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Abstract
To profile microRNAs population of glucose-induced cardiomyoblast cell line and identify the differentially expressed 
microRNAs and their role under pre-diabetes and diabetes condition in vitro. Rat fetal ventricular cardiomyoblast cell line 
H9c2 was treated with d-glucose to mimic pre-diabetic, diabetic, and high-glucose conditions. Alteration in cellular, nuclear 
morphology, and change in ROS generation was analyzed through fluorescent staining. Small RNA sequencing was performed 
using Illumina NextSeq 550 sequencer and was validated using stem–loop qRT-PCR. A large number (~ 100) differential 
miRNAs were detected in each treated samples as compared to control; however, a similar expression pattern was observed 
between pre-diabetes and diabetes conditions with the exception for miR-429, miR-101b-5p, miR-503-3p, miR-384-5p, miR-
412-5p, miR-672-5p, and miR-532-3p. Functional annotation of differential expressed target genes revealed their involvement 
in significantly enriched key pathways associated with diabetic cardiomyopathy. For the first time, we report the differential 
expression of miRNAs (miR-1249, miR-3596d, miR- 3586-3p, miR-7b-3p, miR-191, miR-330-3p, miR-328a, let7i-5p, miR-
146-3p, miR-26a-3p) in diabetes-induced cardiac cells. Hyperglycemia threatens the cell homeostasis by dysregulation of 
miRNAs that begins at a glucose level 10 mM and remains undetected. Analysis of differential expressed miRNAs in pre-
diabetes and diabetes conditions and their role in regulatory mechanisms of diabetic cardiomyopathy holds high potential 
in the direction of using miRNAs as minimally invasive diagnostic and therapeutic tools.
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Introduction

Affecting nearly 463 million people worldwide, diabetes 
features among the top causes of mortality and morbidity 
around the globe [1]. World Health Organization (WHO) 
has predicted a two-time increase in the number of deaths 
due to diabetes between 2005 and 2030, which at present is 
expected to be much higher considering the global preva-
lence of the COVID-19 pandemic since 2019 [2]. Diabetes 
majorly contributes to the onset and pathogenesis of life-
threatening diseases including cardiomyopathy leading 
to cardiac failure [3]. Cardiac failure in diabetic patients 
was first recognized in 1876; however, the term diabetic 

cardiomyopathy (DCM) was introduced much later in 1972 
by Rubler et al. [4, 5]. Till now, diabetic cardiomyopathy 
lacks a consistent and universally accepted definition with 
the AHA (American Heart Association), ESC (European 
Society of Cardiology), and ADA (American Diabetes Asso-
ciation) yet to define DCM. In general, DCM is defined as 
cardiac dysfunction resulting from structural, functional, 
and metabolic alterations independent of coronary artery 
diseases, such as hypertension, valvular diseases, and ath-
erosclerosis [6]. Diabetes poses a tenfold risk factor in 
developing cardiomyopathy and heart failure which is a 
major concern considering the pandemic nature of Type 2 
diabetes mellitus (T2DM) [7]. Previous studies suggest that 
besides T2DM, pre-diabetes (which lacks a clear symptom 
and mostly remains undiagnosed) independently increases 
the risk of cardiomyopathy [8–10]. Therefore, molecular 
mechanisms and pathways involved in the pre-diabetes 
phase, as compared to diabetes and high-glucose-induced 
cardiac stress, must be studied for early detection and plan-
ning advanced therapeutic strategies.
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MicroRNAs (miRNAs) have emerged as a critical regula-
tor of entire networks of transcripts through post-transcrip-
tional modifications. They are small (~ 22 nucleotides), 
non-coding RNAs that possess several attributes including 
binding to the 3'-untranslated region (3'UTR) of their target 
mRNA, binding to the double-stranded DNA at a specific 
site, and interaction with complementary miRNAs to medi-
ate their function and regulate gene expression [11–13]. In 
the heart, miRNAs maintain cell homeostasis as well as 
pathological conditions, including hypertrophy, contractility, 
and cardiomyopathies [14]. Previously, several studies have 
reported a considerable number of miRNAs to be dysregu-
lated under diabetic conditions in in vitro, in vivo, and clini-
cal cardiac samples [15–21]. However, the in-depth miRNAs 
sequencing of cardiac muscle cells under often undetected 
pre-diabetic, diabetic, and high-glucose conditions is still 
lacking. Our previous study has shown deleterious effect 
of glucose stress on H9C2 cardiomyoblast through evalua-
tion of oxidative stress, assessment of anti-oxidant enzymes 
activity, change in cell and nuclear morphology, and esti-
mation of collagen content [22]. The present study aims to 
profile the miRNAs landscape of the cardiomyoblast cell 
line (differentiates into cardiomyocytes) treated with differ-
ent concentrations of D-glucose to mimic the pre-diabetic 
(10 mM), diabetic (25 mM), and high-glucose (50 mM) 
conditions using high-throughput small RNA sequencing. 
Further, we used complementary bioinformatics to identify 
the potential mRNA targets and their role in the glucose-
induced cardiac stress.

