Skip to main content
Log in

Differential gene expression and network analysis in head and neck squamous cell carcinoma

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy with a poor prognosis, whose biomarkers have not been studied in great detail. We have collected genomic data of HNSCC patients from The Cancer Genome Atlas (TCGA) and analyzed them to get deeper insights into the gene expression pattern. Initially, 793 differentially expressed genes (DEGs) were categorized, and their enrichment analysis was performed. Later, a protein–protein interaction network for the DEGs was constructed using the STRING plugin in Cytoscape to study their interactions. A set of 10 hub genes was selected based on Maximal Clique Centrality score, and later their survival analysis was studied. The elucidated set of 10 genes, i.e., PRAME, MAGEC2, MAGEA12, LHX1, MAGEA3, CSAG1, MAGEA6, LCE6A, LCE2D, LCE2C, referred to as potential candidates to be explored as HNSCC biomarkers. The Kaplan–Meier overall survival of the selected genes suggested that the alterations in the candidate genes were linked to the decreased survival of the HNSCC patients. Altogether, the results of this study signify that the genomic alterations and differential expression of the selected genes can be explored in therapeutic interpolations of HNSCC, exploiting early diagnosis and target-propelled therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

Abbreviations

HNSCC:

Head and neck squamous cell carcinoma

DEGs:

Differentially expressed genes

MCC:

Maximal clique centrality

PPI:

Protein–protein interaction

TCGA:

The Cancer Genome Atlas

IARC:

International Agency for Research on Cancer

HPV:

Human papilloma virus

DAVID:

Database for annotation, visualization, integrated discovery

GEPIA:

Gene expression profiling interactive analysis

GO:

Gene ontology

EMT:

Epithelialmesenchymal transition

References

  1. J Ferlay M Colombet I Soerjomataram DM Parkin M Piñeros A Znaor F Bray 2021 Cancer statistics for the year 2020: an overview Int J Cancer https://doi.org/10.1002/ijc.33588

    Article  PubMed  Google Scholar 

  2. DE Johnson B Burtness CR Leemans VWY Lui JE Bauman JR Grandis 2020 Head and neck squamous cell carcinoma Nat Rev Dis Primers 6 1 22

    Google Scholar 

  3. A Forastiere W Koch A Trotti D Sidransky 2001 Head and neck cancer N Engl J Med 345 1890 1900

    CAS  PubMed  Google Scholar 

  4. Bode A. M. & Dong Z. (2009). Cancer prevention research—then and now. Nat Rev Cancer 9(7):508–516

  5. J Chung E Sanford A Johnson S Klempner A Schrock N Palma R Erlich G Frampton Z Chalmers J Vergilio 2016 Comprehensive genomic profiling of anal squamous cell carcinoma reveals distinct genomically defined classes Ann Oncol 27 1336 1341

    CAS  PubMed  Google Scholar 

  6. WJ Blot JK McLaughlin DM Winn DF Austin RS Greenberg S Preston-Martin L Bernstein JB Schoenberg A Stemhagen JF Fraumeni 1988 Smoking and drinking in relation to oral and pharyngeal cancer Res 48 3282 3287

    CAS  Google Scholar 

  7. ML Gillison WM Koch RB Capone M Spafford WH Westra L Wu ML Zahurak RW Daniel M Viglione DE Symer 2000 Evidence for a causal association between human papillomavirus and a subset of head and neck cancers J Natl Cancer Inst 92 709 720

    CAS  PubMed  Google Scholar 

  8. WM Koch M Lango D Sewell M Zahurak D Sidransky 1999 Head and neck cancer in CNonsmokers: a distinct clinical and molecular entity Laryngoscope 109 1544 1551

    CAS  PubMed  Google Scholar 

  9. AP Stein S Saha JL Kraninger AD Swick M Yu PF Lambertg R Kimple 2015 Prevalence of human papillomavirus in oropharyngeal cancer: a systematic review Cancer J (Sudbury, Mass.) 21 138

    Google Scholar 

  10. S Krishnamurthy Z Dong D Vodopyanov A Imai JI Helman ME Prince MS Wicha JE Nör 2010 Endothelial cell-initiated signaling promotes the survival and self-renewal of cancer stem cells Cancer Res 70 9969 9978

