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Abstract
Human beings are exposed to various environmental xenobiotics throughout their life consisting of a broad range of physical 
and chemical agents that impart bodily harm. Among these, pesticide exposure that destroys insects mainly by damaging 
their central nervous system also exerts neurotoxic effects on humans and is implicated in the etiology of several degen-
erative disorders. The connectivity between CREB (cAMP Response Element Binding Protein) signaling activation and 
neuronal activity is of broad interest and has been thoroughly studied in various diseased states. Several genes, as well as 
protein kinases, are involved in the phosphorylation of CREB, including BDNF (Brain-derived neurotrophic factor), Pi3K 
(phosphoinositide 3-kinase), AKT (Protein kinase B), RAS (Rat Sarcoma), MEK (Mitogen-activated protein kinase), PLC 
(Phospholipase C), and PKC (Protein kinase C) that play an essential role in neuronal plasticity, long-term potentiation, 
neuronal survival, learning, and memory formation, cognitive function, synaptic transmission, and suppressing apoptosis. 
These elements, either singularly or in a cascade, can result in the modulation of CREB, making it a vulnerable target for 
various neurotoxic agents, including pesticides. This review provides insight into how these various intracellular signaling 
pathways converge to bring about CREB activation and how the activated or deactivated CREB levels can affect the gene 
expression of the upstream molecules. We also discuss the various target genes within the cascade vulnerable to different 
types of pesticides. Thus, this review will facilitate future investigations associated with pesticide neurotoxicity and identify 
valuable therapeutic targets.
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Introduction

Pesticides are extensively used globally to destroy weeds 
(herbicides), rodents (rodenticides), insects (insecticides), 
fungus (fungicides), or other harmful organisms, thereby 
aiding human beings in the industrial, agriculture, and 
health-care sectors. Due to their pervasiveness, an individual 

can be exposed to pesticides through the intake of con-
taminated water, pesticide-poisoned air, and dust debris 
on vegetables and fruits, fatty tissue of animals exposed to 
the pesticide along with their by-products (i.e., eggs, meat, 
and fish), occupational exposure during pesticide produc-
tion and living in areas with immense pesticide residue [1]. 
Since pesticides are not always selective, exposed individu-
als develop acute and chronic effects in different organs [2]. 
Pesticide exposure is associated with various conditions like 
cancer, neuropathy, axonopathy, asthma, hypersensitivity, 
metabolic, and developmental disorders [1]. In addition, dif-
ferent pesticides, such as insecticides, including organophos-
phate, organochlorines, and carbamates, have the potency 
to cause neuronal damage [3]. The internal features of the 
nervous system, like axonal transport, neurotransmission 
process, myelination of neurons, and formation of synaptic 
processes, have higher vulnerability to a toxic insult when 
exposed [4].
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Exposure to these neurotoxic agents also provokes 
changes in different gene expression and signaling pathways, 
manifesting various neurotoxic effects. The cAMP Response 
Element Binding Protein (CREB) family of transcription 
factors is one of the critical regulators of neuronal differen-
tiation, survival, and plasticity through their involvement in 
the BDNF-TrkB (Tropomyosin receptor kinase B) pathway. 
It is well known that BDNF, a vital neurotrophin, aids in 
the survival of extant neurons, strengthening the develop-
ment of new neurons, promoting neuronal plasticity, migra-
tion, differentiation, neurite growth, synapse formation, and 
potentiation [5, 6]. Further, CREB activation also results 
through various kinases like PKA (Protein kinase A), Ras, 
ERK (Extracellular-regulated kinase), and MAPK (Mito-
gen-activated protein kinase) family members. This review 
attempts to elucidate the mechanism of activation of CREB 
through various CREB kinases and their fundamental role 
in pesticide-induced neurotoxicity integrally.

