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Abstract
To investigate whether bone marrow mesenchymal stem cells (BMSCs) attenuate pancreatic injury via mediating oxida-
tive stress in severe acute pancreatitis (SAP). The SAP model was established in rats. Phosphate buffered saline (PBS) or 
BMSCs were injected into the rats by tail veins. ML385 was used to down-regulate Nrf2 expression in rats. Pancreatic 
pathological score was used to evaluated pancreatic injury. Inflammatory-associated cytokines, serum lipase and amylase, 
levels of myeloperoxidase, malondialdehyde, reactive oxygen species and superoxide dismutase, as well as catalase activity 
were measured for injury severity evaluation. ML385 aggravates oxidative stress in SAP + ML385 group, compared with 
SAP + PBS group. BMSCs transplantation alleviated pancreatic injury and enhance antioxidant tolerance in SAP + BMSCs 
group, while ML385 administration weakened this efficacy in SAP + BMSCs + ML385 group. In addition, BMSCs promoted 
Nrf2 nuclear translocation via PI3K/AKT signaling pathway. Besides, BMSCs reduced inflammatory response by inhibit-
ing NF-κB signaling pathway in SAP. BMSCs can inhibit oxidative stress and reduce pancreatic injury via inducing Nrf2 
nuclear translocation in SAP.
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Abbreviations
BMSCs	� Bone marrow-derived mesenchymal stem cells
SAP	� Severe acute pancreatitis
Keap1	� Kelch-like ECH-associated protein 1
PBS	� Phosphate buffered saline
ROS	� Reactive oxygen species
MPO	� Myeloperoxidase
SOD	� Superoxide dismutase
MDA	� Malondialdehyde
GSH	� Glutathione
CAT​	� Catalase
ARE	� Antioxidant responsive element

HPF	� High-power field
MPTP	� Mitochondrial permeability transition pore

Introduction

Acute pancreatitis (AP) is a common digestive inflammatory 
disease. Approximately 20% of patients can still develop 
severe acute pancreatitis (SAP) with a mortality rate ranging 
from 7 to 30% [1–3]. The treatment of SAP remains relying 
on early fluid resuscitation and supportive care with limited 
success. Alternative treatment options are therefore needed.

Pathologically, SAP is the result of disruption of pancre-
atic homeostasis, characterized by acinar cell destruction 
and oxidative stress. Researches have shown that oxidative 
stress contribute to tissue damage during the early phases 
of SAP. On one hand, excess reactive oxygen species (ROS) 
produced by pancreatic acinar cells (PACs) can exacerbate 
vasoconstriction and vascular damage, leading to microcir-
culatory disturbance in pancreas, on the other hand, it acti-
vates the nuclear factor kappa B (NF-κB) signaling pathway 
in PACs, promoting the release of inflammatory cytokines 
and inducing the inflammatory cascade [4–6]. Previous 
studies have shown that inhibition of NF-κB can reduce 
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inflammation in pancreatitis [7, 8]. Moreover, decreasing 
the production of ROS may be clinically valuable for the 
treatment of SAP.

Physiologically, excessive ROS are reduced by a series 
of antioxidants, most of which are regulated by nuclear 
factor erythroid-2-related factor 2(Nrf2). Nrf2 belongs to 
cap'n'collar subfamily of basic leucinezipper (cnc-bZip). In 
basal conditions, the Kelch-like ECH-associated protein 1 
(Keap1) binds Nrf2 in the cytoplasm, giving rise to a ubiqui-
tin ligase complex that ubiquitinates Nrf2 and subsequently 
degrades it. When under oxidative stress, increased produc-
tion of ROS decreases the ubiquitin ligase activity, resulting 
in the dissociation of Nrf2 from Keap1 complex. The acti-
vated Nrf2 then translocate into the nucleus and binds to the 
promoter of antioxidant responsive element (ARE), upregu-
lating the expression of antioxidants and anti-inflammatory 
molecules [9]. Fusco et al. found that hydroxytyrosol (HT), 
as an antioxidant phenol, was able to reduce pancreatic and 
intestinal injury in SAP mice, which was achieved in part via 
Nrf2 activation [10]. In addition, ML385 has been proved to 
exacerbate the course of acute pancreatitis in mice, which 
can block Nrf2 transcriptional activity by repressing binding 
of Nrf2 to the ARE promoter sequence [11, 12]. Considering 
the association between SAP and oxidative stress, Nrf2 may 
be a potential target for the treatment of SAP by enhancing 
resistance to oxidative stress.