    CAS  PubMed  PubMed Central  Google Scholar 

  11. V Modur KT Robbins K Rao 2015 HPV and CSC in HNSCC cisplatin resistance Genome 23 26

    Google Scholar 

  12. N Muhammad S Bhattacharya R Steele N Phillips RB Ray 2017 Involvement of c-Fos in the promotion of cancer stem-like cell properties in head and neck squamous cell carcinoma Clin Cancer Res 23 3120 3128

    CAS  PubMed  Google Scholar 

  13. F Chen A Zheng F Li S Wen S Chen Z Tao 2019 Screening and identification of potential target genes in head and neck cancer using bioinformatics analysis Oncol Lett 18 2955 2966

    CAS  PubMed  PubMed Central  Google Scholar 

  14. X Wang Z Yin Y Zhao M He C Dong M Zhong 2020 Identifying potential prognostic biomarkers in head and neck cancer based on the analysis of microRNA expression profiles in TCGA database Mol Med Rep 21 1647 1657

    CAS  PubMed  Google Scholar 

  15. AD Saleh H Cheng SE Martin H Si P Ormanoglu S Carlson PE Clavijo X Yang R Das S Cornelius 2019 Integrated genomic and functional microRNA analysis identifies miR-30-5p as a tumor suppressor and potential therapeutic nanomedicine in head and neck cancer Clin Cancer Res 25 2860 2873

    CAS  PubMed  PubMed Central  Google Scholar 

  16. F Geng Q Wang C Li J Liu D Zhang S Zhang Y Pan 2019 Identification of potential candidate genes of oral cancer in response to chronic infection with Porphyromonas gingivalis using bioinformatical analyses Front Oncol 9 91

    PubMed  PubMed Central  Google Scholar 

  17. G Liu X Zeng B Wu J Zhao Y Pan 2020 RNA-Seq analysis of peripheral blood mononuclear cells reveals unique transcriptional signatures associated with radiotherapy response of nasopharyngeal carcinoma and prognosis of head and neck cancer Cancer Biol Ther 21 139 146

    CAS  PubMed  Google Scholar 

  18. NC Lee JR Kelly HS Park Y An BL Judson BA Burtness ZA Husain 2018 Patterns of failure in high-metastatic node number human papillomavirus-positive oropharyngeal carcinoma Oral Oncol 85 35 39

    PubMed  Google Scholar 

  19. TJ Bledsoe HS Park JM Stahl WG Yarbrough BA Burtness RH Decker ZA Husain 2017 Hypofractionated radiotherapy for patients with early-stage glottic cancer: patterns of care and survival JNCI J Natl Cancer Inst https://doi.org/10.1093/jnci/djx042

    Article  PubMed  Google Scholar 

  20. NM Lyhne H Primdahl CA Kristensen E Andersen J Johansen LJ Andersen J Evensen HR Mortensen J Overgaard 2015 The DAHANCA 6 randomized trial: effect of 6 vs 5 weekly fractions of radiotherapy in patients with glottic squamous cell carcinoma Radiother Oncol 117 91 98

    PubMed  Google Scholar 

  21. Y Yura M Hamada 2017 Development of oncolytic virotherapy for the treatment of oral cancer—at the waiting stage for clinical use Oral Sci Int 14 1 12

    Google Scholar 

  22. G Marelli A Howells NR Lemoine Y Wang 2018 Oncolytic viral therapy and the immune system: a double-edged sword against cancer Front Immunol 9 866

    PubMed  PubMed Central  Google Scholar 

  23. J Raja JM Ludwig SN Gettinger KA Schalper HS Kim 2018 Oncolytic virus immunotherapy: future prospects for oncology J Immunother Cancer 6 1 13

    Google Scholar 

  24. M Hamada Y Yura 2020 Efficient delivery and replication of oncolytic virus for successful treatment of head and neck cancer Int J Mol Sci 21 7073

    CAS  PubMed Central  Google Scholar 

  25. S Bhattacharya N Muhammad R Steele G Peng RB Ray 2016 Immunomodulatory role of bitter melon extract in inhibition of head and neck squamous cell carcinoma growth Oncotarget 7 33202

