Skip to main content

Advertisement

Log in

Downregulation of glycoprotein non-metastatic melanoma protein B prevents high glucose-induced angiogenesis in diabetic retinopathy

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Diabetic retinopathy (DR), a microvascular complication characterized by abnormal angiogenesis, is the most common reason for irreversible blindness. Glycoprotein non-metastatic melanoma protein B (GPNMB), as a transmembrane protein, was found to be associated with angiogenesis. This study aims to investigate the role of GPNMB in DR. The levels of GPNMB and Integrin β1 were detected by real-time PCR and western blot and were found to be increased in human retinal microvascular endothelial cells (HRMECs) with high glucose (HG, 25 mmol/L) treatment. Knockdown of GPNMB was mediated by lentivirus carrying shRNA targeting GPNMB in vivo and in vitro. Functional experiments, including cell counting kit-8 (CCK-8), scratch, and tube formation assays, showed the anti-proliferative, anti-migrative, and anti-angiogenic roles of GPNMB knockdown in HRMECs using the lentivirus system following HG challenge. Additionally, increased GPNMB levels were detected in the retina of DR rats induced by a single intraperitoneal injection of streptozotocin (60 mg/kg) using real-time PCR, western blot, and immunofluorescence assays. Downregulation of GPNMB inhibited the angiogenesis and vascular endothelial growth factor production in the retina of rats with DR. Furthermore, overexpression of Integrin β1 led to increased angiogenesis in DR. Integrin β1 was indicated as a target protein of GPNMB. Upregulated-Integrin β1 restored GPNMB knockdown-induced inhibition of cell viability, migration, and tube formation in HRMECs. In conclusion, we provide evidence for the angiogenic role of GPNMB and demonstrate that silencing GPNMB may represent a therapeutic potential in the treatment of DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data in this study is available from the corresponding author.

References

  1. Duh EJ, Sun JK, Stitt AW (2017) Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. https://doi.org/10.1172/jci.insight.93751

    Article  PubMed  PubMed Central  Google Scholar 

  2. Teo ZL, Tham YC, Yu M, Chee ML, Rim TH, Cheung N, Bikbov MM, Wang YX, Tang Y, Lu Y, Wong IY, Ting DSW, Tan GSW, Jonas JB, Sabanayagam C, Wong TY, Cheng CY (2021) Global prevalence of diabetic retinopathy and projection of burden through 2045: systematic review and meta-analysis. Ophthalmology 128:1580–1591. https://doi.org/10.1016/j.ophtha.2021.04.027

    Article  PubMed  Google Scholar 

  3. Antonetti DA, Silva PS, Stitt AW (2021) Current understanding of the molecular and cellular pathology of diabetic retinopathy. Nat Rev Endocrinol 17:195–206. https://doi.org/10.1038/s41574-020-00451-4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625. https://doi.org/10.2337/diabetes.54.6.1615

    Article  CAS  PubMed  Google Scholar 

  5. Mrugacz M, Bryl A, Zorena K (2021) Retinal vascular endothelial cell dysfunction and neuroretinal degeneration in diabetic patients. J Clin Med. https://doi.org/10.3390/jcm10030458

    Article  PubMed  PubMed Central  Google Scholar 

  6. Weterman MA, Ajubi N, van Dinter IM, Degen WG, van Muijen GN, Ruitter DJ, Bloemers HP (1995) nmb, A novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int J Cancer 60:73–81. https://doi.org/10.1002/ijc.2910600111

    Article  CAS  PubMed  Google Scholar 

  7. Selim AA (2009) Osteoactivin bioinformatic analysis: prediction of novel functions, structural features, and modes of action. Med Sci Monit 15(2):19–33

    Google Scholar 

  8. Ren F, Zhao Q, Liu B, Sun X, Tang Y, Huang H, Mei L, Yu Y, Mo H, Dong H, Zheng P, Mi Y (2020) Transcriptome analysis reveals GPNMB as a potential therapeutic target for gastric cancer. J Cell Physiol 235:2738–2752. https://doi.org/10.1002/jcp.29177

    Article  CAS  PubMed  Google Scholar 

  9. Monteiro MB, Pelaes TS, Santos-Bezerra DP, Thieme K, Lerario AM, Oba-Shinjo SM, Machado UF, Passarelli M, Marie SKN, Correa-Giannella ML (2020) Urinary sediment transcriptomic and longitudinal data to investigate renal function decline in type 1 diabetes. Front Endocrinol (Lausanne) 11:238. https://doi.org/10.3389/fendo.2020.00238