Previous studies have confirmed that bone marrow-
derived mesenchymal stem cells (BMSCs) could attenuate 
local pancreatic damage and systemic inflammation in SAP 
[13]. We also found that the levels of antioxidant enzymes in 
SAP rats treated with BMSCs were significantly increased, 
while the inflammatory infiltration in the pancreas was 
reduced [14, 15]. Thus, the homing BMSCs may modulate 
antioxidant release in SAP, while the underlying mechanism 
remains unclear. Hence, given the role of Nrf2 in antioxi-
dant defenses, we speculated that the anti-oxidative effect of 
BMSCs in SAP was realized by regulating Nrf2 expression. 
This study was conducted to explore a new mechanism by 
which BMSCs attenuate SAP.

Materials and methods

Ethics statement

The animal experiments were approved by the animal ethics 
committee of Tongji University. All the animals were car-
ried out in compliance with the guideline of the US National 
Institutes of Health for the care and use of laboratory ani-
mals (NIH publication No. 85-23, revised 1996). Surgeries 
were performed under sodium pentobarbital anesthesia; all 
the endeavors were made to minimize suffering.

Isolation, culture and identification of BMSCs

BMSCs were isolated from wild-type male Sprague–Daw-
ley rats (SD rats, 100–150 g, aged 4 weeks). In brief, bone 
marrow cells were isolated from the marrow cavity by 
flushing with DMEM-LG medium (Invitrogen Life Tech-
nologies, NY, USA). After centrifugation, the collected 
cells were cultured with medium-LG supplement with 10% 
fetal bovine serum (sigma-Aldrich, USA), 1% penicillin 
and streptomycin (C.C. Pro, Neustadt, Germany). Then, 
cells were incubated at 37 °C in humidified atmosphere 
with 5% CO2. Using flow cytometry for BMSCs identifica-
tion. BMSCs from passages 3–5 were used for treatment. 
Our previous work has given a detailed description of the 
procedure above [16].

Establishment of SAP model and experimental groups

Wild-type Sprague–Dawley rats (SD rats, 200–250  g, 
aged 6 weeks) were purchased from Shanghai Laboratory 
Animal Co. Ltd (Shanghai, China). They were housed at 
25 ℃ and 50% humidity with an alternating 12 h dark/
light cycle, feeding with standard laboratory water and 
food. The SAP model were induced by retrograde pancre-
atic duct injection of 3% sodium taurocholate (NaT, 1 ml/
kg body weight; 145-42-6, Sigma-Aldrich, St Louis, Mis-
souri, USA) as previously described [17].

We randomly divided the rats into six groups (n = 6–8): 
normal control group (NC), Sham group (rats underwent 
the same operation with SAP rats without NaT injec-
tion), SAP + PBS group (SAP model treated with PBS), 
SAP + ML385 group (SAP model treated with ML385), 
SAP + BMSCs group (SAP model treated with BMSCs) 
and SAP + BMSCs + ML385 group (SAP model treated 
with BMSCs plus ML385). Either BMSCs(1 × 107 cells/
kg) or an equal volume of PBS were injected into the rats 
via tail vein within 6 h after SAP induction. ML385 (5 mg/
kg body weight; HY-100523, MCE Co. Ltd., Shanghai, 
China) acted as Nrf2 inhibitor and was intraperitoneal 
injected 1 h before SAP induction [18]. Rats were eutha-
nized 3 days after operations above.