    PubMed  PubMed Central  Google Scholar 

  26. S Bhattacharya N Muhammad R Steele J Kornbluth RB Ray 2017 Bitter melon enhances natural killer–mediated toxicity against head and neck cancer cells Cancer Prev Res 10 337 344

    CAS  Google Scholar 

  27. MI Love W Huber S Anders 2014 Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 Genome Biol 15 1 21

    Google Scholar 

  28. C-H Chin S-H Chen H-H Wu C-W Ho M-T Ko C-Y Lin 2014 cytoHubba: identifying hub objects and sub-networks from complex interactome BMC Syst Biol 8 1 7

    Google Scholar 

  29. H Ikeda B Lethé F Lehmann N Baren Van J-F Baurain C Smet De H Chambost M Vitale A Moretta T Boon 1997 Characterization of an antigen that is recognized on a melanoma showing partial HLA loss by CTL expressing an NK inhibitory receptor Immunity 6 199 208

    CAS  PubMed  Google Scholar 

  30. MT Epping L Wang MJ Edel L Carlée M Hernandez R Bernards 2005 The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling Cell 122 835 847

    CAS  PubMed  Google Scholar 

  31. A Argiris SC Lee T Feinstein S Thomas BF Branstetter IV R Seethala L Wang W Gooding JR Grandis RL Ferris 2011 Serum biomarkers as potential predictors of antitumor activity of cetuximab-containing therapy for locally advanced head and neck cancer Oral Oncol 47 961 966

    CAS  PubMed  PubMed Central  Google Scholar 

  32. H Zhu J Wang J Yin B Lu Q Yang Y Wan C Jia 2018 Downregulation of PRAME suppresses proliferation and promotes apoptosis in hepatocellular carcinoma through the activation of P53 mediated pathway Cell Physiol Biochem 45 1121 1135

    CAS  PubMed  Google Scholar 

  33. Z Sun Z Wu F Zhang Q Guo H Chen J Zhao D Song Q Huang L Li J Xiao 2016 PRAME is critical for breast cancer growth and metastasis Gene 594 160 164

    CAS  PubMed  Google Scholar 

  34. H Yan R Zhao Z Wang F Zhao S Wang 2015 Knockdown of PRAME enhances adriamycin-induced apoptosis in chronic myeloid leukemia cells Eur Rev Med Pharmacol Sci 19 4827 4834

    CAS  PubMed  Google Scholar 

  35. T Adib S Henderson C Perrett D Hewitt D Bourmpoulia J Ledermann C Boshoff 2004 Predicting biomarkers for ovarian cancer using gene-expression microarrays Br J Cancer 90 686 692

    CAS  PubMed  PubMed Central  Google Scholar 

  36. JM Lancaster HK Dressman RS Whitaker L Havrilesky J Gray JR Marks JR Nevins A Berchuck 2004 Gene expression patterns that characterize advanced stage serous ovarian cancers J Soc Gynecol Investig 11 51 59

    CAS  PubMed  Google Scholar 

  37. Y Xu R Zou J Wang W Zw X Zhu 2020 The role of the cancer testis antigen PRAME in tumorigenesis and immunotherapy in human cancer Cell Prolif 53 e12770

    PubMed  PubMed Central  Google Scholar 

  38. J Roszik W-L Wang JA Livingston CL Roland V Ravi C Yee P Hwu A Futreal AJ Lazar SR Patel 2017 Overexpressed PRAME is a potential immunotherapy target in sarcoma subtypes Clin Sarcoma Res 7 1 7

    Google Scholar 

  39. K Iura K Kohashi Y Hotokebuchi T Ishii A Maekawa Y Yamada H Yamamoto Y Iwamoto Y Oda 2015 Cancer-testis antigens PRAME and NY-ESO-1 correlate with tumour grade and poor prognosis in myxoid liposarcoma J Pathol: Clin Res 1 144 159

    CAS  Google Scholar 

  40. JA Hemminger AE Toland TJ Scharschmidt JL Mayerson DC Guttridge OH Iwenofu 2014 Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma Mod Pathol 27 1238 1245