Materials and methods

All the reagents and chemicals were purchased from Sigma-
Aldrich (USA) unless or otherwise mentioned.

Cell culture and sample preparation

H9C2, an immortal cardiomyoblast cell line isolated from 
the embryonic rat heart tissue, was obtained from the 
National Center for Cell Science (NCCS), Pune, India. The 
cells were cultured in Dulbecco’s modified Eagle medium 
(DMEM) supplemented with 10% fetal bovine serum (FBS), 
100 U per mL penicillin, and 100 μg per mL streptomycin in 
a humidified incubator under a normal culture condition (5% 
 CO2, 37 °C). Cells were routinely passaged at a split ratio of 
1:3. Once nearly 70% confluence was reached, the cells were 
treated with d-glucose at the concentration of 10 mM (G10), 
25 mM (G25), and 50 mM (G50) with media supplemented 
with Insulin-Transferrin-Selenium (ITS) and devoid of FBS. 
After 48 h of incubation, the cells were thoroughly washed 
with cold PBS and extracted for RNA isolation.

Cell and nuclear morphological analysis 
of glucose‑induced H9C2 cells

Four sets of H9C2 were cultured for 24 h out of which 
three sets (here after referred as G10, G25, and G50) 
were induced with d-glucose (10 mM, 25 mM, 50 mM, 
respectively) dissolved in incomplete media containing 
5X Insulin-Transferrin-Selenium (ITS) and kept at 37 °C, 
5%  CO2 for 48 h. To study cell morphology, cells were 
fixed using 100% methanol followed by incubation at 
− 20 °C for 30 min. Cells were treated with Giemsa stain 
for 20 min at room temperature and were visualized under 
an inverted microscope at 40× magnification and cell 
size was quantified using NIH ImageJ software. To study 
nuclear morphology, both control and treated cells were 
stained using DAPI (50 ng/ml) prepared by dissolving the 
stain in Tris–HCl (10 mM, pH 7.4), EDTA (10 mM, pH 
8), and NaCl (100 mM). Alteration in nuclear morphol-
ogy was visualized at 40× magnification and the fluores-
cence intensity was measured at an excitation and emission 
wavelength of 372 and 456 nm, respectively.

Estimation of cellular ROS generation

The ROS generated by control and d-glucose-treated H9C2 
cells was estimated through DCFH-DA staining. Cells were 
cultured, treated, and fixed as mentioned previously. Cells 
were stained using 5 µM of 2′,7′-dichlorofluorescin diac-
etate (DCFH-DA) followed by incubation for 30 min at 
room temperature in dark. The cells were visualized at 40 × 
magnification and the fluorescence intensity was measured 
at excitation and emission wavelength of 490 and 520 nm.

RNA isolation and quality control

d-glucose-treated and untreated cells were homogenized 
with TOMY Micro smasher_MS100 (USA) and lysed with 
300 μl of Lysis/Binding Buffer (Qiagen). Homogenate addi-
tive was added to the lysate at one-tenth of the lysate volume 
followed by the addition of acid Phenol–Chloroform. After 
a brief vortex and centrifugation, the upper aqueous phase 
was aspirated into a new vial. The aqueous phase was mixed 
with 1.25 volumes of 100% ethanol and loaded onto a filter 
cartridge. The remaining steps of the purification were fol-
lowed as per the manufacturer’s guidelines including on-col-
umn DNase treatment (Qiagen). RNA was eluted in 25 μl of 
Nuclease-free water (Ambion). The concentration and purity 
of the RNA extracted were evaluated using the Nanodrop 
Spectrophotometer (Thermo Scientific). The RNA content 
(ng/μl) for each sample is as follows (G10: 42.4; G25: 80.3; 
G50: 16; and Control: 118.8). The integrity of the extracted 
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RNA was analyzed on the Bioanalyzer (Agilent) and the 
RIN value for each sample was found to be 7 or higher.