Pesticides and neurotoxicity

Neurotoxicity is the neurophysiological alteration due 
to exposure to toxicants leading to cognitive and mem-
ory impairment and may lead to psychiatric disorders [7]. 
Pesticides can lead to inadvertent neurotoxicity in humans 
due to the similarity in the acetylcholinesterase enzyme 
structure with insects [4]. Inhibition of acetylcholinesterase 
leads to over aggregation of acetylcholine at the neuronal 
junction, resulting in synaptic transmission blockage and 
subsequent neurotoxicity [8]. The two major classes of pes-
ticides that interfere with acetylcholine release are organo-
phosphates (malathion, chlorpyrifos, parathion, diazinon, 
and dichlorvos) and carbamates (methylcarbamate, polyu-
rethane, and ethyl carbamate) [9, 10]. Compared to organo-
phosphates, carbamate inhibition of the enzyme acetylcho-
linesterase is not permanent and can be easily adjustable 
[11]. However, acute exposure to high- or low-dose chronic 
exposure can result in severe or delicate neurotoxicity symp-
toms by inhibiting acetylcholine esterase enzyme and other 
non-cholinergic symptoms [2, 12]. Apart from the acetylcho-
linesterase inhibition, neurotoxicity can occur through sev-
eral other malfunctions, including neuropathy, axonopathy, 
myelopathy, and ultimately affecting neurotransmission [4].

Organophosphate pesticides can cause neuropathy, apop-
tosis, or necrosis of neurons, resulting in progressions of 
neurodegenerative disorders like Parkinson’s and Alzhei-
mer’s [2, 4]. Axonopathy results when pesticides like chlor-
pyrifos and rotenone interfere with axon activity, leading 
to weak motor strength, difficulty in sensation, resulting in 
axonopathy [13]. Pesticides like chlorpyrifos and cyperme-
thrin can also lead to myelopathy by disturbing axon myeli-
nation [14]. The various neurotoxic effects of the different 

pesticides are listed (Table 1), and the pathways affected are 
depicted in Fig. 1. Further, the overall neurotoxic effects are 
also grossly summarized in Fig. 2.

Regulation of CREB signaling

CREB is a crucial member of the leucine-zipper family of 
structurally and functionally similar transcriptional regula-
tors and is essential for neuronal functioning, development 
and maintenance, and long-term synaptic plasticity [16]. The 
activation of CREB is carried out by the phosphorylation of 
its Ser133 residue in the presence of co-activator molecule 
CREB-binding protein (CBP) through various kinases like 
PKA, mitogen-activated protein kinase 2 (MAPK2), riboso-
mal S6 kinase 2 (RSK2),  Ca2+-activated calmodulin kinases 
(CAMK), etc. [17]. CREB can also be activated to initiate 
specific upstream signaling pathways like the BDNF-Trkb 
pathway through the mediation of protein kinases [18]. 
Thus, the activation of CREB results from the convergence 
of multiple signaling cascades involving several different 
protein kinases, each having its role in regulating neuronal 
activity and functions.

The CREB is critical in developing the nervous system 
and controls multiple target genes involved in neuron devel-
opment, circadian rhythms, depression, survival, excit-
ability, regulating neuron plasticity, formation of synapsis, 
axon growth, and long-term potentiation [19, 20]. CREB 
activation underlines diverse adaptive development critical 
for neurotrophin-mediated survival of neurons against oxi-
dative damage or inflammation mediated toxicity [21, 22]. 
The activated CREB is then recruited to carry out the tran-
scription of other genes like Bdnf, Akt, etc., in the neuronal 
cells, essential for several complex and dynamic neuronal 
functions, including plasticity, synaptic transmission, neu-
ronal development, survival, and their neurotrophic regula-
tion [16].

The alterations in the CREB phosphorylation levels are 
linked to decreased cAMP levels leading to protein kinase 
A-mediated CREB phosphorylation [23]. Several pesticides 
affect the CREB levels by targeting it directly or its upstream 
signaling cascade [24]. Decreased expression of CREB due 
to direct interaction of organophosphate pesticides may lead 
to the chronic low-level onset of pesticide neurotoxicity and 
affect the transcription of genes correlated with learning and 
synaptic plasticity [25, 26]. Further, the decreased levels 
of p-CREB (phosphoCREB) also accompanies the release 
of ROS and NO in rotenone-administered rats [27]. Stud-
ies have shown that elevated phosphorylated CREB levels 
exhibit favorable outcomes in the exposed individual. Fol-
lowing that observation, an increase in the p-CREB level 
was found in the cortical and hippocampal neurons after 
low-dose chlorpyrifos exposure, possibly displaying neuro-
protective effects [28]. Mancozeb, a potent pesticide, also 
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Fig. 1  Pesticides on entering the body through inhalation, inges-
tion, and skin absorption can reach the brain due to their lipophilic 
nature. Upon entering the brain, it can target the components within 
the various signaling pathways like BDNF/TrkB pathway, RAS/RAF/
MEK pathway, Pi3K/AKT pathway, PLC/PKC pathway, or through 
the Calcium–Calmodulin pathway and cAMP pathway and ultimately 