Histopathology

The pancreatic tissues were sectioned at 5–6 μm (made 
3 sections for each sample). Sections were stained with 
hematoxylin and eosin (H&E) and were evaluated accord-
ing to the following four parameters: tissue edema, inflam-
matory cell infiltration, vacuolization, and cell necrosis. 
The observation and evaluation of the tissues were carried 
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out separately by two observers. Table 1 showed the patho-
logical scoring criteria and scoring method.

Quantitative real‑time PCR (qRT‑PCR) assay

Total RNA was extracted from frozen pancreatic issues 
using Trizol reagent (Invitrogen). cDNA was synthesized 
with 1 μg of total RNA using PrimeScript RT Reagent Kit 
(TaKaRa). Using a KAPA SYBR FAST qPCR Kit (Kapa 
Biosystems) to perform qRT-PCR assay. GAPDH was used 
as the endogenous control. The primer sequences are as fol-
lowing: Nrf2, Forward (F): TCC​CAG​CAG​GAC​ATG​GAT​
TTG, Reverse (R): GCT​GGC​TGA​ATT​GGG​AGG​AAT; and 
GAPDH, F: CGC​TAA​CAT​CAA​ATG​GGG​TG, R: TTG​CTG​
ACA​ATC​TTG​AGG​GAG.

Biochemical analysis

The serum levels of amylase (mU/ml) and lipase (mU/ml) 
were assayed separately by colorimetric assay kit (BioVi-
sion, Milpitas, USA) according to the manufacture’s proto-
col. Cytokines in the serum including tumor necrosis factor 
(TNF)-α, interleukin(IL)-1β, IL-6, and IL-10 were measured 
by ELISA kits (Minneapolis, MN, USA, R&D Systems). 
Using agent kits (Jiancheng, Nanjing, China) to evaluate tis-
sue levels of ROS, superoxide dismutase (SOD), malondial-
dehyde (MDA) and glutathione (GSH) and catalase (CAT) 
and myeloperoxidase (MPO) activity.

Western blotting

Total proteins were extracted from the rat pancreas, while 
pancreatic nucleoproteins were extracted by using a Nuclear 
Protein Extraction Kit (Jiancheng, Nanjing, China). Protein 
concentrations were quantified using a BCA protein assay kit 
(Pierce BCA). Equal amount of proteins were separated on 
8% SDS-PAGE gels and transferred onto the nitrocellulose 
membranes. The membranes were then incubated overnight 
at 4 °C with the following primary antibodies: Nrf2(dilution 
1:1000, proteintech), Keap1(dilution 1:1000, CST), inhibitor 
of nuclear factor kappa B kinase β(IKKβ, dilution 1:1000, 
CST), NF-κB p65(dilution 1:1000, CST), phosphorylated 

phosphatidylinositol-4,5-bisphosphate 3-kinase(p-PI3K, 
dilution 1:1000, CST), phosphorylated protein kinase B(p-
AKT, dilution 1:1000, CST), GAPDH (dilution 1:5000, 
proteintech), and laminB1(dilution 1:2000, Abcam). After 
incubated with the corresponding secondary antibodies for 
2 h, the protein bands were visualized by using the Odyssey 
scanner (LI-COR Biosciences).

Immunohistochemical analysis

3% hydrogen peroxide was used to incubate the dewaxed 
pancreatic tissue for 30 min. Then the sections were infil-
trated in citrate buffer and boil at high pressure for anti-
gen retrieval. Using anti- NF-κB p65(dilution 1:100, CST) 
and anti-Nrf2 antibodies (dilution 1:100, proteintech) and 
to stain the sections at 4 °C overnight. Then, washing the 
sections with PBS and applying the peroxidase-labeled sec-
ondary antibody at room temperature for 1 h. Finally, the 
sections were stained with 3,3′-diaminobenzidine tetrahy-
drochloride (DAB) and hematoxylin for visualization. The 
tissues of each sample were observed in five different fields 
by optical microscope at ×200.

