Skip to main content
Log in

HSF4 promotes tumor progression of colorectal cancer by transactivating c-MET

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Heat shock factors (HSFs) are a family of transcription factors, composed of HSF1, HSF2, and HSF4, to regulate cell stress reaction for maintaining cellular homeostasis in response to adverse stimuli. Recent studies have disclosed the roles of HSF1 and HSF2 in modulating tumor development, including colorectal cancer (CRC). However, HSF4, which is closely associated with pathology of congenital cataracts, remains less studied in tumors. In this study, we aimed to describe the regulatory effects of HSF4 and underlying molecular mechanism in CRC progression. By bioinformatic analysis of TCGA database and TMA-IHC assay, we identified that the expression of HSF4 was significantly upregulated in CRCs compared with normal colonic tissues and was a prognostic factor of poor outcomes of CRC patients. Function assays, including CCK-8, colony formation, transwell assays, and xenografted mouse model, were employed to verify that HSF4 promoted cell growth, colony formation, invasion of CRC cells in vitro, and tumor growth in vivo as a potential oncogenic factor. Mechanistically, results of Chromatin immunoprecipitation (ChIP) and immunoblotting assays revealed that HSF4 associated directly to MET promoter to enhance expression of c-MET, a well-known oncogene in multiple cancers, thus fueling the activity of downstream ERK1/2 and AKT signaling pathways. In further rescue experiments, restoration of c-MET expression abolished inhibitory cell growth and invasion induced by downregulated HSF4 expression. To sum up, our findings describe a crucial role of HSF4 in CRC progression by enhancing activity of c-MET and downstream ERK1/2 and AKT signaling pathways, and highlight HSF4 as a potential therapeutic target for anti-CRC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets used and/or analyzed in the current study are available from the corresponding author upon reasonable request.

References

  1. Morimoto RI (2008) Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22(11):1427–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dong B, Jaeger AM, Thiele DJ (2019) Inhibiting heat shock factor 1 in cancer: a unique therapeutic opportunity. Trends Pharmacol Sci 40(12):986–1005

    Article  CAS  PubMed  Google Scholar 

  3. Brusselaers N, Ekwall K, Durand-Dubief M (2019) Copy number of 8q24.3 drives HSF1 expression and patient outcome in cancer: an individual patient data meta-analysis. Hum Genomics 13(1):54

    Article  PubMed  PubMed Central  Google Scholar 

  4. Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, Fraenkel E, Ince TA, Whitesell L, Lindquist S (2012) HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150(3):549–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Puustinen MC, Sistonen L (2020) Molecular mechanisms of heat shock factors in cancer. Cells 9(5):1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang LN, Ning ZY, Wang L, Yan X, Meng ZQ (2019) HSF2 regulates aerobic glycolysis by suppression of FBP1 in hepatocellular carcinoma. Am J Cancer Res 9(8):1607–1621

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Chen R, Liliental JE, Kowalski PE, Lu Q, Cohen SN (2011) Regulation of transcription of hypoxia-inducible factor-1α (HIF-1α) by heat shock factors HSF2 and HSF4. Oncogene 30(22):2570–2580

    Article  CAS  PubMed  Google Scholar 

  8. Fujimoto M, Izu H, Seki K, Fukuda K, Nishida T, Yamada S, Kato K, Yonemura S, Inouye S, Nakai A (2004) HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J 23(21):4297–4306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Forshew T, Johnson CA, Khaliq S, Pasha S, Willis C, Abbasi R, Tee L, Smith U, Trembath RC, Mehdi SQ, Moore AT, Maher ER (2005) Locus heterogeneity in autosomal recessive congenital cataracts: linkage to 9q and germline HSF4 mutations. Hum Genet 117(5):452–459

    Article  CAS  PubMed  Google Scholar 

  10. Syafruddin SE, Ling S, Low TY, Mohtar MA (2021) More than meets the eye: revisiting the roles of heat shock factor 4 in health and diseases. Biomolecules 11(4):523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gao J, Aksoy BA, Dogrusoz U, Dresdner G, Gross B, Sumer SO, Sun Y, Jacobsen A, Sinha R, Larsson E, Cerami E, Sander C, Schultz N (2013) Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal 6(269):pI1