Small RNA library preparation and sequencing

Small RNA sequencing libraries were prepared using the 
QIAseq miRNA Library Kit protocol (Qiagen) at Genotypic 
Technology Pvt. Ltd., Bangalore, India. Briefly, 100 ng of 
Qubit-quantified total RNA was used as starting material. 3′ 
adapters were ligated to the specific 3′ OH group of micro-
RNAs followed by ligation of 5′ adapter. Adapter-ligated 
fragment was reverse transcribed with Unique Molecular 
Index (UMI) assignment by priming with reverse transcrip-
tion primers. cDNA thus synthesized was enriched and bar-
coded in a single step by PCR amplification (17 cycles). 
The 3′ and 5′ adapters used in the prep were as follows: 5′ 
GTT CAG AGT TCT ACA GTC CGA CGA TC; Index Adapter: 
5′ AAC TGT AGG CAC CAT CAA T. The Illumina-compatible 
sequencing libraries were quantified by Qubit fluorometer 
(Thermo Fisher Scientific) and the fragment size distribution 
of the libraries was analyzed on Agilent 2200 TapeStation. 
Single-end sequencing was carried out for 75 cycles on Illu-
mina NextSeq 550 sequencer using High Output flow cells 
and reagents, following manufacturer’s instructions.

Data processing and analysis

The raw data were processed by srna-workbenchV3.0_
ALPHA which was used to trim 3′ adapter and performed 
length filtering (minimum length 16  bp and maximum 
40  bp). The low quality and contaminated reads were 
removed on the following criteria to obtain final clean reads: 
(a) Elimination of low-quality reads (< q30), (b) Elimination 
of 3′ adapters, (c) Elimination of reads < 16 bp and > 40 bp, 
and (d) Elimination of reads matching to other non-coding 
RNAs (rRNA, tRNA, snRNA, and snoRNAs). The filtered 
reads were mapped to the Rattus norvegicus genome using 
Bowtie. These reads were further mapped to a non-coding 
RNA database which is useful to exclude the other RNAs, 
such as rRNA, tRNA, and snoRNAs. The unmapped reads 
which should be only small RNAs were used for the clas-
sification of known and novel miRNAs and target prediction.

MiRNAs identification and expression analysis

The final clean reads were made unique and hence read 
count profile was generated. Further, a homology search 
was performed for these miRNAs against Rattus norvegicus 
miRNA sequences which were retrieved from miRbase-22 
using NCBI-blast-2.2.30 with an e-value of e-4 and non-
gapped aligned. Sequences that have no homology with 
known miRNAs were extracted and considered for the pre-
diction of potential novel miRNAs. Firstly, the sequences 

were aligned to the reference genome using bowtie. The 
aligned sequences were used for novel miRNAs prediction 
using Mireap_0.22b. To perform differential expression 
analysis, read counts across all the miRNAs were generated 
by taking the count of reads aligning to a particular miRNA. 
Differential expression (DE) was calculated using the DESeq 
tool through normalizing the read count by dividing with 
size factor (Read count/Geometric Mean). Mean-normalized 
read counts of the samples in a given condition were used for 
differential gene expression calculation and heatmap genera-
tion. To understand the regulation of expression between the 
samples, log2fold of 1 was used as a cut-off. MiRNAs > 1 
were considered as “UP”-regulated, miRNAs < − 1 were 
considered as “DOWN,” and those between 1 and − 1 were 
flagged as “NEUTRAL.”