Statistical analysis

Experiments above are repeated independently at least three 
times. The collected data are shown as mean ± standard devi-
ations (SD). Statistical analysis was processed by GraphPad 
Prism 8.0 (GraphPad Prism Software, CA, USA) and per-
formed with an unpaired Student t-test or one-way ANOVA. 
A value of P < 0.05 was considered statistically significant.

Results

BMSCs ameliorate pancreas injury by regulating 
Nrf2

ML385 was injected as an inhibitor to down-regu-
late the expression of Nrf2. The expression of Nrf2 
was significantly declined in SAP + ML385 group and 
SAP + BMSCs + ML385 group, indicating the reliability of 

Table 1   Histological scoring for SAP

HPF High-power field. Pathological score = edema (0–4) + necrosis (0–4) + inflammatory cell infiltration (0–4) + vacuolization (0–4)

Score Edema Inflammatory cellular infiltration Vacuolization Necrosis

0 Absent Absent Absent Absent
1 Diffuse expansion of interlobar septa Around ductal margin Periductal, < 5% 1–5 necrotic cells/HPF
2 Diffuse expansion of interlobular septa In parenchyma, < 50% of lobules Focal, 5–20% 6–10 necrotic cells/HPF
3 Diffuse expansion of interacinar septa In parenchyma, 50–75% of lobules Diffuse, 20–50% 11–15 necrotic cells/HPF
4 Diffuse expansion of intercellular septa In parenchyma, > 75% of lobules Severe, > 50%  > 15 necrotic cells/HPF
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ML385 (Fig. 1A, B). Compared with NC and Sham group, 
the serum levels of amylase and lipase were significantly 
higher than those in SAP groups (SAP + PBS group and 
SAP + ML385 group), as well as the pathological scores for 

injury severity evaluation. Moreover, the injection of ML385 
exacerbated pancreatic injury in SAP + ML385 group, com-
pared with SAP + PBS group. In addition, the injection of 
BMSCs obviously ameliorate pancreatic edema, infiltration, 

Fig. 1   BMSCs could ameliorate SAP by regulating Nrf2. A–C 
ML385 inhibited the expression of Nrf2 in both SAP + ML385 and 
SAP + BMSCs + ML385 group. On the contrary, BMSCs up-regu-
lated Nrf2 expression in injured pancreas, compared with SAP + PBS 
group. D–G BMSCs could significantly reduce the serum level of 
amylase, lipase and ameliorate tissue damage in SAP, compared 

with SAP + PBS group. However, the efficacy of BMSCs could be 
attenuated by ML385 as shown in SAP + BMSCs + ML385 group. 
Data are shown as mean ± SD for at least 3 separate experiments. (In 
G, × 200 magnification; n = 6 per group; *p < 0.05, **p < 0.01, and 
***p < 0.001)
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and acinar necrosis, the same applies for serum amylase 
and lipase, compared with SAP groups (Fig. 1A, B, D–G). 
Besides, the transplantation of BMSCs up-regulated the 
expression of Nrf2 (Fig. 1A, C), while ML385 weakened the 
protective effect of BMSCs in SAP (SAP + BMSCs group 
vs SAP + BMSCs + ML385 group). Therefore, we confirmed 
that BMSCs could ameliorate pancreas injury, while inhibi-
tion of Nrf2 could partially block this efficacy.

BMSCs induce Nrf2 nuclear translocation 
via activating the PI3K/AKT pathway

To further explore the correlation of BMSCs and Nrf2, 
the nuclear level of Nrf2 was detected. BMSCs treatment 
increased Nrf2 translocation in the nucleus, whereas the 
expression of Keap1 was not significantly changed (Fig. 2A, 
F–H). In addition, upregulation of PI3K and p-AKT were 
also observed in SAP + BMSCs group, whereas total AKT 
expression remained unaltered (Fig. 2A–E). Previous stud-
ies have confirmed that PI3K/AKT signaling pathway is 
involved in Nrf2-mediated antioxidant activation and cell 
ferroptosis [19, 20]. Thus, we speculated that BMSCs could 
promote nuclear translocation of Nrf2 in SAP, which is 
achieved by activating the PI3K/AKT signaling pathway.