    Article  PubMed  Google Scholar 

  10. Hu H, Li Z, Lu M, Yun X, Li W, Liu C, Guo A (2018) Osteoactivin inhibits dexamethasone-induced osteoporosis through up-regulating integrin beta1 and activate ERK pathway. Biomed Pharmacother 105:66–72. https://doi.org/10.1016/j.biopha.2018.05.051

    Article  CAS  PubMed  Google Scholar 

  11. Silva R, D’Amico G, Hodivala-Dilke KM, Reynolds LE (2008) Integrins: the keys to unlocking angiogenesis. Arterioscler Thromb Vasc Biol 28:1703–1713. https://doi.org/10.1161/ATVBAHA.108.172015

    Article  CAS  PubMed  Google Scholar 

  12. Mia MS, Jarajapu Y, Rao R, Mathew S (2021) Integrin beta1 promotes pancreatic tumor growth by upregulating kindlin-2 and TGF-beta receptor-2. Int J Mol Sci. https://doi.org/10.3390/ijms221910599

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lu Q, Xie Z, Yan C, Ding Y, Ma Z, Wu S, Qiu Y, Cossette SM, Bordas M, Ramchandran R, Zou MH (2018) SNRK (sucrose nonfermenting 1-related kinase) promotes angiogenesis in vivo. Arterioscler Thromb Vasc Biol 38:373–385. https://doi.org/10.1161/ATVBAHA.117.309834

    Article  CAS  PubMed  Google Scholar 

  14. Byzova TV, Goldman CK, Pampori N, Thomas KA, Bett A, Shattil SJ, Plow EF (2000) A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 6:851–860

    CAS  PubMed  Google Scholar 

  15. Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22:617–625. https://doi.org/10.1016/j.ceb.2010.08.010

    Article  CAS  PubMed  Google Scholar 

  16. Zhang YX, Qin CP, Zhang XQ, Wang QR, Zhao CB, Yuan YQ, Yang JG (2017) Knocking down glycoprotein nonmetastatic melanoma protein B suppresses the proliferation, migration, and invasion in bladder cancer cells. Tumour Biol 39:1010428317699119. https://doi.org/10.1177/1010428317699119

    Article  CAS  PubMed  Google Scholar 

  17. Hu X, Zhang P, Xu Z, Chen H, Xie X (2013) GPNMB enhances bone regeneration by promoting angiogenesis and osteogenesis: potential role for tissue engineering bone. J Cell Biochem 114:2729–2737. https://doi.org/10.1002/jcb.24621

    Article  CAS  PubMed  Google Scholar 

  18. Narasaraju T, Shukla D, More S, Huang C, Zhang L, Xiao X, Liu L (2015) Role of microRNA-150 and glycoprotein nonmetastatic melanoma protein B in angiogenesis during hyperoxia-induced neonatal lung injury. Am J Respir Cell Mol Biol 52:253–261. https://doi.org/10.1165/rcmb.2013-0021OC

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mao XB, You ZP, Wu C, Huang J (2017) Potential suppression of the high glucose and insulin-induced retinal neovascularization by Sirtuin 3 in the human retinal endothelial cells. Biochem Biophys Res Commun 482:341–345. https://doi.org/10.1016/j.bbrc.2016.11.065

    Article  CAS  PubMed  Google Scholar 

  20. Covassin LD, Villefranc JA, Kacergis MC, Weinstein BM, Lawson ND (2006) Distinct genetic interactions between multiple Vegf receptors are required for development of different blood vessel types in zebrafish. Proc Natl Acad Sci U S A 103:6554–6559. https://doi.org/10.1073/pnas.0506886103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Almasry SM, Habib EK, Elmansy RA, Hassan ZA (2018) Hyperglycemia alters the protein levels of prominin-1 and VEGFA in the retina of albino rats. J Histochem Cytochem 66:33–45. https://doi.org/10.1369/0022155417737484

    Article  CAS  PubMed  Google Scholar 

  22. Bromberg-White JL, Glazer L, Downer R, Furge K, Boguslawski E, Duesbery NS (2013) Identification of VEGF-independent cytokines in proliferative diabetic retinopathy vitreous. Invest Ophthalmol Vis Sci 54:6472–6480. https://doi.org/10.1167/iovs.13-12518

    Article  CAS  PubMed  Google Scholar 

  23. Kovacs K, Marra KV, Yu G, Wagley S, Ma J, Teague GC, Nandakumar N, Lashkari K, Arroyo JG (2015) Angiogenic and inflammatory vitreous biomarkers associated with increasing levels of retinal ischemia. Invest Ophthalmol Vis Sci 56:6523–6530. https://doi.org/10.1167/iovs.15-16793