Stem–loop qRT‑PCR

RNA isolation was performed from the treated (G10, G25, 
and G50) and a control set of H9C2 culture as described 
previously. Stem–loop primers were synthesized for miR-
532-3p and miR-672-5p as mentioned in our previous study 
(supplementary table) [11]. The stem–loop reverse transcrip-
tion was performed using the RevertAid First-Strand cDNA 
Synthesis Kit (Thermo Scientific, USA) as per the manufac-
turer’s protocol. A reaction mixture of 10 μL was prepared 
using 1 μL RNA (~ 200 ng), 1 μL miRNA stem–loop primer 
(1 μM), 1 μL U6 RT primer (1 μM), 0.5 μL RiboLock (20 U/
μL), 2 μL buffer, 1 μL dNTP mix (10 mM), 0.5 μL reverse 
transcriptase enzyme (200 U/μL), and 3 μL nuclease-free 
water. The reverse transcription reaction was carried out at 
25 °C for 5 min followed by incubation at 42 °C for 60 min 
and termination by heating at 70 °C for 5 min. SYBR green 
fluorescence quantitative PCR reagent kit (Thermo Fischer 
Scientific, USA) and Piko-Real Time 96 (Thermo Fischer 
Scientific, USA) was used for RT-PCR. The reaction mix-
ture of 10 μL was prepared in Piko 96-well plate using 
5 μL SYBR green PCR Master Mix, 0.5 μL forward and 
reverse primers each (1 μM), 1 μL cDNA product, and 3 μL 
nuclease-free water. The PCR conditions used were as fol-
lows: initial denaturation at 95 °C for 30 s, followed by 40 
cycles of 95 °C for 15 s, and 55 °C for 30 s. Each reaction 
was performed in triplicates and the relative expression of 
miRNA was calculated using  2−ΔΔCq after normalization to 
U6 snRNA.

Target Prediction and annotation

The miRNAs with copy number ≥ 5 were considered for tar-
get prediction. These miRNA sequences were used as input 
along with reference cDNA sequences to the Miranda tool. 
Gene Ontology annotation was performed by PANTHER 
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14.1 database and the pathway enrichment analysis was per-
formed using DAVID 6.8

Statistical analyses

Each experiment was conducted thrice and data were 
expressed as means ± SEM. A two-tailed unpaired Stu-
dent’s t test was used for statistical comparison of the data 
between control and treatment or between two treatment 
groups. From DAVID database, Fisher’s exact test was used 
to determine the probability that the GO terms assigned to 
the dataset are due to chance alone, and p values < 0.05 and 
enrichment score of > 1.5 were considered to be statistically 
significant.

Results

Microscopic analysis of glucose‑induced H9C2 cells

Post-24 h of glucose treatment, H9C2 cells were subjected 
to Giemsa staining (for cell morphology), DAPI staining 
(for nuclear morphology), and DCFH (for ROS estimation). 
We observed that at 10 mM, glucose initiates the change in 
cell morphology but limited to very few number of cells and 
does not cause any significant change in the cell as well as 

nuclear morphology. In addition, it also did not elicit a sig-
nificant change in ROS generation as compared to untreated 
cell. However, at 25 mM and 50 mM, we observed a sig-
nificant difference in cell size of H9C2 indicating induction 
of hypertrophy. We also observed high ROS generation in 
sample G25 and a significant difference in G50. Although, 
through DAPI staining we did not observe a change in the 
fluorescent intensity between treated and untreated sam-
ples, we observed a greater number of condensed chromatin 
(black arrow), fragmented nuclei (yellow arrow), and dis-
torted nuclei of varying shape and size (red arrow) (Fig. 1).

High‑throughput sequencing

To determine the effect of d-glucose on the cardiomyoblast 
miRNAs, four small RNA libraries (one untreated and three 
treated including 10 mM, 25 mM, and 50 mM) were gener-
ated. After performing high-throughput sequencing, a total 
of 71.2 million raw reads and 3.0 million high-quality reads 
were obtained from all the samples. The distribution of reads 
count and the number of known as well as novel miRNAs 
for each sample are provided in Table 1. After alignment, 
RNAs were classified into different categories, such as 
rRNA, tRNA, snRNA, snoRNA, known miRNA, and novel 
miRNA. More than 60% of the reads were found to align 

Fig. 1  Cellular and nuclear morphological alterations in d-glucose-
induced H9C2 cells. Top row indicates the increase in cell size in 
G25 (approx. 900  µm/cm2) and G50 (approx. 1000  µm/cm2). Mid-
dle row indicates the increase in ROS generation in G25 (Fluorescent 
intensity approx. 20  A.U.) and G50 (Fluorescent intensity approx. 

25 A.U.). Bottom row indicates the high number of nuclei with frag-
mented nuclei (yellow arrow), condensed chromatin (red arrow), and 
distorted nuclei of varying shape and size (black arrow). (*p < 0.05 vs 
untreated)
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with the Rattus Norvegicus genome out of which nearly 19% 
aligned with non-coding RNAs (Fig. 2).