BMSCs increase oxidative stress tolerance in SAP 
via inducing Nrf2 nuclear translocation

A range of indexes were detected to assess antioxidant activ-
ity in SAP rats. The levels of MPO, MDA and ROS were 
increased and the level of GSH, SOD and CAT activity were 
reduced in SAP groups compared with the NC and Sham 
groups, but these were distinctly improved after BMSCs 
injection (Fig. 3A–F). Further, the levels of MPO, MDA 
and ROS were much higher in the SAP + BMSCs + ML385 
group than those in the SAP + BMSCs group, whereas 
the level of GSH, SOD and CAT activity were decreased 
(Fig. 3A–F). Therefore, the protective effect of BMSCs 
on increasing oxidative stress tolerance can be blocked by 
ML385. In summary, BMSCs ameliorate SAP by enhanc-
ing pancreatic antioxidant activity via inducing Nrf2 nuclear 
translocation.

BMSCs inhibit the NF‑κB signaling pathway 
and reduce inflammation in SAP via inducing Nrf2 
nuclear translocation

Inflammatory-associated cytokines were measured to 
assess inflammation in SAP. The levels of pro-inflamma-
tory cytokines (TNF-α, IL-6, and IL-1β) were significantly 
increased, whereas the anti-inflammatory cytokine (IL-10) 
level was decreased in SAP groups compared with NC and 
Sham group (Fig. 4A–D). Besides, BMSCs treatment could 

effectively attenuate pancreatic inflammatory severity. How-
ever, the inhibition of Nrf2 aggravated the inflammatory 
response in SAP + ML385 group, and the therapeutic effect 
of BMSCs was also mitigated in SAP + ML385 + BMSCs 
group (Fig. 4A–D).

Furthermore, we analyzed the expressions of NF-κB-
associated genes (NF-κB p65 and IKKβ) in the pancreas. 
The expression of NF-κB p65 was observed increased after 
SAP induction, especially in SAP + ML385 group (Fig. 4E, 
F, H). As a suppressor protein of p65, IKKβ was also found 
decreased in SAP groups (Fig. 4E, G). After BMSCs trans-
plantation, the expression of NF-κB p65 was down-regu-
lated, as well as the expression of IKKβ was up-regulated in 
SAP + BMSCs group. However, inhibition of Nrf2 weakened 
the functional role of BMSCs in SAP + BMSCs + ML385 
group (Fig. 4E–H). Therefore, we confirmed that BMSCs 
inhibited the NF-κB signaling pathway and reduced inflam-
mation by inducing Nrf2 nuclear translocation in SAP.

Discussion

SAP is an inflammatory disease marked by premature activa-
tion of digestive enzymes, inflammatory cell infiltration and 
tissue necrosis. Oxidative stress is one of the major path-
ways that contribute to PACs inflammation. Animal-based 
studies have shown that antioxidant treatment could amelio-
rate oxidative stress and decrease pro-inflammatory factor 
expression in SAP [21–23]. However, this treatment for SAP 
has been attempted with limited success in clinical [24]. 
A meta-analysis involving more than 3000 patients showed 
that antioxidant supplementation did not appear to prevent 
post-ERCP pancreatitis [25]. That is, patients of pancreati-
tis often derive less benefit from single antioxidant therapy. 
In addition, vascular endothelial injury is also a common 
pathologic finding in SAP, and thrombosis is a potentially 
fatal complication in patients undergoing SAP [26]. Inflam-
matory cell infiltration often contributes to increased vascu-
lar permeability and activation of coagulation cascades. In 
turn, the activated thrombin further stimulates inflammation 
creating a positive feedback loop [27, 28]. Given the com-
plexity of the pathological mechanisms involved in SAP, a 
new comprehensive therapy is necessary.

