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Abstract

Alternative splicing is implicated in each of the hallmarks of cancer, and is mechanised by various splicing factors. Serine-
Arginine Protein Kinase 1 (SRPK1) is an enzyme which moderates the activity of splicing factors rich in serine/arginine
domains. Here we review SRPK1’s relationship with various cancers by performing a systematic review of all relevant
published data. Elevated SRPK1 expression correlates with advanced disease stage and poor survival in many epithelial
derived cancers. Numerous pre-clinical studies investigating a host of different tumour types; have found increased SRPK1
expression to be associated with proliferation, invasion, migration and apoptosis in vitro as well as tumour growth, tumouri-
genicity and metastasis in vivo. Aberrant SRPK1 expression is implicated in various signalling pathways associated with
oncogenesis, a number of which, such as the PI3K/AKT, NF-KB and TGF-Beta pathway, are implicated in multiple different
cancers. SRPK1-targeting micro RNAs have been identified in a number of studies and shown to have an important role in
regulating SRPK1 activity. SRPK1 expression is also closely related to the response of various tumours to platinum-based
chemotherapeutic agents. Future clinical applications will likely focus on the role of SRPK1 as a biomarker of treatment
resistance and the potential role of its inhibition.

Keywords Serine-Arginine Protein Kinase 1 (SRPK1) - Alternative splicing - Cancer - Prognosis - Chemotherapy
resistance

Introduction in tumour structure and environment are also important.
Each tumour is made not only of cancerous cells, but an

Cancer is a heterogeneous entity characterised by at least  entire tumour microenvironment, within which exists stro-

six biological hallmarks. These hallmarks include; uncon-
trolled proliferation, replicative immortality, angiogenesis,
invasion and metastasis, evasion of growth suppression and
avoidance of cell death [1]. Oncogenesis is driven by a host
of deregulated signalling pathways that allow cells move
through various processes to acquire additional oncogenic
properties [2]. Though all cancers may display similar char-
acteristics, molecular differences within specific cancer
subtypes are frequently observed, and can have a profound
impact on disease progression, treatment response and sur-
vival [3, 4]. Apart from molecular differences, differences
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mal cells, immune cells and even bacteria in some instances
[5, 6]. Disentanglement of the interplay that exists between
individual tumours and their host microenvironment, will
improve understanding of aberrant pathways that promote
cancer progress and development [7]. Through identification
and targeting of such pathways, new treatment options are
emerging which will improve and help personalise future
cancer treatments [8, 9].

Alternative splicing (AS) is one of the key drivers of
protein diversity in humans. It describes the process by
which introns and exons are added and removed in vari-
ous combinations resulting in the production of various
protein transcripts [10]. Interestingly splicing isoforms of
a single pre-mRNA transcript can often have antagonistic
functions, thus can enhance or suppress various metabolic
processes [11]. ‘Hallmarks of cancer’ are frequently associ-
ated with a switch in splicing towards a more aggressive,
invasive phenotype. For example the pro-angiogenic rather
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than the anti-angiogenic vascular epithelial growth factor
A (VEGFA) isoform is known to predominate in numerous
malignancies [11-14].

Serine/arginine protein kinase 1 (SRPK1) is an enzyme
encoded by a gene located on chromosome 6 in humans. It is
known to be overexpressed in normal pancreas and testicu-
lar germ cells and underexpressed in glia [15-17]. SRPK1
plays a critical role in regulating AS, via the phosphorylation
of various splicing factors rich in serine/arginine domains
(SR proteins) [18]. SRPK1 is structurally made up of two
kinase domains that are separated by stretched divergent
spacer sequences [19, 20]. Regarding its crystallographic
structure, the larger lobe of the C-terminal is comprised
a substrate-binding site made up of a-helices, whilst the
N-terminal is comprised an ATP binding pocket and is pre-
dominantly made up of f-strands [20]. SRPK1 activity is
governed by its sub cellular location and the level of dephos-
phorylation of its substrate [21, 22]. The elimination of the
SRPKI1 spacer domain aggregates splicing factors, leading
to alterations in gene expression. The cytoplasmic attach-
ment of SRPKI1 is facilitated by its interaction with heat
shock protein Hsp40 and molecular chaperone Ahal [23].
This interaction between molecular chaperones and SRPK1
results in translocation of the kinase.