    Article  Google Scholar 

  12. Ma P, Tang WG, Hu JW, Hao Y, Xiong LK, Wang MM, Liu H, Bo WH, Yu KH (2020) HSP4 triggers epithelial-mesenchymal transition and promotes motility capacities of hepatocellular carcinoma cells via activating AKT. Liver Int 40(5):1211–1223

    Article  CAS  PubMed  Google Scholar 

  13. Bradley CA, Salto-Tellez M, Laurent-Puig P, Bardelli A, Rolfo C, Tabernero J, Khawaja HA, Lawler M, Johnston PG, Van Schaeybroeck S, MErCuRIC consortium (2017) Targeting c-MET in gastrointestinal tumours: rationale, opportunities and challenges. Nat Rev Clin Oncol 14(9):562–576

    Article  CAS  PubMed  Google Scholar 

  14. Di Renzo MF, Olivero M, Giacomini A, Porte H, Chastre E, Mirossay L, Nordlinger B, Bretti S, Bottardi S, Giordano S et al (1995) Overexpression and amplification of the met/HGF receptor gene during the progression of colorectal cancer. Clin Cancer Res 1(2):147–154

    PubMed  Google Scholar 

  15. Liu Y, Yu XF, Zou J, Luo ZH (2015) Prognostic value of c-Met in colorectal cancer: a meta-analysis. World J Gastroenterol 21(12):3706–3710

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jiang WG, Lloyds D, Puntis MC, Nakamura T, Hallett MB (1993) Regulation of spreading and growth of colon cancer cells by hepatocyte growth factor. Clin Exp Metastasis 11(3):235–242

    Article  CAS  PubMed  Google Scholar 

  17. Takeuchi H, Bilchik A, Saha S, Turner R, Wiese D, Tanaka M, Kuo C, Wang HJ, Hoon DS (2003) c-MET expression level in primary colon cancer: a predictor of tumor invasion and lymph node metastases. Clin Cancer Res 9(4):1480–1488

    CAS  PubMed  Google Scholar 

  18. Radhakrishnan H, Walther W, Zincke F, Kobelt D, Imbastari F, Erdem M, Kortüm B, Dahlmann M, Stein U (2018) MACC1-the first decade of a key metastasis molecule from gene discovery to clinical translation. Cancer Metastasis Rev 37(4):805–820

    Article  CAS  PubMed  Google Scholar 

  19. Wang S, Qiu J, Liu L, Su C, Qi L, Huang C, Chen X, Zhang Y, Ye Y, Ding Y, Liang L, Liao W (2020) CREB5 promotes invasiveness and metastasis in colorectal cancer by directly activating MET. J Exp Clin Cancer Res 39(1):168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Du F, Li X, Feng W, Qiao C, Chen J, Jiang M, Qiu Z, Qian M, Tian D, Nie Y, Fan D, Wu K, Xia L (2020) SOX13 promotes colorectal cancer metastasis by transactivating SNAI2 and c-MET. Oncogene 39(17):3522–3540

    Article  CAS  PubMed  Google Scholar 

  21. Zhang W, Jiang B, Guo Z, Sardet C, Zou B, Lam CS, Li J, He M, Lan HY, Pang R, Hung IF, Tan VP, Wang J, Wong BC (2010) Four-and-a-half LIM protein 2 promotes invasive potential and epithelial-mesenchymal transition in colon cancer. Carcinogenesis 31(7):1220–1229

    Article  CAS  PubMed  Google Scholar 

  22. Zhang W, Yang H, Wang Z, Wu Y, Wang J, Duan G, Guo Q, Zhang Y (2021) miR-320a/SP1 negative reciprocal interaction contributes to cell growth and invasion in colorectal cancer. Cancer Cell Int 21(1):175