affect CREB phosphorylation and gene expression. The changes in 
the phosphorylation or gene expression can, in turn, affect the various 
functions of CREB, including the regulation of neuronal plasticity 
and survival. [The scientific diagram was constructed using Servier 
Medical Art (SMART), licensed under a Creative Commons Attribu-
tio 3.0- https:// smart. servi er. com]

https://smart.servier.com
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showed a notable activation of p-CREB, attributing to early 
neuroprotection [29]. A dose-dependent fall in the Creb1 
expression was also noticed in the brain regions of animals 
treated with diazinon [30]. In comparison, another study 
showed that reduced expression of (CaMK)-IV and CREB1 
mRNA levels contributed to the impaired novel object rec-
ognition in mice [31].

Further, monocrotophos treatment resulted in the 
decreased level of p-CREB along with the associated 
upstream molecules, namely pERK1/2, p-AKT, and pTrkA 
(Tropomyosin receptor kinase A), leading to apoptosis and 
neuronal injury [32]. Rotenone exposure in rats showed 
alterations in CBP (CREB-binding protein) and CREB 
levels, with a significant decrease seen in several treat-
ment groups, manifested as behavioral and synaptic protein 
abnormalities [33]. The differential alterations in the PKA/p-
CREB pathways culminated in gross cytoskeletal damage in 
the central nervous system in hens treated with diisopropyl 
phosphor fluoridate (DFP) [34]. Interestingly, the immuno-
reactivity of phosphorylated mitochondrial CREB was found 
to increase upon methoxychlor exposure in response to oxi-
dative stress [35].

Although pesticides can directly target CREB expression 
levels, the upstream activation of CREB includes several 
key members of different signaling pathways like BDNF/
Trk, Pi3K/AKT, RAS/MEK/ERK, PLC/PKC, etc., which 
also make them vulnerable to pesticide insult. Alterations in 
the expression levels of these genes/proteins can affect the 
neuronal functions associated with the CREB interference 
and are further discussed below.

CREB and BDNF

BDNF, one of the most important neurotrophic factors 
essential for neuronal functioning and survival, modulates 
its function by mediating the CREB transcription factor. 
The interaction of BDNF by selectively binding to tyrosine 
kinase B (TrkB) at residues Tyr490 and Tyr515 results in 
homodimerization and provokes the activation of adaptor 
proteins such as Src homology domain 2 (SH2) and polypy-
rimidine tract-binding protein (PTB). These stimulated 
adaptor proteins generally activate three cascading intra-
cellular RAS/MEK, Pi3K/AKT, and PLC/PKC signaling 
pathways [36]. Both RAS and Pi3K signaling regulates the 

Fig. 2  Gross summary of cellular and molecular changes accompa-
nying the modulation of CREB-related pathways and their outcomes 
in the pesticide-exposed individuals. Pesticide exposure can lead 
to cellular and molecular alterations within the neurons while also 
enhancing microglial activation, damaging the neuronal morphol-

ogy, and sometimes leading to apoptosis. These changes most often 
present themselves in the form of immobility, cognitive damage, and 
impaired learning and memory in the exposed individual. (Created 
with BioRender.com.)
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neurotrophic activity of survival and growth through acti-
vating the transcription factor CREB, resulting in protein-
dependent synaptic plasticity through activation of BDNF 
expression [37].