SRPK1 is known to be overexpressed in numerous malig-
nancies and has been implicated in various oncogenic sig-
nalling pathways across a multitude of cancer types [16,
17, 24-49].The aim of this review is to systematically sum-
marise all the studies published to date which examine the
relationship between SRPK1 expression and cancer develop-
ment and prognosis. Where available we have highlighted
specific aberrant signalling pathways through which SRPK1
has been found to promote oncogenesis.

Materials and methods
Literature search and study selection

This systematic review adhered to the recommendations
of the PRISMA (Preferred Reporting Items of Systematic
Reviews and Meta-analysis) statement [50]. A systematic
search of PubMed, Embase, and the Cochrane Central Reg-
ister of Controlled Trials was performed for all studies that
investigated the role of SRPK1 in cancer pathogenesis. The
following search terms were used in the search algorithm:
(Serine-Arginine Protein Kinase 1 OR SRPK1) AND (can-
cer OR adenocarcinoma). A second search strategy was used
to identify manuscripts detailing the role of SRPK1 in chem-
otherapy response: (Serine-Arginine Protein Kinase 1 OR
SRPK1) AND (chemotherapy). The latest search was per-
formed on the first of September 2021. Two authors (W.P.D
and E.O’C.) independently examined the title and abstract

@ Springer

of citations, and the full texts of potentially eligible studies
were obtained; disagreements were resolved by discussion.
The reference lists of all articles that were retrieved were
further screened for additional eligible publications.

Eligibility criteria

All studies that investigated the prognostic role of SRPK1
in cancer or the mechanisms or pathways by which SRPK1
impacted a distinct oncogenic process or response to chemo-
therapy, were deemed eligible for inclusion. This included
studies which evaluated patient samples, animal models, cell
lines and publicly available genomic databases. Review arti-
cles and articles relating to SRPK1s role in other biological
or pathological processes, not pertaining to cancer were not
deemed eligible. Studies which explored the structural or
organic properties of SRPK1 inhibitors, without inclusion of
in vivo/in vitro experiment component were also excluded.
There were no language restrictions.

Analysis

The results of all eligible studies were grouped together
by the organ involved. The impact of SRPK1 expression
on prognosis was described where available (Table 1). The
association between SRPK1 and apoptosis, cell growth,
invasion, migration, and treatment response in vitro as well
as tumour growth, tumourigenicity, metastasis and treatment
response in vivo were described. Where available, the sig-
nalling pathways involved are also discussed (Table 1).

Results
Literature review

The initial search yielded 281 publications; this was
reduced to 157 after duplicates were removed with a further
70 papers excluded by title and abstract alone, leaving 87
manuscripts for full-text review. 29 articles were deemed
ineligible after full-text review and the remaining 58 arti-
cles were deemed suitable for inclusion in the systematic
review. Of note, two of these articles investigated the role
of SRPK1 in more than one cancer type. The reasons as to
why the articles were excluded are listed in the PRISMA
flow diagram (Fig. 1).

Breast cancer

We identified seven papers which investigated the role of
SRPK1 in breast cancer [24-26, 51-54]. SRPK1 expres-
sion is higher in breast cancer tissue compared to matched
normal tissue, where expression is confined largely to ductal
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Fig. 1 PRISMA 2020 flow
diagram

Records identified through
database searching (n=281)

PubMed (113)
Embase (167)
Cochrane (1)

!

Records after duplicates

»| Articles excluded by title and

rfn";%.?)d abstract (n = 70)
v
Full text articles assessed for Full text articles excluded (n=29)
eligibility ' e Review articles(n=7)
(n=287) o Articles about benign
conditions (n=9)
¢ Studies exploring SRPK1
inhibitors, without inclusion
of in vivolin vitro
g;(periment component (n =
Studies included in systematic review (n = 58) * Articles not pertaining to
role of SRPK1 in any
¢ Breast (6)
¢ Colorectal (12)
¢ Endometrial (1)
o Esophageal (1)
e Gastric (4)
¢ Glioma (4)
e« HCC(5)
¢ Leukaemia (4)
e Lung(5)
¢ Multiple (2)
o Colon and breast (1)
o Prostate and Leukaemia (1)
e Ovarian (3)
e Pancreas (1)
¢ Prostate (3)
« RCC(1)
¢ Retinoblastoma (1)
e Skin (4)
o Melanoma (3)
o Basal cell carcinoma (1)
o Testicular (1)