Identification of miRNA in d‑glucose‑induced H9C2 
cells

Through high-throughput sequencing, we have identi-
fied more than 350 miRNAs in each H9C2 sample out of 
which more than 180 miRNAs were detected with abun-
dance ≥ 50 (Table 1). A deep examination of the small 
RNA sequences revealed that the size of most miRNAs 
ranged between 21 and 24 nucleotides with the maximum 
number of miRNAs of 22 nucleotide size (Fig. 3). Fur-
ther, chromosomal distribution of miRNAs origin was 
studied and it was observed that the maximum number 
of miRNAs was expressed from chromosome numbers X, 
1, and 10 (Fig. 4). To identify the differential expressed 
miRNAs in treated samples as compared to control, a 

volcano plot-based filtering was performed (Fig. 5). We 
observed that as compared to control, 47 miRNAs were 
upregulated and 47 were downregulated in G10, 50 miR-
NAs were upregulated and 62 miRNAs downregulated in 
G25, while 56 miRNAs were upregulated and 49 miRNAs 
as downregulated in G50 (log2 Fold Change > 1 or log2 
Fold Change < -1with FDR < 0.05). To list the top 20 up/
down-regulated miRNAs and identify their expression 
difference heatmaps were generated for each set of differ-
entially expressed miRNAs (Supplementary Fig S1–S3). 
In the top 20 up/down miRNAs of G10, 27 were inter-
genic (15 upregulated and 12 downregulated) and 13 were 
intronic (4 upregulated and 9 downregulated). In G25, 27 
were intergenic (14 upregulated and 13 downregulated) 
and 12 were intronic (4 upregulated and 8 downregu-
lated). Lastly in G50, 22 were intergenic (11 upregulated 
and 11 downregulated) and 18 were intronic (10 upreg-
ulated and 8 downregulated) as compared to control. A 
comparative heatmap analysis of all the treated samples 
revealed a similar trend in expression across all the treated 
samples as compared to control (Fig. 6). The common 
upregulated miRNAs detected in all the samples include 
miR-1249, miR-330-3p, miR-3473, miR-143-3p, miR-
132-5p, miR-223-3p, miR-328a-3p, miR-29c-3p, miR-16-
5p,miR-628,let-7i-5p, miR-146b-3p, miR-3596d, and miR-
3586-3p, whereas the downregulated miRNAs include 
mir-7b-3p, mir-542, mir-9a-5p, mir-222-5p, mir-191b, 
miR-26a-3p, miR-30d-3p, miR-142-3p, miR-652-5p, miR-
126a-3p, miR-29c-3p, miR-328a-3p, miR-345-3p, miR-
148a-3p, miR-15a-5p, and miR-15b-5p. These miRNAs 
were considered for target prediction and their functional 
annotation. We also detected very few miRNAs depicting 
contrasting expression in G10 and as compared to G25 and 
G50. They include miR-429, miR-101b-5p, miR-503-3p, 
miR-384-5p, miR-412-5p, miR-672-5p (downregulated in 

Table 1  Representation of high-throughput sequencing with total of 71.2 million raw reads, along with distribution of reads count and the num-
ber of known as well as novel miRNAs for each sample

Sequencing statistics Untreated Glucose (10 mM) Glucose (25 mM) Glucose (50 mM)

Total raw reads 14,094,628 17,996,201 19,045,124 20,157,742
Total number of reads after quality filtering 659,709 866,393 630,543 910,684
Total reads aligned to the genome (Rattus Noverglicus) 403,529 529,260 396,444 557,791
Percentage of reads mapped to genome (Rattus Norvegicus) 61.17 61.09 62.87 61.25
Percentage of reads aligned to non-coding RNAs 17.66 18.45 19.29 21.79
Total reads aligned to mirBase database 8892 10,998 10,548 10,149
Known miRNAs detected 373 401 379 395
Known miRNAs detected with abudance ≥ 50 187 204 198 190
Known miRNAs detected with abudance ≥ 10 257 276 258 269
Putative novel miRNAs detected 67 59 57 87
Putative novel miRNAs detected with abudnace ≥ 10 34 29 33 41

Fig. 2  Pie charts indicating the distribution of RNA and small non-
coding RNAs across all the samples
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G10 and upregulated in G25 and G50), and miR-532-3p 
(upregulated in G10 and downregulated in G25 and G50).