Many studies have shown that changes in the BDNF-TrkB 
pathway can disrupt the physiological process, cause cogni-
tive deterioration and neurotoxicity [5]. A decrease in the 
CREB phosphorylation influences BDNF/TrkB signaling 
pathway and enhances oxidative stress and neurodegenera-
tion [20]. The BDNF expression is altered in the early stages 
of Parkinson's disease in atrazine-induced neurotoxicity 
[38]. Further, it is also proved that mutations that disrupt 
the binding of CREB can, in turn, reduce BDNF responses 
demonstrating the interplay between these two signaling 
molecules [21]. Deltamethrin, an insecticide that belongs 
to the pyrethroid family, increases neurite outgrowth in 
cortical neurons by activating the endogenous BDNF/TrkB 
pathway[39]. Cypermethrin, chlorpyrifos, deltamethrin, 
and imidacloprid exposure upregulates the mRNA and pro-
tein levels of BDNF in the brain of adult zebrafish [40]. 
On the contrary, pyrethroid and deltamethrin exposure in 
rats decreased the expression of BDNF, pTrkB/TrkB, and 
p-CREB/CREB levels [41]. Triaophos-administered rats 
exhibited lower levels of BDNF in the hippocampi and pre-
sented deficits in learning and memory accompanied by oxi-
dative stress [42]. Paraquat exposure can induce cell death 
through the increased expression of p300/CREB-binding 
protein (p300/CBP) and phosphorylates p53 [43]. Transient 
suppression of BDNF and CREB was also observed upon 
paraquat administration [44].

Malathion, one of the most commonly used organophos-
phates, showed a significantly reduced BDNF level and 
apoptosis in female rats [45]. Studies have also shown a 
significant reduction in the transcript of Bdnf-Trkb in rats 
exposed to organophosphate pesticides such as diazinon and 
chlorpyrifos [46, 47]. Combined exposure to paraquat and 
maneb reduced PKA production through cAMP stimulation 
and, thus, inhibited activating elements like BDNF, CREB, 
ARC, C-JUN, C-FOS, etc.[48, 49]. Further, BDNF down-
regulation eventually reduces the Creb mRNA and protein 
levels through the MER/ERK pathway [50]. Changes in 
the BDNF-TrkB pathway, thus, disrupts the physiological 
process, induces cognitive deterioration, and neurotoxicity. 
However, a study has shown that estrogen, in a CREB- inde-
pendent mechanism, also activated Bdnf expression by inter-
acting with the BDNF promoter, though this is not predomi-
nantly observed [51]. Thus, the transcriptional regulation 
of BDNF is dependent on the successful phosphorylation 
of CREB.

CREB and the Pi3k/AKT

CREB activation is well known to promote cell survival by 
modulating anti-apoptotic genes, enhancing neurotrophin 
levels, and combating oxidative stress by stimulating vari-
ous antioxidant genes [52]. However, at times, changes in the 
expression levels of other essential genes can affect CREB 
and modulate neuronal survival. AKT, a serine/threonine-
specific kinase, and its isoforms are expressed mainly in the 
brain and have an essential role in neuroprotection, prevent-
ing neurodegenerative disorders and oxidative damage. AKT 
activation is affected by many factors, such as growth fac-
tors, cellular stress, and cytokines. The Pi3K/AKT pathway 
blockage leads to the loss of phosphorylated AKT levels, 
thus, leading to neurotoxicity [53, 54]. AKT signaling pre-
vents oxidative stress by activating nuclear factor erythroid-
derived 2-like 2(NRF2), eventually preventing neurotoxicity 
[55].