epithelium [25]. SRPK1 silencing results in increased rates
of apoptosis, and decreased phosphorylation of mitogen-
activated protein kinase 3 (MAPK3), MAPK1 and protein
kinase B (AKT) in breast cancer cell lines, suggesting a
likely relationship between SRPK1 and AKT/MAPK sig-
nalling pathways [25]. SRPK1 and the splicing factor RNA-
binding protein 4 (RBM4) are overexpressed in breast cancer
tissue. SRPK1 maintains RBM4 in the cytoplasm of breast
cancer cells promoting preferential splicing of the anti-
apoptotic myeloid leukaemia 1 (MCL-1) long isoform [26].

Knockdown of SRPKI1 reduces migratory capac-
ity in estrogen receptor negative breast cancer cells.
SRPK1 was found to be involved in nuclear factor

kappa-light-chain-enhancer of activated B cells (NF-xB) sig-
nalling and its silencing was found to impact both canonical
and non-canonical pathways in vitro, and metastatic spread
to both lung and brain in vivo, but interestingly not liver or
bone. Unexpectedly, SRPK1 expression was not found to be
associated with AS in this study [24].

Stable isotope labelling by amino acids in cell culture
(SILAC) analysis has identified SRPK1 as a protein with
a downstream response to LIM domain kinase 2 (LIMK2)
inhibition. LIMK2 expression is associated with metastatic
spread in triple negative breast cancer. Pharmacological inhi-
bition of SRPK1 in triple negative breast cancer cell lines
results in a reduced capacity for invasion and migration,

@ Springer
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supporting a link between SRPK1 and LIMK2 signalling
in the context of metastatic spread in triple negative breast
cancer [51].

Tip60 acetylation of SRPK1 is a key step in the sensitisa-
tion of breast cancer cells to cisplatin. Tip60 acetylation was
found to destabilise SRPK1, impeding its nuclear transport,
which resulted in a lower half-maximal inhibitory concen-
tration (IC50) in MCF and 231 cell lines in response to cis-
platin treatment [53]. Micro RNA-9 (miRNA-9) is under-
expressed in breast cancer cell lines, its over-expression is
associated with reduced cell invasion, increased apoptosis
and reduced proliferation; miRNA-9 is thought to likely
carry out its function by regulating SRPK1 activity [54].

Colorectal cancer

Thirteen studies explored the role of SRPK1 in colorectal
cancer [3, 25, 27-30, 55-61]. SRPK1 expression was gen-
erally found to be elevated in colorectal cancer, with the
exception of the mucinous subtype [3, 25, 27-30, 60, 61]
(Table 1). SRPKI silencing was found to inhibit prolifera-
tion, migration and invasion and increase rates of apoptosis

Proliferationfh

of colorectal cancer cells across a number of included stud-
ies [25, 30, 61].

SRPKI1 is implicated in a host of signalling pathways
known to drive oncogenesis in colorectal cancer (Fig. 2).
Similar to what was observed in breast cancer cells, silenc-
ing of SRPK1 was found to inhibit MAPK/AKT signalling
in colonic cancer cells [25]. An antagonistic relationship was
found to exist between SRPK1 and PH domain and Leucine
rich repeat protein phosphatases (PHLPP) in controlling
AKT phosphorylation in colonic cells, interestingly both
under and overexpression of SRPK1 were found to induce
constitutive AKT activation in this study [27].

MAP kinase-interacting serine/threonine-protein kinase
2B (MKNK2B) is known to exert a distinct oncogenic effect
through MAPK signalling and phosphorylation of eukary-
otic translation initiation factor 4E (E1F4E). In contrast the
MKNK?2A isoform has a pro-apoptotic function. Liu et al.
found elevated SRPK1 expression to be associated with
preferential MKNK2B splicing in colon cancer cells. Ser-
ine/theorine-protein phosphatase (PP1a) was found to have
an antagonistic effect favouring MKNK?2A splicing in this
study [28]. Elevated A-kinase anchor protein 9 (AKAP9)
expression has previously been found to enhance tumour

Invasion +
Metastasis N

Fig.2 The multimodal involvement of SRPK1 within various oncogenic signalling pathways in an individual tumour type are exhibited here

through the example of a colorectal cancer cell
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growth and metastasis in vivo [55]. Yang et al.identified
the long non-coding RNA MALATI as having a key role
in promoting AKAP9 expression in colon cancer cells via
phosphorylation of the SRPK1/ serine-arginine splicing fac-
tor 1 (SRSF1) axis [62].