BMSCs have the functions of self-renewal, multidirec-
tional differentiation, immune regulation and paracrine [29]. 
Patil et al. found that MSC-derived exosomes could reduce 
inflammation, promote angiogenesis, and decrease infarct 
volume in myocardial ischemic injury, which confirmed the 
anti-inflammatory and reparative action of MSCs [30]. In 
addition, our previous studies have also shown that BMSCs 
reduce both local pancreatic injury and systemic inflamma-
tion by repairing vascular injury and inhibiting cell necrop-
tosis [31, 32]. Therefore, BMSCs is expected to become the 
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Fig. 2   BMSCs induce Nrf2 
nuclear translocation via the 
PI3K/AKT signaling pathway. 
A–F Western blot showed that 
BMSCs increased the total 
protein level of PI3K, and 
enhanced phosphorylation of 
AKT in SAP, whereas the total 
protein level of AKT was not 
significant changed. Besides, 
Nrf2 was notably increased in 
the nucleus in SAP + BMSCs 
group. G, H Immunohisto-
chemistry was performed to 
confirm Nrf2 nuclear transloca-
tion induced by BMSCs. Data 
are shown as mean ± SD for at 
least 3 separate experiments. 
(In H, × 200 magnification; 
n = 6 per group; **p < 0.01 and 
***p < 0.001)
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basis of a novel therapy for SAP. Oxidative stress plays a 
key role in the progression of SAP, while there is not much 
research on whether BMSCs therapy has antioxidant effects. 
In our study, the decreased expressions of antioxidants in 
SAP were reversed by BMSCs transplantation, indicating 
that BMSCs may protected sodium taurocholate induced 
SAP in rat by mediating antioxidants.

As a master regulator of inflammatory response, Nrf2 
have been a research hotspot in recent years. The expres-
sion of Nrf2 is mainly carried out by the negative regu-
lation of Keap1. Keap1 is a subunit of the E3 ubiquitin 
ligase based on Cullin3 (Cul3). During stress, the pres-
ence of electrophiles and ROS reduced the activity of E3 
ligase in Keap1-Cul3 complex, which makes Nrf2 unstable 
and finally transfer into the nucleus [33, 34]. Wakabayashi 
et al. constructed a Keap1-deficiency mouse model that 
allowed Nrf2 to accumulate in the nucleus, eventually 

inducing cell protection [35]. In addition, activation of 
PI3K/AKT signaling pathway can also induce expression 
of Nrf2. In our study, BMSCs activated PI3K/AKT sign-
aling pathway, followed by nuclear Nrf2 upregulation in 
acinar cells. Therefore, we confirmed that BMSCs could 
promote nuclear translocation of Nrf2 in SAP by activating 
the PI3K/AKT signaling pathway.

Whether AP progresses to SAP depends to some extent 
on the balance between oxidative stress and natural defense. 
Although the inflammation and the activation of trypsin are 
relatively independent without interaction, oxidative stress 
can participate in the process of both. Excess ROS released 
by NADPH oxidase can not only change the mitochondrial 
permeability transition pore (MPTP) directly, leading to 
apoptosis and necrosis, but also activate the NF-κB sign-
aling pathway to initiate inflammatory response. Previous 
studies have proved the inhibitory effect of BMSCs on 

Fig. 3   BMSCs increase oxidative stress tolerance in SAP. A–F 
The levels of MPO, MDA and ROS were increased and total GSH, 
SOD and CAT activity were reduced after SAP induction. BMSCs 
decreased the levels of MPO, MDA and ROS and enhanced GSH, 
SOD and CAT activity in SAP. However, intraperitoneal injec-