    CAS  PubMed  PubMed Central  Google Scholar 

  41. S Thongprasert P-C Yang JS Lee R Soo O Gruselle A Myo J Louahed FF Lehmann VG Brichard T Coche 2016 The prevalence of expression of MAGE-A3 and PRAME tumor antigens in East and South East Asian non-small cell lung cancer patients Lung Cancer 101 137 144

    PubMed  Google Scholar 

  42. Q Huang H Wei Z Wu L Li L Yao Z Sun L Li Z Lin W Xu S Han 2016 Preferentially expressed antigen of melanoma prevents lung cancer metastasis PLoS ONE 11 e0149640

    PubMed  PubMed Central  Google Scholar 

  43. MJ Szczepanski AB DeLeo M Łuczak M Molinska-Glura J Misiak B Szarzynska G Dworacki M Zagor N Rozwadowska M Kurpisz 2013 PRAME expression in head and neck cancer correlates with markers of poor prognosis and might help in selecting candidates for retinoid chemoprevention in pre-malignant lesions Oral Oncol 49 144 151

    CAS  PubMed  Google Scholar 

  44. RE Beard D Abate-Daga SF Rosati Z Zheng JR Wunderlich SA Rosenberg RA Morgan 2013 Gene expression profiling using nanostring digital RNA counting to identify potential target antigens for melanoma immunotherapy Clin Cancer Res 19 4941 4950

    CAS  PubMed  PubMed Central  Google Scholar 

  45. B Jackson CM Tilli MJ Hardman AA Avilion MC MacLeod GS Ashcroft C Byrne 2005 Late cornified envelope family in differentiating epithelia—response to calcium and ultraviolet irradiation J Investig Dermatol 124 1062 1070

    CAS  PubMed  Google Scholar 

  46. Y-S Jeon M Shivakumar D Kim C-S Kim J-S Lee 2021 Reliability of microarray analysis for studying periodontitis: low consistency in 2 periodontitis cohort data sets from different platforms and an integrative meta-analysis J Periodontal Implant Sci 51 18

    PubMed  Google Scholar 

  47. L Boldrup X Gu PJ Coates L Norberg-Spaak R Fahraeus G Laurell T Wilms K Nylander 2017 Gene expression changes in tumor free tongue tissue adjacent to tongue squamous cell carcinoma Oncotarget 8 19389

    PubMed  Google Scholar 

  48. Y Liang C Guan K Li G Zheng T Wang S Zhang G Liao 2020 MMP25 regulates immune infiltration level and survival outcome in head and neck cancer patients Front Oncol 10 1088

    PubMed  PubMed Central  Google Scholar 

  49. Y-Y Zhang M-H Mao Z-X Han 2021 Identification of a gene prognostic signature for oral squamous cell carcinoma by RNA sequencing and bioinformatics BioMed Res Int https://doi.org/10.1155/2021/6657767

    Article  PubMed  PubMed Central  Google Scholar 

  50. LC Tsoi M Gharaee-Kermani CC Berthier T Nault GA Hile SN Estadt MT Patrick R Wasikowski AC Billi L Lowe 2020 IL18-containing 5-gene signature distinguishes histologically identical dermatomyositis and lupus erythematosus skin lesions JCI Insight https://doi.org/10.1172/jci.insight.139558

    Article  PubMed  PubMed Central  Google Scholar 

  51. E Fields JD Wren C Georgescu JR Daum GJ Gorbsky 2018 Predictive bioinformatics identifies novel regulators of proliferation in a cancer stem cell model Stem cell Res 26 1 7

    CAS  PubMed  Google Scholar 

  52. AD Silk LM Zasadil AJ Holland B Vitre DW Cleveland BA Weaver 2013 Chromosome missegregation rate predicts whether aneuploidy will promote or suppress tumors Proc Natl Acad Sci USA 110 E4134 E4141

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Z Fu K Regan L Zhang MH Muders SN Thibodeau A French Y Wu SH Kaufmann WL Lingle J Chen 2009 Deficiencies in Chfr and Mlh1 synergistically enhance tumor susceptibility in mice J Clin Investig 119 2714 2724

    CAS  PubMed  PubMed Central  Google Scholar 

  54. N Wind de M Dekker A Rossum van M Valk van der H Riele te 1998 Mouse models for hereditary nonpolyposis colorectal cancer Cancer Res 58 248 255