SRPK1 activation is associated with splicing of the BRAF
and serrated polyp morphology associated, ras-related C3
botulinum toxin substrate 1B (RAC1B) isoform [57, 63].
Interestingly formation of a lysine deficient protein kinase 1
(WNKI1)/glycogen synthase kinase 3 beta (GSK3B) /SRPK1
complex, was found to be necessary to incur SRSF1 phos-
phorylation and RACIB splicing in this study. Ibuprofen
treatment disrupts this complex in vitro [58]. This may pro-
vide a further pharmacological explanation as to the mecha-
nism by which cyclo-oxygenase (COX) inhibition prevents
gastrointestinal polyp formation [64, 65]. AS of the cad-
mium transporter SLC39A14 is associated with colorectal
adenoma and carcinoma development. SRPK1 expression is
responsible for preferential splicing of its oncogenic isoform
in colorectal cancer cells, and its expression is regulated
via the wingless/integrated (Wnt) signalling pathway [56].
miRNA-216b targets the 3°UTR of SRPK1 directly, and sup-
presses proliferation, migration and invasion in colorectal
cancer cells, through SRPK1 inactivation [29].

Huang et al. explored the relationship between elevated
SRPKI1 expression, apoptosis inhibition and oxaliplatin
resistance in colorectal cancer cells. SRPK1 silencing was
found to promote cleaved poly (ADP-ribose) polymerase
(PARP) and b-cell lymphoma extra S (BCL-xS) expres-
sion in cancer cells. NF-kB signalling was also found to
be downregulated in response to SRPK1 silencing and this
was associated with a significant reduction in oxaliplatin
IC50 values on MTT assay [30]. Plascencia et al., also pre-
viously provided evidence linking SRPK1 expression to
oxaliplatin resistance in colorectal cancer [59]. Interestingly,
interrogation of the cancer genome atlas (TCGA), found
SRPKI1 expression to be significantly lower in mucinous
colon tumours compared to non-mucinous, with reduced
expression correlating with reduced survival [3, 60]. This is
potentially pertinent given the poor response of this distinct
molecular subtype to standard adjuvant treatment regimens
[66]

Endometrial cancer

Using multiplexed inhibitory beads and mass spectrometry,
the kinome profile of primary endometrial tumours was
analysed in detail. SRPK1 was identified as having a likely
role in primary endometrial cancer development. Pharma-
cological inhibition of SRPK1 with SPHINX31 was found
to inhibit cell proliferation and induce apoptosis in endo-
metrial cancer cells. Interestingly activation of epidermal
growth factor receptor (EGFR)/insulin-like growth factor

1 receptor(IGFR-1)/AKT signalling, a pathway previously
shown to be associated with elevated SRPK1 expression,
promoted resistance to SRPK1 inhibition, suggesting a
potential feedback loop mechanism in endometrial cancer
cells [31].

Esophogeal cancer

Elevated SRPK1 protein expression is associated with
esophageal squamous cell carcinoma (SCC). SRPK1 silenc-
ing inhibits proliferation, invasiveness and migration and
induces apoptosis across esophageal SCC cell lines. Fur-
ther analysis demonstrated a decrease in phosphorylation
of AKT and increase in phosphorylation of Jun N-terminal
kinase (JNK) in response to SRPK1 silencing, indicating a
key role of SRPK1 in mediating transforming growth fac-
tor beta (TGF-B)-induced proliferation and apoptosis in this
context [32].

Gastric cancer

Four studies were identified which examined the role of
SRPKI1 in gastric cancer development [33-36]. All included
studies found SRPK1 to be overexpressed in gastric cancer
tissue compared to matched normal tissue (Table 1). Wang
et al.found SRPK1 silencing to inhibit cell cycle progres-
sion, migration and invasion in gastric cancer cells. Elevated
SRPK1 expression was found to be associated with increased
levels of IGF-1 as well as levels of epithelial-mesenchymal
transition (EMT) biomarkers; N-cadherin, matrix metallo-
proteinase 2 (MMP2) and zinc finger protein SNAI2 (Slug)
[33].