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cui YM, Jiao HL, Ye YP, Chen CM, Wang JX, Tang N, Li TT, Lin J, Qi L, Wu P, Wang SY, He MR, Liang L, Bian XW, Liao WT, Ding YQ (2015) FOXC2 promotes colorectal cancer metastasis by directly targeting MET. Oncogene 34(33):4379–4390

    Article  CAS  PubMed  Google Scholar 

  24. Xu H, Liu L, Li W, Zou D, Yu J, Wang L, Wong CC (2021) Transcription factors in colorectal cancer: molecular mechanism and therapeutic implications. Oncogene 40(9):1555–1569

    Article  CAS  PubMed  Google Scholar 

  25. Scherz-Shouval R, Santagata S, Mendillo ML, Sholl LM, Ben-Aharon I, Beck AH, Dias-Santagata D, Koeva M, Stemmer SM, Whitesell L, Lindquist S (2014) The reprogramming of tumor stroma by HSF1 is a potent enabler of malignancy. Cell 158(3):564–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Levi-Galibov O, Lavon H, Wassermann-Dozorets R, Pevsner-Fischer M, Mayer S, Wershof E, Stein Y, Brown LE, Zhang W, Friedman G, Nevo R, Golani O, Katz LH, Yaeger R, Laish I, Porco JA, Sahai E, Shouval DS, Kelsen D, Scherz-Shouval R (2020) Heat shock factor 1-dependent extracellular matrix remodeling mediates the transition from chronic intestinal inflammation to colon cancer. Nat Commun 11(1):6245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Björk JK, Åkerfelt M, Joutsen J, Puustinen MC, Cheng F, Sistonen L, Nees M (2016) Heat-shock factor 2 is a suppressor of prostate cancer invasion. Oncogene 35(14):1770–1784

    Article  PubMed  Google Scholar 

  28. Carpenter RL, Gökmen-Polar Y (2019) HSF1 as a cancer biomarker and therapeutic target. Curr Cancer Drug Targets 19(7):515–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dong B, Jaeger AM, Hughes PF, Loiselle DR, Hauck JS, Fu Y, Haystead TA, Huang J, Thiele DJ (2020) Targeting therapy-resistant prostate cancer via a direct inhibitor of the human heat shock transcription factor 1. Sci Transl Med 12(574):eabb5647

    Article  CAS  PubMed  Google Scholar 

  30. Nagai N, Nakai A, Nagata K (1995) Quercetin suppresses heat shock response by down regulation of HSF1. Biochem Biophys Res Commun 208(3):1099–1105

    Article  CAS  PubMed  Google Scholar 

  31. Salamanca HH, Antonyak MA, Cerione RA, Shi H, Lis JT (2014) Inhibiting heat shock factor 1 in human cancer cells with a potent RNA aptamer. PLoS ONE 9(5):e96330

    Article  PubMed  PubMed Central  Google Scholar 

  32. Smith LM, Bhattacharya D, Williams DJ, Dixon I, Powell NR, Erkina TY, Erkine AM (2015) High-throughput screening system for inhibitors of human heat shock factor 2. Cell Stress Chaperones 20(5):833–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by Grant from the National Natural Science Foundation of China (81860522, 81860509), Grant for Clinical Medical Center of Yunnan Provincial Health Commission (2020LCZXKF-XH02, 2021LCZXXF-XH03), and the Yunnan Medical Training Program (202205AC160070, 2018HB049, D-2017002).

Author information

Authors and Affiliations

Authors

Contributions

YZ and QG designed the study. WZ, XZ, and PC performed most of the assays in the research. KY and YL performed the bioinformatic analysis. MT evaluated and scored the intensity of IHC staining. YZ analyzed the data statistically and wrote the manuscript.

Corresponding author

Correspondence to Yu Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All related experiments were approved by the Ethics Committee of the First People’s Hospital of Yunnan Province.

Consent to participate

All authors stated consent for the participation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, X., Cheng, P. et al. HSF4 promotes tumor progression of colorectal cancer by transactivating c-MET. Mol Cell Biochem 478, 1141–1150 (2023). https://doi.org/10.1007/s11010-022-04582-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04582-2

Keywords

Navigation