °C with a rabbit polyclonal antibody against p-mTOR, 
mTOR, p-Akt, Akt, p-Beclin-1, Beclin-1, LC3B, Bcl-2, 
Bax, cleaved caspase-3 and β-tubulin, diluted 1:2000 in 
0.05% BSA. They were then washed and incubated with 
a horseradish peroxidase-conjugated goat-anti-rabbit or 



1418 Molecular and Cellular Biochemistry (2023) 478:1415–1425

1 3

goat-anti-mice secondary antibody IgG (1:5000). Protein 
bands were visualized by chemiluminescence with a West-
ern Chemiluminescent HRP Substrate kit (Immobilon) and 
the band images analyzed with Image J software (National 
Institutes of Health, Bethesda, MD, USA). β-Actin was used 
as a control for the protein loading. Each experiment was 
repeated at least three times.

Statistical analysis

All statistical analyses were carried out with GraphPad 
Prism 5.0 software. Data are expressed as mean ± SD and 
analyzed by one-way ANOVA followed by post hoc Stu-
dent–Newman–Keuls test to determine the influence of 
different groups. P < 0.05 was considered statistically 
significant.

Results

Effect of melatonin on the cell viability 
and apoptosis of cortical neurons in high glucose 
environment

When melatonin concentration was 0.1, 0.3 and 1 µmol/L, 
the survival rate of cortical neurons was not statistically dif-
ferent from that of the control group (P > 0.05). When mela-
tonin concentration was 3 and 10 µmol/L, the cell survival 
rate was significantly lower than that of the control group, 
which indicating that 3 and 10 µmol/L MLT had toxic effects 
on primary cultured cortical neurons (Fig. 1B). The survival 
rate of glucose group was significantly lower than that of the 
control group (P < 0.01). The results of cell viability assay 
revealed that treatment with the MLT markedly protected 
the cortical neurons from injury caused by high glucose, 

Fig. 1  Effects of melatonin on the cell viability and apoptosis of 
cortical neurons in high glucose environment. A Flow chart of the 
experiment. The primary fetal cortex neurons were cultured and 
were mature after 6 days. Melatonin was added for pre-administering 
for half an hour, and then glucose was added for treatment for 48 h. 
After that, neurons were collected for experimental detection on the 
8th day. B Cell viability from the six different groups, Control, 0.1 
μΜ MLT, 0.3 μΜ MLT, 1 μΜ MLT, 3 μΜ MLT and 10 μΜ MLT, 
were expressed as mean ± SD. C Cell viability from the five differ-
ent groups, Control, Glucose, Glucose + 0.1 μΜ MLT, Glucose + 0.3 

μΜ MLT and Glucose + 1 μΜ MLT, were expressed as mean ± SD. D 
The data of Annexin V/PI double staining collected by flow cytome-
try were showed as scatter plot. Results demonstrate that MLT protect 
the primary cultured neurons from subsequent high glucose toxicity 
injury. E The percentage of surviving cells from the different five 
groups, Control, 0.1 μΜ MLT, Mannitol, Glucose and Glucose + 0.1 
μΜ MLT, were showed also as mean ± SD. F The percentage of early 
apoptotic cells. G The percentage of late apoptotic cells. H The per-
centage of total apoptotic cells. (*P < 0.05, **P < 0.01, ***P < 0.001)
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and improved the cell survival rate (Fig. 1C). There was no 
statistical difference in apoptosis rate between the control 
group, melatonin group and mannitol group (P > 0.05). The 
apoptosis rate in the Glucose group was significantly higher 
than that in the control group (P < 0.05), and significantly 
lower in the Glucose + MLT group than that in the Glucose 
group (P < 0.05) (Fig. 1D–H). This indicated that melatonin 
concentration of 0.1–1 µM can alleviate the damage of corti-
cal neurons induced by high glucose, while melatonin con-
centration of 3 and 10 µM MLT can have toxic effects on the 
original cultured cortical neurons.

Effects of melatonin on the apoptosis‑related 
proteins expression on cortical neurons 
in high‑glucose environment

There was no significant difference in protein expression 
of Bcl-2, Bax and cleaved caspase-3 among the control, 
melatonin and mannitol group by Western blot and immu-
nofluorescence (P > 0.05) (Fig. 2A–K). Western blot and 
immunofluorescence both showed that the expression of 
Bcl-2 was significantly decreased while the expression of 
Bax and cleaved caspase-3 was significantly increased in 
the glucose group compared with the control group, show-
ing a statistically significant difference (P < 0.05). Compared 
with the glucose group, glucose + MLT group obtained a 
significantly increase in Bcl-2 protein expression, while sig-
nificantly decreases in Bax and cleaved caspase-3 expression 
with statistical significant difference (P < 0.05) (Fig. 2A–K). 
These results indicate that MLT regulate the expression of 
apoptosis relation protein and inhibit cell apoptosis induced 
by high glucose stimulation.