Protein phosphatase 2 (PP2A) and dual-specificity phos-
phatase (DUSP) expression were found to alleviate the onco-
genic effects of SRPK1 expression in gastric cancer cells,
though their exact inhibitory roles were not fully determined
in this study [34]. SRPK1 knockdown was found to suppress
gastric cancer cell proliferation and tumour growth, both
in vitro and in vivo. DNA microarray analysis identified a
potential link between SRPK1 expression and the prolifera-
tion of a number of small nucleolar RNA (SnoRna), includ-
ing SnoRnaD10, SnoRnaA42 and SnoRnaA74A all of which
have been linked to gastric cancer progression [36].

Li et al.identified a potential relationship between SRPK1
and miRNA-126. IHC analysis found an antagonistic rela-
tionship to exist between SRPK1 and miRNA-126 expres-
sion, whereby miRNA-126 is underexpressed and SRPK1
overexpressed in gastric cancer tissue. This finding cor-
related with lymph node metastasis and poor prognosis in
patient samples. miRNA-126 expression was found to inhibit
proliferation, migration and invasiveness of gastric cancer
cells. A dual luciferase reporter assay was performed which
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confirmed SRPK1 as a specific target gene of miRNA-126
[35].

Glioma

Four studies examined the role of SRPK1 in glioma develop-
ment [17, 37, 67, 68]. Interestingly aberrant SRPK1 expres-
sion was consistently found in glioma tissue samples and
cell lines, though its expression has scarcely been found in
normal glial cells [17, 37]. Sigala et al.found RNA silenc-
ing of SRPK1 to have little impact on cell viability in vitro,
though it was found to induce cisplatin sensitivity [17]. In
contrast, Wu et al.found SRPK1 knockdown of glioma cells
to inhibit growth, migration and invasion capacity in nor-
moxic and to a degree in hypoxic conditions. Most notably,
however, SRPK1 knockdown was associated with cisplatin
resistance in this study [37].

Chang et al. found SRPK1 knockdown to be associ-
ated with cell apoptosis, decreased migration and invasion
in vitro and to significantly reduce tumour growth in vivo.
SRPKT1 silencing had a significant impact on cell apoptosis
via Bcl-2 down regulation and Bax activation. AKT /E1F4E
phosphorylation were also inhibited by SRPK1 silencing, as
were hypoxia-inducible factor 1 (HIF-1) and VEGF produc-
tion [67]. The same group later found Plexin B1 also to be
overexpressed in glioma cell lines. Plexin B1 was found to
promote SRPK1 activity via PI3K/AKT signalling, resulting
in an increase in cell growth, angiogenesis and motility, both
in vitro and in vivo [68].

Hepatocellular carcinoma (HCC)

Five studies evaluated the role of SRPK1 in hepatocellular
carcinoma (HCC) [37-40, 69]. SRPKI1 expression is ele-
vated in HCC [37-40]. SRPK1 knockdown was associated
with decreased cell proliferation and reduced tumour growth
in vivo [37]. Western blot analysis revealed an association
between SRPK1 expression and the PI3K/AKT signalling
pathway [37]. Aberrant SRPK1 expression is associated
with AS of the checkpoint kinase 1 short (CHK1-S) isoform,
which is highly expressed in HCC and associated with poor
prognosis [39].

Two studies examined potential relationships between
SRPK1 and miRNA in HCC development [40, 69]. miRNA-
1296 is under-expressed in HCC tissue and cells, it interacts
directly with SRPK1, likely regulating its function in nor-
moxic conditions [40]. Hypoxia was found to play a key
role in inhibiting miRNA-1296 expression, resulting in an
SRPK1/AKT mediated increase in migration and invasion
in HCCLM3 cell lines in vitro [40]. Similarly, miRNA-155
was found to be under-expressed in HCC tissue compared to
normal hepatic tissue, its up-regulation inhibited prolifera-
tion, migration and invasion in HCC cells [69].
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Leukaemia

Five studies examined the role of SRPK1 in the development
of various luekaemias [70-74]. Siqueira et al., found SRPK1
to be overexpressed in myeloid and lymphoid leukaemia
cell lines. Pharmacological inhibition with SRPIN340
demonstrated a cytotoxic effect, impacting expression of
VEGTF, fas cel surface death receptor (FAS), MAPK2K1
and MAPK2K?2 [70]. Tzelepis et al. found SRPK1 knock-
down to elicit increased acute myeloid leukaemia (AML)
cell apoptosis in vitro and in vivo. Pharmacological SRPK1
inhibition with SPHINX31, was found to result in AS of
bromodomain-containing protein 4 (BRD4) towards its long
isoform. Notably this isoform unlike the BRD4 short iso-
form, is not associated with enhanced expression of BCL2
and MYC [71].