Potential target mRNA/gene prediction and their 
functional annotation

Potential target prediction for all the miRNAs identified in con-
trol as well as treated samples was performed using Miranda 
and miRNA hits having minimum free energy ≤ − 25 were 
considered for further analysis. In total, 18,741, 19,128, 

Fig. 3  Bar graph indicating the length distribution of RNA-seq reads. Maximum miRNAs were observed to be of 22 nucleotide length

Fig. 4  Bar graph indicating the chromosomal distribution of miRNAs in Rattus norvegicus genome
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18,307, and 18,993 unique targets were predicted for control, 
G10, G20, and G50 samples, respectively. Target genes of 
differentially expressed miRNAs identified in all the treated 
samples were selected and Gene Ontology was performed to 
understand their biological meaning. Analysis through PAN-
THER database revealed that in all the treated samples similar 
percentage of target genes of up- and downregulated miRNAs 
were represented in all the three categories: cellular component 

(cellular anatomical entity: 50%, protein-containing complex: 
13%, and intracellular: 37%), biological process (cellular pro-
cess: 30%, biological regulation: 18%, metabolic process: 17% 
and signaling: 7% others: 28%), and molecular function (bind-
ing: 40%, catalytic activity: 30%, molecular function regula-
tor: 18%, transporter activity: 8%). The functional enrichment 
analysis through the DAVID database revealed the top 20 
gene target-enriched GO terms and KEGG pathways with p 

Fig. 5  Volcano plot analysis of differential expressed miRNAs. The 
expression differences in miRNAs between control and G10, control 
and G25, and control and G50 was plotted on the x-axis and FDR 
significance was plotted on the Y-axis (− log10 scale). The black 

dots represent no change in expression, the red dots represent log 
fold change of > 1 and FDR < 0.05, and green dots represent log fold 
change < 1 and FDR < 0.05

Fig. 6  Heatmap indicating the 
miRNAs expression pattern 
across all the treated samples. 
Green color indicates upregula-
tion, whereas red color indicates 
downregulation of miRNAs
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values < 0.05and enrichment score of > 1.5 (Fig. 7). The target 
genes of upregulated miRNAs were significantly enriched in 
KEGG pathways, including PI3K-Akt signaling pathway (p 
value: 3.00E-05, Fold Enrichment: 1.9), arrhythmogenic right 
ventricular cardiomyopathy (p value: 1.10E-04, Fold Enrich-
ment: 3.2), ECM–receptor interaction (p value: 9.50E-05, Fold 
Enrichment: 2.8), and hypertrophic cardiomyopathy (p value: 
2.40E-03, Fold Enrichment: 2.5). Likewise, the target genes of 
downregulated miRNAs were significantly enriched in KEGG 
pathways, including hypertrophic cardiomyopathy (p value: 
1.60E-04, Fold Enrichment: 2.9), ECM–receptor interaction 
(p value: 1.80E-04, Fold Enrichment: 2.8), type II diabetes 
mellitus (p value: 3.70E-03, Fold Enrichment: 2.9), as well 
as insulin signaling pathway (p value: 1.20E-02, Fold Enrich-
ment: 1.9).

Validation of miRNA expression by stem–loop 
qRT‑PCR

The expression validation of two miRNAs (namely, miR-
532-3p and miR-672-5p) was performed using stem–loop 

qRT-PCR. These miRNAs were selected based upon our 
in silico analysis which reveals (a) differential expression 
between G10 and other treatment groups (G25 and G50) and 
(b) targets multiple critical pathways including hypertrophic 
cardiomyopathy, insulin secretion, and adrenergic signaling in 
cardiomyocytes (Fig. 8). The results obtained from qRT-PCR 
were in agreement with the NGS analysis (Fig. 9).

Discussion

MiRNAs, due to their fundamental role in regulating gene 
expression, are increasingly recognized as therapeutics as 
well as diagnostic tool for a number of diseases. Although, 
the association of several miRNAs including miR-1, miR-
9, miR-20, miR-21, miR-29, miR-30, miR-34, miR-125, 
miR-133, miR-143, miR-146, miR-150, miR-155, miR-
181, miR-195, miR-199, miR-208, miR-144, miR-206, 
miR-207, miR-212, miR-221, miR-320, miR-373, miR-
378, and miR-499 has been well studied in diabetes and 
cardiovascular pathologies [21, 23–25]. An in-depth 

Fig. 7  Gene ontology (GO terms: Biological processes, Cellular component, Molecular Function) and KEGG analysis of differential expressed 
miRNAs target genes
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miRNAs profiling representing the entire miRNAs land-
scape of diabetes-induced cardiac cells is still lacking. In 
addition, it is also not clear whether the pre-diabetes con-
ditions which are known to increase cardiovascular risks 
influence miRNAs expression to the extent diabetes condi-
tions does. Toward this, we have performed genome-wide 
small RNAs sequencing to reveal the miRNAs expression 
pattern in cardiomyoblast cells induced with pre-diabetic, 
diabetic, and high-glucose dose. H9C2 cardiomyoblast 
cells were used as in vitro diabetic model as they are a 
well-established model for molecular studies on cardiac 
hypertrophy and related traits [26]. The d-glucose dose of 
10 mM, 25 mM, and 50 mM was selected based upon the 
parameters defined by ADA for pre-diabetes and previ-
ous studies including our research elaborating induction 
of diabetic conditions in H9C2 cell culture [22, 27–29]. 