    Article  CAS  PubMed  Google Scholar 

  24. Taya M, Hammes SR (2018) Glycoprotein non-metastatic melanoma protein B (GPNMB) and cancer: a novel potential therapeutic target. Steroids 133:102–107. https://doi.org/10.1016/j.steroids.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  25. Mrugacz M, Bryl A, Falkowski M, Zorena K (2021) Integrins: an important link between angiogenesis. Inflammation and Eye Diseases Cells. https://doi.org/10.3390/cells10071703

    Article  PubMed  Google Scholar 

  26. Park SW, Yun JH, Kim JH, Kim KW, Cho CH, Kim JH (2014) Angiopoietin 2 induces pericyte apoptosis via alpha3beta1 integrin signaling in diabetic retinopathy. Diabetes 63:3057–3068. https://doi.org/10.2337/db13-1942

    Article  PubMed  Google Scholar 

  27. Van Hove I, Hu TT, Beets K, Van Bergen T, Etienne I, Stitt AW, Vermassen E, Feyen JHM (2021) Targeting RGD-binding integrins as an integrative therapy for diabetic retinopathy and neovascular age-related macular degeneration. Prog Retin Eye Res 85:100966. https://doi.org/10.1016/j.preteyeres.2021.100966

    Article  CAS  PubMed  Google Scholar 

  28. Shaw LT, Mackin A, Shah R, Jain S, Jain P, Nayak R, Hariprasad SM (2020) Risuteganib-a novel integrin inhibitor for the treatment of non-exudative (dry) age-related macular degeneration and diabetic macular edema. Expert Opin Investig Drugs 29:547–554. https://doi.org/10.1080/13543784.2020.1763953

    Article  CAS  PubMed  Google Scholar 

  29. Chen S, Chakrabarti R, Keats EC, Chen M, Chakrabarti S, Khan ZA (2012) Regulation of vascular endothelial growth factor expression by extra domain B segment of fibronectin in endothelial cells. Invest Ophthalmol Vis Sci 53:8333–8343. https://doi.org/10.1167/iovs.12-9766

    Article  CAS  PubMed  Google Scholar 

  30. Becker V, Hui X, Nalbach L, Ampofo E, Lipp P, Menger MD, Laschke MW, Gu Y (2021) Linalool inhibits the angiogenic activity of endothelial cells by downregulating intracellular ATP levels and activating TRPM8. Angiogenesis 24:613–630. https://doi.org/10.1007/s10456-021-09772-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhattacharyya S, Feferman L, Sharma G, Tobacman JK (2018) Increased GPNMB, phospho-ERK1/2, and MMP-9 in cystic fibrosis in association with reduced arylsulfatase B. Mol Genet Metab 124:168–175. https://doi.org/10.1016/j.ymgme.2018.02.012

    Article  CAS  PubMed  Google Scholar 

  32. Maric G, Annis MG, Dong Z, Rose AA, Ng S, Perkins D, MacDonald PA, Ouellet V, Russo C, Siegel PM (2015) GPNMB cooperates with neuropilin-1 to promote mammary tumor growth and engages integrin alpha5beta1 for efficient breast cancer metastasis. Oncogene 34:5494–5504. https://doi.org/10.1038/onc.2015.8

    Article  CAS  PubMed  Google Scholar 

  33. Moussa FM, Hisijara IA, Sondag GR, Scott EM, Frara N, Abdelmagid SM, Safadi FF (2014) Osteoactivin promotes osteoblast adhesion through HSPG and alphavbeta1 integrin. J Cell Biochem 115:1243–1253. https://doi.org/10.1002/jcb.24760

    Article  CAS  PubMed  Google Scholar 

  34. Bhatwadekar AD, Kansara V, Luo Q, Ciulla T (2020) Anti-integrin therapy for retinovascular diseases. Expert Opin Investig Drugs 29:935–945. https://doi.org/10.1080/13543784.2020.1795639

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Key Scientific Research Project of Colleges and Universities in Henan Province (19A320059).

Author information

Authors and Affiliations

Authors

Contributions

QT: designed and carried out the experiments, performed data analysis and wrote the manuscript. XX: carried out the experiments and revised the manuscript. WZ: performed data analysis and revised the manuscript.

Corresponding author

Correspondence to Tingyu Qin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures in this study were performed in agreement with the Ethics Committee in The First Affiliated Hospital of Zhengzhou University.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TIF 164 KB)

Supplementary file2 (TIF 173 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, T., Xi, X. & Wu, Z. Downregulation of glycoprotein non-metastatic melanoma protein B prevents high glucose-induced angiogenesis in diabetic retinopathy. Mol Cell Biochem 478, 697–706 (2023). https://doi.org/10.1007/s11010-022-04537-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04537-7

Keywords

Navigation