Effects of melatonin on the autophagy related 
proteins expression on cortical neurons 
in high‑glucose environment

Western blot and immunofluorescence both showed that 
there was no statistical difference on the expression of 
autophagy related proteins Beclin-1, LC3B-II and LC3B-
II/LC3B-I among the control, melatonin, mannitol group 
(Fig. 3A–I). Immunofluorescence results showed that Bec-
lin-1 and LC3B expression in the glucose group were sig-
nificantly higher than the control group. Beclin-1 and LC3B 
expression were significantly lower in the glucose + MLT 
group than in the glucose group, and the difference was sta-
tistically significant (Fig. 3A–D). Western blot results show 
that the expression of p-Beclin-1, LC3B-II and LC3B-II/
LC3B-I were significantly increased in the glucose group 
compared with control group, with a statistically significant 
difference (P < 0.01). Compared with the glucose group, 
glucose + MLT showed significant reductions in the expres-
sion of p-Beclin-1, LC3B-II and LC3B-II/LC3B-I (P < 0.01) 

(Fig. 3E–I). The results of Western blot and immunofluores-
cence were consistent.

Effects of melatonin on the phosphorylation 
of Akt/mTOR/ULK1 protein on cortical neurons 
in high‑glucose environment

The phosphorylation and total of Akt, mTOR and ULK1 pro-
tein in each group was determined by Western blot, and there 
was no statistically significant difference among the con-
trol, melatonin and mannitol group (P > 0.05) (Fig. 4A–G). 
p-Akt, p-mTOR, mTOR and p-ULK1 and ULK1 (were sig-
nificantly decreased in the glucose group compared with the 
control group (P < 0.05), and were significantly increased in 
the glucose + MLT group compared with the glucose group 
(P < 0.05) (Fig. 4A–G). It suggested that Akt/mTOR/ULK1 
activation was significantly inhibited in the glucose group, 
and melatonin could increase the phosphorylation level of 
Akt/mTOR/ULK1 in cortical neurons in the high glucose 
environment.

Discussion

The pathogenesis of diabetic central neuropathy is not 
completely clear. The high fatty acids, high blood glucose 
and abnormal increase of glycation end products caused by 
hyperglycemia induce oxidative stress. Excess produced or 
insufficient eliminated ROS will directly cause biological 
membrane lipid peroxidation, protein and enzyme degen-
eration, mitochondrial dysfunction, which lead to neuronal 
cell damage, scabbard film, axon swelling degeneration and 
even broke off, neurons chromatin dissolved, cytoplasm 
vacuoles degeneration necrosis, mitochondrial dysfunction, 
nuclear pyknosis and nerve cells apoptosis [3]. Abnormal 
changes in brain electrophysiology, imaging and pathology 
caused by diabetic metabolic factors such as glucose and 
lipid metabolism disorder, insulin resistance, vascular dis-
ease and obesity are closely related to the occurrence and 
development of DE.

Melatonin is a strong antioxidant, with small molecular 
volume and amphiphilic nature, which is very easy to enter 
the cells, especially the mitochondria, and participate in 
mitochondrial energy metabolism to reduce mitochondrial 
damage caused by oxidative stress [12–14]. Relevant studies 
have shown that melatonin can directly interact with elec-
trons or induce the production of antioxidant enzymes to 
reduce the damage of oxidative respiratory chain, enhance 
mitochondrial function and reduce oxidative stress even 
reduce cell apoptosis [12]. In addition, melatonin can help 
restore the function of islet B cells, improve insulin sensi-
tivity and glucose tolerance, reduce hyperinsulinemia, and 
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reduce insulin resistance. Melatonin may be a potential dia-
betes treatment drug.

In the hippocampus and cortex of diabetic rats, lipid 
peroxides increased, and rats showed obvious cognitive 
impairment. However, these manifestations were signifi-
cantly reduced or even disappeared after the treatment with 
melatonin or antioxidants vitamin E [15, 16]. Melatonin can 
also alleviate peripheral neuralgia caused by diabetes and 
improve diabetic neuropathy [17]. In addition, melatonin has 
neuroprotective effects. Patients suffered from AD showed a 
reduction in secretion of melatonin, which slowed down the 
synthesis of the protein of Aβ protein and delay the progres-
sion of this disease [18]. Activating the receptor of mela-
tonin presented a protective effect on spinal cord injury [19]. 
In addition, melatonin showed satisfactory neuroprotection 
and antioxidation effects on cultured primary cortical neu-
rons deprived of oxygen and sugar, and animal brain injury 
induced by cerebral ischemic stroke [20]. In this study, we 
found that melatonin could improve the survival rate of cor-
tical neurons and reduce the apoptosis rate of neurons in 
fetal rats under high-glucose environment, indicating that 
melatonin could protect neurons in cortex of fetal rats under 
high glucose environment.