It was shown that fenitrothion and fenitrothion-oxon 
reduced the phosphorylation of CREB and AKT while 
chlorpyrifos reduced the phosphorylation of ERK2, 
p90RSK along with CREB and AKT [56]. CREB and AKT 
phosphorylation were downregulated in the hippocampus 
after exposure to omethoate insecticide, accompanied by 
increased immobility in behavioral tests and neuronal dam-
age. CREB downregulation could be partly reversed by 
targeting a therapeutic strategy against it, indicating that 
CREB manifests a protective effect on the neurons and is 
essential for their survival[19]. Rotenone-induced neuronal 
apoptosis was observed in the human neuroblastoma cell 
line, showing reduced phosphorylated CREB and AKT 
levels [22]. Further, studies have shown that inhibition of 
AKT in a concentration-dependent manner due to insecticide 
exposure results in neuronal cell damage [57]. Accordingly, 
fipronil, a phenylpyrazole insecticide, promotes apoptosis 
in neuroblastoma cells by blocking the phosphorylation of 
the AKT [57]. Further, rotenone insecticide induces neu-
rotoxicity by causing apoptosis in dopaminergic neurons 
by preventing Akt gene expression [58]. These exposures 
may result in the onset of neurodegenerative symptoms as 
it is well known that defective Akt expression is linked to 
reduced dopaminergic neurons in Parkinson’s disease [59]. 
It has been reported that the activation of the AKT cascade 
resulted in reduced neurotoxicity of rotenone [60]. Since 
AKT primarily interacts with the CREB transcription factor, 
it can hamper the gene expression in the exposed individual 
[56]. AKT activation promotes anti-apoptotic signals against 
neuronal cell death induced by neurotoxins and can contrib-
ute toward neuroprotective effects that provide the basis for 
new therapeutic targets for alleviating neurotoxicity.

Pi3k/AKT pathway is essential for negotiating neu-
ronal survival and crucial in long-term neuronal potentia-
tion occurring upstream of CREB. Pi3K/AKT pathway is 
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involved in numerous diseases associated with oxidative 
stress and is dysregulated under neurotoxic conditions [61]. 
Evidence has also proven that rotenone induces dopaminer-
gic degeneration by altering the Pi3K/AKT pathway [22]. 
In addition, activation of Pi3K/AKT signaling in rostral 
ventrolateral medulla during mevinphos organophosphate 
intoxication results in impairment of brain stem cardiovascu-
lar regulation that underpins circulatory depression [62, 63].

Phosphoinositide 3-kinases (Pi3K), one of the CREB 
activating kinases, are widely expressed in the mammalian 
brain and are involved in growth, proliferation, differentia-
tion, and play an essential role in neuronal survival by regu-
lating metabolism, preventing apoptosis, and learning and 
memory formation [64]. The activation of Pi3K has been 
correlated with the transference of anti-apoptotic signals and 
cytoprotective effects against neurotoxicity [65].

A recent study has shown that Pi3K mediates neuronal 
survival activity in monocrotophos organophosphate-
induced neurodegeneration in human tissues [66]. The hin-
drance of the Pi3K pathway leads to an increase in apoptosis 
reaction in the central nervous system of neurodegenerative 
patients due to activation of pro-apoptotic proteins such as 
BAD. A correlation is seen between hippocampal neuron 
apoptosis with the reduction of anti-apoptotic protein expres-
sion due to the hindrance of the Pi3K cascade in the Pi3K 
pathway resulting in neuronal apoptosis. At the same time, 
further upregulation of Pi3K was shown to inhibit rotenone-
induced neurotoxicity [22]. Additional expression study has 
revealed downregulation of p-PI3K, p-AKT, and p-CREB in 
the hippocampus of the omethoate-exposed mice[19]. These 
studies, thus, reveal that interaction between the PI3K/AKT 
pathway and CREB influences the outcome of pesticide-
associated neurotoxicity [67].

cAMP/PKA pathway

It has been known through previous studies that CREB 
activation can also occur through the calcium–calmodulin 
kinase-dependent pathway through the PLC pathway. PLC 
pathway activation as a result of phosphorylated Tyr816 resi-
due, in turn, generates IP3 (Inositol triphosphate) and DAG 
(Diacylglycerol). Plc/Ip3 cascade leads to calcium release 
from internal cellular stores, initiating CaMK (Calcium/
calmodulin-dependent protein kinase), while DAG activates 
PKC, regulating neuronal plasticity [68]. These pathways 
play a role in dendritic projection, branching, and expand 
the dendrite's thickness, neuronal survival, synaptic plastic-
ity, cognitive activity, and differentiation [69, 70]. Pesticides 
like chlorpyrifos exert neurotoxic effects by dysregulating 
the PKA phosphorylation pathway and thereby altering the 
dopamine metabolite level and leading to hyperphosphoryla-
tion of tau [67].