SRPKI1 silencing is associated with a significant increase
in apoptosis in K562 chronic myeloid leukaemia cells. West-
ern blot analysis showed an increase in expression of PARP,
BAX and Caspase 3 as well as a reduction in BCL2 expres-
sion, in response to SRPK1 silencing [72]. Wilms tumour
1 (WTI) expression is associated with increased SRPK1
expression in K562 cells, meanwhile brain abundant mem-
brane attached signal protein 1 (BASP1) demonstrated an
antagonistic effect in controlling SRPK1 activity in this
study [73].

SRPK1 expression is associated with PI3K/AKT signal-
ling in T-cell acute lymphoblastic leukaemia (T-ALL) cell
lines. Interestingly SRPK1 inhibition alone was not found
to effect cell apoptosis in this study, rather synergistic treat-
ment alongside an AKT inhibitor was found to have a sig-
nificant effect on apoptosis. This suggests the likely presence
of a regulatory feedback loop within the signalling cascade
in this cell type [74].

Lung cancer

Five studies explored the role of SRPK1 in Lung cancer
[41-43, 75, 76]. SRPK1 expression is elevated in Non Small
Cell Lung Cancer (NSCLC) tissue and is associated with
increased growth and migration in NSCLC cells [41-43].
SRPKI1 expression activates beta-catenin/TCF signalling via
phosphorylation of GSK3-beta [42]. Increased beta-catenin
signalling results in a cancer stem cell phenotype in NSCLC
[43]. Inhibition of this signalling pathway via introduction
of a chimeric antibody targeting SRPK1 activity has been
found to inhibit cell growth, migration and invasion in vitro
and tumour growth in vivo [75].

A recently published article identified a further role for
SRPK1 in NSCLC development. Fibroblast growth factor -2
(FGF-2) was found to activate SRPK1 amongst other splic-
ing proteins to promote VEGFR1 AS in NSCLC cells, con-
tributing to angiogenesis and progression of NSCLC [76].
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Ovarian cancer

Three studies explored the role of SRPK1 in ovarian
cancer [44, 45, 77]. Two of these studies found SRPK1
expression to be upregulated in ovarian cancer tissue [44,
45] (Table 1). SRPKI1 silencing was found to inhibit cell
proliferation and enhance cisplatin sensitivity in SKOV3
cells [44]. Wang et al.found the long non-coding RNA
UCALI to be overexpressed in ovarian cancer. Overexpres-
sion of UCA1 was found to be associated with enhanced
migration, invasion and cisplatin resistance in SKOV3
cells. The effects of UCA1 overexpression were found to
be partly mitigated by SRPK1 silencing [45]. By contrast
to the aforementioned studies, Schenk et al. found SPRK1
overexpression to induce cisplatin sensitivity in the A2780
ovarian cancer cell line [77].

Pancreatic cancer

A single study explored the role of SRPKI1 in pancreatic
cancer [15]. SRPK1 expression is elevated in malignant
and dysplastic pancreatic tissue compared to normal pan-
creatic tissue. SRPK1 silencing inhibits proliferation and
induces apoptosis in pancreatic cancer cells, and enhances
their sensitivity to gemcitabine and cisplatin treatment
[15].

Prostate cancer

Four studies examined the role of SRPK1 in prostate cancer
[46-48, 73]. SRPK1 expression is elevated in both malig-
nant prostate cancer and interestingly prostatic intraepithe-
lial neoplasia (PIN) [46—48](Table 1). SRPK1 silencing in
prostate cancer cells was found to result in preferential splic-
ing of the anti-angiogenic VEGFA isoform. SRPK1 silenc-
ing did not impact cell proliferation, invasion or migration
in vitro, but was shown to stunt tumour growth in vivo in this
study [46]. Pharmacological inhibition of SRPK1 in PC3
prostate cancer cells, reduces cell proliferation, invasion
and migration. WTI expression was found to be associated
with increased SRPK1 expression in this study, with BASP1
demonstrating an antagonistic effect in controlling SRPK1
activity [73].