As previously mentioned, we have identified a substan-
tial number of differentially expressed miRNAs in all 
the treated samples in comparison to untreated sample. 
Except for miR-429, miR-101b-5p, miR-503-3p, miR-
384-5p, miR-412-5p, miR-532-3p, and miR-672-5p the 
top 20 upregulated and downregulated miRNAs depicted 
a similar expression pattern in cells treated with different 
concentrations of glucose as compared to untreated cells. 
This indicates that even though pre-diabetes (10 mM) does 
not alter the cardiac cell morphology or induces a signifi-
cant change in ROS generation as indicated through micro-
scopic analysis, it imposes a drastic change in the expres-
sion of miRNAs which remains unaltered even at extreme 
hyperglycemic conditions as compared to untreated cells. 
Except for miR-3586-3p and miR-3596d, all the common 
up- and downregulated miRNAs observed between G10, 
G25, and G50 has been reported in circulation profile of 
diabetes subjects; however, only a few of them have been 
reported in cardiac cells or tissue under glucose medi-
ated stress [24, 30–32]. For instance, there are pre-clinic 
reports which are in agreement with our observation that 
miR-132-5p, miR-223, and miR-16 remain upregulated, 
while mir-542, miR-9, miR-222, miR-126a, miR-29c, 
miR-345, miR-142-3p, miR-148a, and miR-15a/b remain 
downregulated in DCM [33–42]. On the contrary to our 
findings, there are reports which suggest that miRNAs 
including miR-3473, miR-143-3p, and miR-29c remain 
downregulated, while miR-30d remains upregulated in 
DCM [30, 43, 44]. The reason for difference in expres-
sion of few miRNAs may be due to the different source of 
sampling or different source of metabolic dysregulation. 
Nevertheless, appearance of these miRNAs in different 
diabetic cardiomyopathy model through various sequenc-
ing platforms indicates their importance in cardiac cell 
dysfunction due to diabetes. To the best of our knowl-
edge, we have identified several differentially expressed 

Fig. 8  An interaction network between the miRNAs (miR-532-3p and miR-672-5p), their potential target genes, and significantly enriched and 
KEEG pathways

Fig. 9  Stem–loop qRT-PCR validation of miRNAs. The y-axis indi-
cates the fold change expression of miRNAs in treated samples as 
compared to control (y = 1). (*p < 0.05  vs untreated, (**p < 0.01  vs 
untreated)
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conserved miRNAs (miR-1249, miR-3596d, miR-3586-3p, 
mir-7b-3p, mir-191b) that have not been reported in any 
cardiovascular complication including DCM along with 
miRNAs (miR-330-3p, miR-328a, let-7i-5p, miR-146b-3p, 
miR-26a-3p) that have been studied in valve calcification, 
adverse cardiac remodeling, and myocardial ischemia, but 
still unreported in DCM.

Thus, to reveal the biological function of all the com-
mon differential miRNAs we predicted potential target genes 
and performed their functional annotation using the most 
sensitive and reliable bioinformatic tools, such as MiRanda 
and DAVID [45]. We observed that the most enriched GO 
terms under biological process were positive regulation of 
GTPase activity and regulation of ion transmembrane trans-
port, including calcium ion, wnt signaling and glucose trans-
membrane transport. Likewise, under molecular function the 
most enriched terms were ATP binding, GTPase activator 
activity, and glucose transporter activity, while under cel-
lular component they were protein complexes particularly 
related to plasma membrane and extracellular matrix. It 
suggests that glucose induces a change in the expression 
in a large number of miRNAs that in turn target the genes 
involved in G-protein activation which is majorly linked with 
the pathogenesis of DCM through impaired calcium ion 
signaling, GLUT transporters, and ion transport [46–49]. In 
particular, the target genes of downregulated miRNAs were 
found to be involved in regulation of sodium and calcium ion 
transport. These ions are the most osmotically active species 
in cardiac myocytes and the abundance of ROS in H9C2 
cells as confirmed through DCFH-assay might have a role 
in miRNAs dysregulation as indicated previously [50, 51]. 
Further KEGG analysis established that the potential target 
genes of both upregulated and downregulated miRNAs were 
enriched in pathways that directly regulate the pathogenesis 
of DCM, including PI3K-AKT signaling pathway, hyper-
trophic cardiomyopathy, ECM receptor interaction, type 2 
diabetes mellitus, and MAPK signaling [11, 52].