The cerebral cortex is an important anatomical basis for 
learning and memory and it is vulnerable to various adverse 
factors. The thickness and volume of cerebral cortex were 
significantly reduced in diabetic patients, which is the struc-
tural basis for learning and memory impairment in diabetic 
patients [21]. High glucose environment can cause apoptosis 
of cortex and hippocampal neurons [22, 23]. Bax and Bcl-2 
family are very important apoptotic regulatory genes. Bax is 
apoptosis promoting gene, and Bcl-2 is apoptosis inhibiting 
gene. In addition, Bcl-2 protein family can not only regulate 
cell apoptosis but also affect other cell processes, such as 
cell cycle, calcium signaling, glucose stability, autophagy 
and etc., which play an important role in cell survival and 
death [24]. Caspase-3 is the main executor of apoptosis, 
and cleaved caspase-3 can cause downstream apoptosis 
cascade reaction. In this study, we found that the high glu-
cose environment can lead to apoptosis of cortical neurons, 
and regulated the expression of Bax, cleaved caspase-3 and 

Bcl-2, and the hypertonic state of mannitol had no effect 
on neuronal apoptosis and protein levels, suggesting that it 
is high glucose rather than hyperosmosis directly leads to 
apoptosis and the changes of relevant protein expression in 
neurons, Melatonin can reverse the change of Bax, cleaved 
caspase-3 and bcl-2 proteins in cortical neurons induced by 
high-glucose environment and reduce neuron apoptosis.

Autophagy is an important degradation pathway for 
phagocytosis of aging proteins or organelles in the cyto-
plasm, which is degraded by autophagy lysosome to com-
plete the metabolic needs of the body and the renewal of 
aging organelles [25]. Different from other cells, neurons 
don’t have the function of re-division, and can’t dilute harm-
ful substances in cells by way of division. Therefore, the 
autophagic lysosome degradation pathway is particularly 
important in neurons [4]. At present, studies have found that 
the abnormal autophagy function plays an important role in 
the occurrence and development of nervous system diseases, 
such as PD and HD. The regulation of autophagy activity 
can delay the progress of the disease through devouring 
damaged mitochondria, reducing oxidative stress and inhib-
iting apoptosis [5, 6]. The excessive activation of autophagy 
can promote apoptosis. In addition, autophagy and apoptosis 
can exist simultaneously and interact with each other [26]. 
Inhibition of autophagy activity in cerebral ischemia reper-
fusion rats can improve their neural function [27]. At pre-
sent, there are few studies on autophagy in diabetic encepha-
lopathy, and changes in autophagy activity of cells may be 
one of the important mechanisms of diabetic encephalopa-
thy [8, 28, 29]. Many studies have shown that the neuron 
apoptosis and cognitive decline in diabetic rats are related 
to the excessive activation of autophagy, and inhibition of 
autophagy activity can improve the cognitive function of 
diabetic mice [8, 28, 29]. Diabetic retinopathy and diabetic 
hearing impairment were associated with elevated levels of 
autophagy in diabetic nerve cells [7, 30]. This study showed 
that the expression of Beclin-1 and LC3B-II, two landmark 
molecules of autophagy, could be increased in high glucose 
environment, suggesting that high glucose environment 
could induce autophagy. Melatonin can decrease Beclin-1 
and LC3B-II/LC3B-I ratio in high glucose environment, and 
reduce the apoptosis rate of cortical neurons. It suggests that 
melatonin can protect cortical neurons by downregulating 
autophagy activity. This study is similar to the results of 
other studies [8, 28, 29]. However, some studies showed 
that the autophagy activity of neurons in diabetic neuropa-
thy and diabetic rats with microvascular disease decreases, 
and the activation of autophagy can reduce the damage of 
neurons [31–33]. We believe that the differences in these 
findings are related to the degree of autophagy activation. 
Moderate autophagy activation has neuroprotective effects, 
but excessive autophagy activation can induce programmed 
cell death.