tion of ML385 could lessen these antioxidant effects as shown in 
SAP + BMSCs + ML385 group. Data are shown as mean ± SD for at 
least 3 separate experiments. (n = 6 per group, *p < 0.05, **p < 0.01, 
and ***p < 0.001)
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Fig. 4   BMSCs inhibit the NF-κB signaling pathway and reduce 
inflammation in SAP via inducing Nrf2 nuclear translocation. A–D 
The expressions of pro-inflammatory cytokines (TNF-α, IL-1β and 
IL-6) were significantly decreased by BMSCs, while the expressions 
of anti-inflammatory cytokines (IL-10) were significantly increased. 
In addition, ML385 partially inhibited the anti-inflammatory effects 
of BMSCs. E, F Nuclear protein level of NF-κB p65 and total pro-
tein level of IKKβ were measured by Western blot. NF-κB p65 

levels in the nucleus were decreased and the expression of IKKβ 
was increased after BMSCs treatment, while injection of ML385 
increased NF-κB p65 levels in SAP + BMSCs + ML385 group. G, 
H Immunohistochemistry showed the nuclear enrichment of NF-κB 
p65. Data are shown as mean ± SD for at least 3 separate experiments. 
(In H, × 200 magnification; n = 6 per group; *p < 0.05, **p < 0.01, and 
***p < 0.001)
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NF-κB signaling pathway [36]. Moreover, we found that 
this inhibition is partly achieved by promoting Nrf2 nuclear 
translocation.

Although we have proved that BMSCs can mediate the 
oxidative stress reaction in the early stage of SAP. Whether 
the therapeutic effect can or will be sustained remains 
unknown and further monitoring of prognosis over a longer 
period is warranted. Nonetheless, our work has demonstrated 
that BMSCs can ameliorate SAP and inhibit oxidative stress 
by inducing Nrf2 nuclear translocation in rats (Fig. 5).

Conclusions

The present study proved that BMSCs treatment effectively 
attenuated pancreatic injury severity in SAP rats. BMSCs 
reduced oxidative stress and enhanced antioxidant activity 
by inducing Nrf2 nuclear translocation via PI3K/AKT sign-
aling pathway. In addition, BMSCs reduced inflammatory 
response in SAP by inhibiting the NF-κB signaling pathway. 
The results above suggest the potential therapeutic effect of 
BMSCs in SAP.

Acknowledgements  The present study was supported by research 
Grants from the National Natural Science Foundation of China 
(No.81670582).

Author contribution  All authors contributed to the study conception 
and design. Conceptualization: DZ; Methodology: DZ, WY, and WX; 
Formal analysis and investigation: WX, ZM and ZH; Writing-original 
draft preparation: DZ, WY; Writing-review and editing: DZ, WY, WX 
and ZS; Funding acquisition: ZS; Resources: ZS; Supervision: ZS. All 

authors commented on previous versions of the manuscript. All authors 
read and approved the final manuscript.

Funding  The present study was supported by research grants from the 
National Natural Science Foundation of China (No.81670582).

Data availability  All data generated or analyzed during this study are 
included in this published article [and its supplementary information 
files].

Code availability  Code availability not applicable to this article as no 
code were generated during the current study.

Declarations 

Conflict of interest  The authors declare that they have no conflicts of 
interest. The authors have no commercial, proprietary or financial in-
terests in the products or companies described in this article.

Ethical approval  The animal experiments were approved by the animal 
ethics committee of Tongji University. All the animals were carried 
out in compliance with the guideline of the US National Institutes of 
Health for the care and use of laboratory animals (NIH publication 
No.85–23, revised 1996). Surgeries were performed under sodium 
pentobarbital anesthesia; all the endeavors were made to minimize 
suffering.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 

Fig. 5   Possible mechanism 
of BMSCs therapy for SAP. 
Oxidative stress is boosted in 
pancreas as consequence of 
various injuries. The expression 
of Nrf2 will decreased in PACs, 
leading to antioxidant capac-
ity decline in SAP. In addition, 
BMSCs may upregulate Nrf2 
expression and induce Nrf2 
nuclear translocation via the 
PI3K/AKT signaling pathway, 
which enhance antioxidant and 
anti-inflammatory effects in 
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