Renal cell carcinoma (RCC)

One study examined the role of SRPK1 in renal cell
carcinoma(RCC) [78]. SRPK1 protein and mRNA expres-
sion was found to be elevated in RCC patient samples.
SRPKI silencing inhibits cell proliferation, migration and

invasion in vitro and tumourigenesis in vivo, its activity is
linked to PI3K/AKT signalling [78].

Retinoblastoma

A single publication examined the role of SRPK1 in ret-
inoblastoma [49]. Under-expression of SRPK1 is associated
with cisplatin resistance and recurrence in this study [49].

Skin (melanoma and basal cell carcinoma (BCC))

Three studies were identified, which explored the relation-
ship between SRPK1 and melanoma [14, 79, 80]. Gammons
et al.found SRPK1 expression to be elevated in both uveal
and cutaneous melanoma cell lines. SRPK1 silencing was
found to result in AS of the anti-angiogenic VEGF isoform
and was associated with inhibition of cell growth in vivo.
However, silencing was not found to impact tumour growth
in vitro [79]. Moreira et al., found pharmacological inhibi-
tion of SRPK1 to inhibit migration and invasion of mela-
noma cells in vitro, and metastasis in vivo [80].

SRY-box 2 (SOX2) expression is elevated in BCC tumour
samples, and its knockdown inhibits migration and invasion
of BCC cells in vitro. SOX2 mediates its affect through an
interaction with SRPK1 resulting in upregulation of PI3K/
AKT signalling [81].

Testicular germ cell tumors (GCT)

A single study evaluated SRPK1 expression in testicular
germ cell tumors (GCTs) [16]. Though SRPK1 is gener-
ally found to be highly expressed in these tumours, SRPK1
downregulation correlated positively with cisplatin resist-
ance and poor prognosis in this study [16].

Discussion

Elevated SRPK1 expression is commonly found in human
epithelial cancers and often correlates positively with
advanced disease stage and poor survival (Table 1). SRPK1
expression is also elevated in the precursor lesions of some
epithelial malignancies, highlighting the enzymes likely role
in the early stages of oncogenesis in such cancers [15, 46,
56]. Current available evidence, suggests a likely future role
for SRPK1 as a prognostic biomarker in some more common
epithelial cancers. Interestingly, however, underexpression
of SRPKI1 is also associated with a poor outcome in some
non-epithelial derived malignancies. Both Schenk et al. and
Krishnakur et al. found downregulation of SRPK1 to be
associated with cisplatin resistance and a worse prognosis
in testicular GCT’s and retinoblastomas, respectively [16,
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49]. At present, little is understood as to how SRPK1 expres-
sion is protective in these malignancies.

SRPK1 is implicated in the promotion of each of the hall-
marks of cancer across one tumour type or another [24,
25, 30-33]. As such it has become an attractive therapeutic
target. Inhibitors such as the SRPK1/2 inhibitor SRPIN340
and the more specific SPHINX and SPHINX31 have been
used to good effect in pre-clinical studies (Table 2) [79].
For example SPHINX31 has been shown to induce cell
cycle arrest and effect leukaemogenesis in AML, similarly
SPHINX was found to promote splicing of the anti-angio-
genic VEGF165b isoform in prostate cancer cells and reduce
tumour growth in vivo [46, 71]. However the side-effect pro-
file of SRPK1 inhibition has not yet been illustrated. Given
the multiple roles played by SRPK1 across various onco-
genic processes, its inhibition is likely to impact important
normal cellular processes also. Further studies to explore its
side-effect profile are warranted.

miRNA-based therapeutics are emerging as an excit-
ing cancer treatment option [82, 83]. Four SRPK1 specific
miRNA have been identified, each of which has been found
to regulate or suppress SRPK1 activity [29, 35, 40, 69]. It
is probable that further studies will reveal miRNA to have a
more prominent role in the regulation of SRPK1, with fur-
ther SRPK1-specific mi-RNA likely to be identified in the
context of other cancers. Interestingly miRNA-1296 which
is known to regulate SRPK1 activity in HCC, is underex-
pressed in hypoxic conditions leading to increased SRPK1
activity [40]. Similarly in glioma cells, hypoxic conditions
were found to reduce the impact of SRPK1 inhibition on
tumour growth, invasion and migration [37]. More analysis
regarding the impact of environmental factors on SRPK1
activity are warranted.