Fig. 2  Effects of melatonin on the apoptosis-related proteins expres-
sion on cortical neurons in high-glucose environment. The neuronal 
cells were cultured in 60  mm dish (4.5 ×  106/well) for Western blot 
assay, and were cultured on glass sheet in 24 well plates (1 ×  105/
well) for immunofluorescence test. A–F Bcl-2, Bax and cleaved cas-
pase-3 localization and quantitative statistical charts were showed as 
fluorescent photo. G–K Bcl-2, Bax and cleaved caspase-3 protein 
level from the five different groups, control, 0.1 μΜ MLT, Mannitol, 
Glucose and Glucose + 0.1 μΜ MLT, were expressed as mean ± SD. 
Results demonstrate that MLT decreases Bax and cleaved caspase-3 
level, and increases Bcl-2 proteins expression and Bcl-2/Bax ratio 
in primary cortical neurons injured by high glucose. (*P < 0.05, 
**P < 0.01, ***P < 0.001)

◂
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Fig. 3  Effects of melatonin on the autophagy related proteins expres-
sion on cortical neurons in high-glucose environment. A–D Beclin-1 
and LC3B-II localization and quantitative statistical charts were 
showed as fluorescent photo. E–I Beclin-1, p-Beclin-1 and LC3B 
protein level from the five different groups, control, 0.1 μΜ MLT, 

Mannitol, Glucose and Glucose + 0.1 μΜ MLT, were expressed 
as mean ± SD. Results demonstrate that MLT decreases Beclin-1, 
p-Beclin-1 and LC3B-II proteins expression and LC3B-II/ LC3B-II 
ratio in primary cortical neurons injured by high glucose. (*P < 0.05, 
**P < 0.01, ***P < 0.001)
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Akt/mTOR/ULK1 signaling pathway is an important 
mechanism for the negative regulation of autophagy. 
Bcl-2 inhibits autophagy initiation by binding to Beclin-1 
in the structural domain of BH3 protein, and mTOR is 
required to participate in the binding of Beclin1 to BH3 
protein. Activation of mTOR phosphorylates ULK1 at 
Ser757, a crucial inducer of the initiation of autophagy, 
arrests the interaction between ULK1 and AMPK through 
ULK1-ATG13-FIP200-ATG101 complex, directly inhibits 
autophagic initiation, and regulates autophagic related pro-
tein phosphorylation and thus blocks autophagy [34–36]. 
Studies found that diabetic cognitive dysfunction is related 
to mTOR signaling  pathway, and activation of PI3K/Akt/
mTOR signaling pathway can improve nerve defects in 
diabetic cerebral ischemia reperfusion rats and hypergly-
cemia induced neurotoxicity of PC-12 cells [23, 37]. In 
addition, activation of Akt/mTOR signaling pathway can 
promote the growth of posterior axons and improve the 
functional recovery after stroke [38]. It also found that 
melatonin can regulate AMPK/mTOR signaling pathway 
and play a protective role in myocardial ischemia rep-
erfusion [14], reduce the neuron apoptosis induced by 
focal cerebral ischemia in mice via activating the PI3K/
Akt signaling pathway [39], and alleviate nerve defects 
caused by middle cerebral artery occlusion in adult male 
rats through activating Akt/mTOR signaling pathway [40]. 
Therefore, we believe that melatonin can regulate Akt/
mTOR signaling pathway, which has also been demon-
strated in this study. In this study, we found that high glu-
cose environment inhibited the Akt/mTOR/ULK1 signal-
ing pathway of cortical neurons, reduced the expression 
of Bcl-2, and over-activated the autophagy level of cor-
tical neurons. Melatonin can activate Akt/mTOR/ULK1 

pathway, upregulate the expression of Bcl-2, inhibit the 
over-activation of autophagy and show neuroprotective 
effects.

To sum up, melatonin can reduce the apoptosis of corti-
cal neurons under the high-sugar environment by activat-
ing Akt/mTOR/ULK1 pathway and being related with the 
down-regulation of autophagy, which has a neuroprotec-
tive effect.
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Fig. 4  Effects of melatonin on the phosphorylation of Akt/mTOR/
ULK1 protein on cortical neurons in high-glucose environment 
by Western blot. A–G p-Akt, Akt, p-mTOR, mTOR, p-ULK1 and 
ULK1 protein level from the different groups, control, 0.1 μΜ MLT, 

Mannitol, Glucose and Glucose + 0.1 μΜ MLT, were expressed as 
mean ± SD. Results demonstrate that MLT increases p-Akt, p-mTOR, 
mTOR and p-ULK1 proteins expression in primary cortical neurons 
injured by high glucose. (*P < 0.05, **P < 0.01, ***P < 0.001)
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