On one hand our analysis revealed a list of miRNAs 
depicting similar expression upon different doses of glu-
cose induction, and on the other hand we also looked 
into two miRNAs, namely rno-miR-532-3p and rno-miR-
672-5p depicting contrasting expression between G10 
as compared to G25 and G50. For rno-miR-532-3p, the 
fold difference observed in G10, G25, and G50 through 
NGS was 1.0, − 3.8, and − 3.7, while for rno-miR-672-5p 
it was − 1.0, 0.01, and 2.5, respectively. Through qRT-
PCR, the fold difference observed for rno-miR-532-3p was 
1.4, − 3.1, and − 2.7, while for rno-miR-672-5p it was 
-1.6, 0.1, and 3.32.8 in G10, G25, and G50, respectively. 
Although the pattern in the expression analysis through 
qRT-PCR and NGS appeared to correlate with each other, 
yet it was not precise. It could be due to (a) difference 
in the platforms for analyzing the miRNAs expression, 

(b) difference in the methodology used for normalization, 
and (c) biological difference due to the use of independent 
samples in qRT-PCR and NGS. Recently, in isoprotere-
nol-treated H9C2 cells, miR-532-3p was reported to be 
downregulated and its overexpression was found to reduce 
the cell apoptosis [53]. On the contrary, in animal model 
of type 2 diabetes and left ventricle samples of diabetic 
patients, miR-532-3p was reported to be upregulated and 
its suppression was found to reduce high-glucose-induced 
apoptosis [54]. We found miR-532-3p to be upregulated 
in pre-diabetic condition and downregulated in high-glu-
cose conditions with its target genes (MYBPC2, ITGA8, 
ITGAB4, PRKAG2, and LMNA) enriched in KEGG path-
way called hypertrophic cardiomyopathy (p value: 0.03; 
fold enrichment: 4.2). It suggests that miR-532-3p holds 
high potential to regulate cardiac hypertrophy and cell 
death and may also serve as biomarker for pre-diabetes as 
it has been established in plasma profiles of colorectal can-
cer patients [55]. Likewise, for miR-672-5p, we observed 
downregulation in pre-diabetic condition as compared to 
high-glucose condition which was also reported in cardio-
myocytes induced by phenylephrine, angiotensin II, and 
insulin-like growth factor 1 [56]. Further, our in silico 
analysis revealed that its target genes were enriched in 
insulin signaling (p value: 0.003; fold enrichment: 5.9) and 
adrenergic signaling (p value: 0.02; fold enrichment: 3.7) 
pathways both of which becomes unresponsive during car-
diac failure [57]. Zhao et al. have concluded miR-532-3p 
to be involved in atherosclerotic plaque formation and 
suggested that it can be utilized for therapeutic purposes 
by regulating its expression [58]. Exosomal mir-672-5p 
has also been studied for therapeutic applications in spinal 
cord injury as it targets Caspase-1 signaling pathway [59]. 
Overall, these two miRNAs depict differential expression 
in pre-diabetes condition and change in their expression 
upon high glucose might play a critical role in regulating 
key molecular pathways of DCM.

Conclusion

In conclusion, our study has identified differential miRNA 
expression in cardiomyoblast under pre-diabetes and diabe-
tes conditions as compared to normal healthy cells. Further, 
except for few miRNAs, we observed no significant change 
in the expression of miRNAs between different hyperglyce-
mic conditions. However, we identified several miRNAs that 
were not reported in DCM or any cardiovascular pathology 
before and found to regulate critical molecular pathways 
involved in DCM. We also identified and validated miR-
532-3p and miR-672-5p depicting differential expression 
between pre-diabetes and diabetes along with probable role 
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in DCM. Therefore, further investigation of these miRNAs 
including target validation using higher DCM model must 
be performed in order to establish them as robust miRNAs 
biomarker and therapeutic molecule.
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