CREB and the RAS/MEK/ERK and RAS/MAPK pathway

However, another pathway involving RAS/RAF/MEK/ERK 
and RAS/MAPK signaling is also activated upon exposure to 
certain pesticides. RAS/MEK signaling pathway transduces 
signals to the cytoplasm and nucleus from its membrane 
receptors [71]. Major genes involved in this pathway are 
RAF (Rapidly accelerated fibrosarcoma kinases), MEK, 
MAPK, and ERK (extracellular-signal-regulated kinase). 
They are essential for several biological functions, including 
cell proliferation and differentiation. RAS/MEK pathway is 
crucial for promoting cognitive activity such as learning and 
memory formation, synaptic plasticity, and neuronal survival 
[72]. Impairments in spatial learning and the diminished 
number of neurons in the hippocampus have been attributed 
to decreased phosphorylated ERK 1/2 and CREB proteins.

It has been observed that rotenone-induced dopaminergic 
apoptosis occurs through the activation RAS/MEK pathway 
[73]. RAS gene is essential for its role in long-term potentia-
tion (LTP) and development and the formation of memories 
in the central nervous system. When there is abnormal RAS 
signaling, it leads to the deterioration of hippocampus LTP, 
resulting in chronic neurotoxicity [74]. A study found that 
pesticide residue avermectin induces neurotoxicity by acti-
vating the RAS /RAF/MEK/ERK pathway [75]. Atrazine 
caused a significant downregulation in the mRNA and the 
protein expression levels of the MEK/ERK/CREB pathway 
in the rat hippocampus [50].

MEK, a mitogen-activated protein kinase, plays a pri-
mary role in the molecular process of brain progression, 
neuronal plasticity, long-term memory, hippocampal devel-
opment, and cellular survival [76]. Studies have shown that 
the MEK gene can be stimulated by toxicants, including 
organophosphorus and organochlorine pesticides regulating 
apoptotic signaling cascades [77]. Chlorpyrifos insecticide-
induced MEK activation resulted in ROS production and 
led to neuronal apoptosis [78]. Insecticides belonging to 
synthetic pyrethroids have a detrimental effect on cellular 
growth, mediated through  the MEK pathway. The activa-
tion of MEK is also involved in the long-term hippocampus 
potentiation, which is accountable for learning and memory 
formation [79]. The central role of MEK in promoting cel-
lular stress mechanisms can be considered therapeutic target 
in the treatment of pesticide-induced diseases [80].

RAS protein is bound in the intrinsic part of the cellular 
membrane and has an internal GTPase function, which con-
trols cell functions and stimulates the downstream kinases 
that belong to the mitogen-activated protein kinase pathway 
(MAPK) [81]. Rotenone-induced neurodegeneration develops 
through the upregulation of MEK that plays a role in neuron 
inflammation and apoptosis. In vitro experiments indicated 
that ROS generation induced by rotenone exposure is through 
the activation of p38MAPK [82]. Jun N-terminal kinase 
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(JNK), a subfamily of MAPK and p38MAPK, was activated 
upon paraquat treatment, signaling the dopaminergic cell 
death in the SK-DAT cell line expressing sodium-dependent 
dopamine transporter [83, 84]. Thus, CREB activity is closely 
interlinked with the RAS/MEK/ERK pathway and can affect 
essential neuronal functions if altered from their normal levels.

PLC/PKC signaling pathway

PLC/PKC pathway activation is crucial for synaptic remod-
eling, learning, and memory development. The DAG and 
PKC are two of the essential genes involved in this signal-
ing [85] that result in the phosphorylation of CREB. Stud-
ies have shown that PLC/PKC pathway is activated during 
various toxic insults. Phospholipase C (PLC) is involved in 
various physiological mechanisms, such as differentiation, 
survival, cell proliferation, neuron maturation, and formation 
of appropriate neuronal circuits for the activity of the brain. 
Several studies prove that PLC plays a role in neurotrophin 
signaling cascade and numerous neuronal activities, includ-
ing neurite projection, synaptic plasticity, and neuron cellular 
migration [86]. They are also essential in transducing signals 
for events such as apoptosis, autophagy, differentiation and cell 
cycle entrance [87]. Activation of PLC results in the release of 
 Ca2+ from internal cellular stores, which later stimulates entry 
through the plasma membrane [88]. The irregular functioning 
of PLC is assumed to cause neurotoxicity by disturbing synap-
tic transmission and is reportedly reduced in neurodegenera-
tive diseases. Abnormality in PLC is enough to damage the 
long-term potentiation in the hippocampus [86].