Resistance to chemotherapy, remains a main cause of
treatment failure and death in cancer patients [84]. SRPK1
silencing has been linked to platinum based chemotherapy
sensitisation in breast, colorectal, pancreatic and ovarian
cancer [15, 25, 44]. Meanwhile its inhibition has been linked
to resistance to the same family of chemotherapy agents in
testicular GCTs, retinoblastoma, glioma and ovarian cancer
[16, 37,49, 77]. SRPK1 expression has also been shown to
be downregulated in mucinous colorectal cancer, a subtype

known to respond poorly to adjuvant chemo and radio-
therapy [3, 66]. To date only Wang et al. have contributed
a hypothesis as to how SRPK1 activity is involved in the
metabolism of platinum-based chemotherapy [53]. Further
studies are warranted to elucidate the mechanisms involved.

SRPK1 is involved in a diverse array of signalling path-
ways associated with various cancers (Table 1). A number
of these pathways have been found to be present across more
than one tumour type. For instance SRPK1 has been impli-
cated in promoting AKT signalling in breast, colorectal,
esophageal, endometrial and pancreatic cancer as well as
glioma, HCC and T-ALL (Table 1). Similarly, SRPK1 pro-
motes NF-KB signalling in both breast and colorectal cancer
and AS of the pro-angiogenic VEGF isoform in melanoma,
NSCLC and prostate cancer (Table 1). However even within
pathways common to multiple tumour types, subtle differ-
ences in signalling have been identified. For example, rather
unexpectedly pharmacological inhibition of SRPK1 did not
interfere with AKT signalling in endometrial cancer cells,
with the authors suggesting a feedback loop may be present
within the pathway [31]. A similar finding was illustrated
in T-ALL cell lines where combined AKT/SRPK1 inhibi-
tion was required to impede AKT/PI3K signalling [74]. In
contrast SRPK1 inhibition alone is sufficient to interfere
with AKT signalling in many other cancers [25, 32, 37,
67, 68, 70]. Molecular differences can also have a profound
impact on SRPK1 activity. Schenk et al. and Odunsi et al.
both explored the relationship between SRPK1 expression
and the response of ovarian cancer cells to platinum-based
chemotherapy. The groups demonstrated opposing find-
ings, with the less common subtype represented by the
A2780 cell line demonstrating chemoresistance in response
to SRPK1 knockdown, whilst Odunsi et al. found knock-
down of SRPK1 to be associated with chemosensitisation of
SKOV3 cells [44, 77]. SRPK1 activity appears to be highly
specific and sensitive to variations in tumour biology. Little
can be extrapolated from one cancer type to explain its activ-
ity in another. Further investigation into the contribution of
various factors within the tumour microenvironment towards
SRPK1 activity are warranted.

It is likely that SRPK1 may have an even broader impact
on oncogenesis that what is currently understood. Emerging

Table 2 Examples of SRPK1

B Inhibitor Target Developmental stage Target disease
inhibitors
SRPIN340 SRPK1/2 Preclinical T-ALL [74]
Melanoma [80, 86]
SRPKIN-1 SRPK1/2(Irreversible) Preclinical Age-related macular degeneration [8]
SRPIN803 SRPK1/CK2 Preclinical Age-related macular degeneration [87]
SPHINX SRPK1 Preclinical Leukaemia [73]
Prostate cancer [73]
SPHINX31 SRPK1 Preclinical Diabetic retinopathy [88]

AML [71]
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evidence from investigations into the prognostic role of
cancer stem cells, suggest differing isoforms can have very
different implications regarding prognostic outcome. For
example differing isoforms of CD44 + stem cells have been
found to be associated with opposing prognostic outcomes
in colorectal cancer [85]. As one of the key moderators of
AS, it is likely SRPK1 has a role in cancer stem cell isoform
selection, this represents a further potentially exciting ave-
nue of research relating to the role of SRPK1 in oncogenesis
that remains unexplored.

In conclusion, SRPK1 activity is prognostic in many
epithelial derived cancers (Table 1). It is associated with
various oncogenic processes and signalling pathways that
are more often than not unique to the specific cancer under
examination (Table 1). There remains a need to establish
a deeper understanding of factors that influence SRPK1
expression. For example to date there is limited data regard-
ing how SRPK1 expression is influenced by external factors
such as the tumour microenvironment. Further proteomic
and transcriptomic analysis and evaluation of large data sets
may help provide better understanding of its activity in this
context.
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