Bifenthrin insecticide can stimulate  Ca2+ release from 
the endoplasmic reticulum by increasing the PLC activity. 
Reactive oxygen species and oxygen-free radicals regulate 
signal transduction with PKC, a serine/threonine-specific 
protein kinase interaction [89]. PKC activity is initiated in 
the brain of rats following treatment with pesticides such 
as organophosphorus (chlorpyrifos) and organochlorine 
(chlordane and DDT), which are known to produce oxidative 
damage [89]. The consequence of chlorpyrifos pesticide on 
the PKC expression affects the signaling cascade by alter-
ing PKC gene expression in the developing rat brain [90]. 
Dieldrin organochlorine insecticide promotes dopaminergic 
neuron apoptosis in rats by the upregulation of PKC expres-
sion [91]. A recent study proves that the neurotoxic effect 
of paraoxon organophosphate enhances the concentration 
of PKC phosphorylation in cerebellar cultured granule cell 
neurons resulting in neuronal cell damage [92]. Thus, the 
Pkc gene is another effective therapeutic target against the 
OP induced neurotoxicity.

Conclusion

Although pesticides are manufactured explicitly to tar-
get various pests and insects, there are high chances that 
mammals too get inadvertently exposed to it, making these 
non-selective in their target. Exposure to pesticides has sig-
nificantly increased in recent years because of the devel-
opment of many agricultural sectors, irrigation facilities, 
and industrial and manufacturing areas. These pose a sig-
nificant concern as they are speculated to lead to alterations 
in behavior and the physiology of an organism leading to 
adverse effects on an individual’s health. This review dem-
onstrates the role of CREB and the related genes that are 
situated upstream in the signaling cascade and how they are 
involved in regulating the brain during various scenarios of 
exposure to pesticides such as Fipronil, Rotenone, parathion, 
malathion, chlorpyrifos, and deltamethrin, eventually result-
ing in neurotoxicity.

While CREB is well discussed as pertaining to its role 
in various neurodegenerative pathologies, the link between 
one of the increasingly concerning causative environmental 
factors, i.e., pesticides, and its ability to modulate the CREB 
pathway, is not well discussed. Further, the domino effect 
caused by the modulation of CREB phosphorylation or 
dephosphorylation on the other closely associated upstream 
pathways is also not well comprehended. Pesticides play a 
role in phosphorylation and regulation of gene expression 
of CREB and various different pathways involving protein 
kinases and neurotrophins. Some of these key elements, 
including Pi3K, AKT, RAS, MAPK, BDNF, and CREB, are 
significantly reduced, leading to a reduction in their specific 
brain function. A more thorough investigation will help us 
better understand the cumulative effects of multiple genes 
in these pathways. The current review gives a multi-faceted 
overview comparing the effects of different pesticides on 
various genes of the CREB and the associated pathways. It 
aims to provide a holistic outlook on the pesticides and their 
varied molecular targets within the pathways mentioned and 
improve our understanding of the role of pesticides in neu-
rodegeneration. Alterations in each gene can dysregulate the 
whole cascade, thus, leading to altered behavioral and gene 
expression in the exposed individual. Further, the review 
will be helpful to other researchers in toxicology to select 
the key genes when looking to study the neurotoxic potential 
of different pesticides. It will facilitate the identification of 
valuable therapeutic targets in future studies. The review 
also helps identify the most potent neurotoxic pesticide, and 
researchers can design remedial measures against. There-
fore, it is imperative to understand the possible targets of 
pesticide exposure which can serve as a useful biomarker in 
managing pesticide-induced neurotoxic symptoms.
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