    PubMed  Google Scholar 

  55. C Lin S Mak PA Meitner JM Wolf EM Bluman JA Block RM Terek 2002 Cancer/testis antigen CSAGE is concurrently expressed with MAGE in chondrosarcoma Gene 285 269 278

    CAS  PubMed  Google Scholar 

  56. G-W Liu Z-M Qin Q-H Shen 2017 An ensemble method integrated with miRNA expression data for predicting miRNA targets in stomach adenocarcinoma Cancer Biomark 20 617 625

    CAS  PubMed  Google Scholar 

  57. AJ Simpson OL Caballero A Jungbluth Y-T Chen LJ Old 2005 Cancer/testis antigens, gametogenesis and cancer Nat Rev Cancer 5 615 625

    CAS  PubMed  Google Scholar 

  58. MJ Scanlan AO Gure AA Jungbluth LJ Old YT Chen 2002 Cancer/testis antigens: an expanding family of targets for cancer immunotherapy Immunol Rev 188 22 32

    CAS  PubMed  Google Scholar 

  59. H Sapkota JD Wren GJ Gorbsky 2020 CSAG1 maintains the integrity of the mitotic centrosome in cells with defective p53 J Cell Sci 133 jcs239723

    CAS  PubMed  PubMed Central  Google Scholar 

  60. X Li SC Hughes R Wevrick 2015 Evaluation of melanoma antigen (MAGE) gene expression in human cancers using the cancer genome atlas Cancer Genet 208 25 34

    CAS  PubMed  Google Scholar 

  61. S Srdelić I Kuzmić-Prusac GC Spagnoli A Juretić V Čapkun 2019 MAGE-A4 and MAGE-A1 immunohistochemical expression in high-grade endometrial cancer Int J Gynecol Pathol 38 59 65

    PubMed  Google Scholar 

  62. X Gao G Chen H Cai X Wang K Song L Liu T Qiu Y He 2020 Aberrantly enhanced melanoma-associated antigen (MAGE)-A3 expression facilitates cervical cancer cell proliferation and metastasis via actuating Wnt signaling pathway Biomed Pharmacother 122 109710

    CAS  PubMed  Google Scholar 

  63. L Li W Li 2015 Epithelial–mesenchymal transition in human cancer: comprehensive reprogramming of metabolism, epigenetics, and differentiation Pharmacol Ther 150 33 46

    CAS  PubMed  Google Scholar 

  64. P Yang Z Huo H Liao Q Zhou 2015 Cancer/testis antigens trigger epithelial-mesenchymal transition and genesis of cancer stem-like cells Curr Pharm Des 21 1292 1300

    CAS  PubMed  Google Scholar 

  65. C Antognelli R Cecchetti F Riuzzi MJ Peirce VN Talesa 2018 Glyoxalase 1 sustains the metastatic phenotype of prostate cancer cells via EMT control J Cell Mol Med 22 2865 2883

    CAS  PubMed  PubMed Central  Google Scholar 

  66. K Guo M Lu P Xu H Li 2016 Expression and clinical significance of MAGE-C2 in lung adenocarcinoma Zhongguo fei ai za zhi= Chin J Lung Cancer 19 88 92

    Google Scholar 

  67. X Gu Y Mao C Shi W Ye N Hou L Xu Y Chen W Zhao 2019 MAGEC2 correlates with unfavorable prognosis and promotes tumor development in HCC via epithelial-mesenchymal transition Onco Targets Ther 12 7843

    CAS  PubMed  PubMed Central  Google Scholar 

  68. J Qiu B Yang 2021 MAGE-C2/CT10 promotes growth and metastasis through upregulating c-Myc expression in prostate cancer Mol Cell Biochem 476 1 10

    CAS  PubMed  Google Scholar 

  69. T Yanagi K Nagai H Shimizu S-I Matsuzawa 2017 Melanoma antigen A12 regulates cell cycle via tumor suppressor p21 expression Oncotarget 8 68448

    PubMed  PubMed Central  Google Scholar 

  70. N Mollaoglu E Vairaktaris E Nkenke FW Neukam J Ries 2008 Expression of MAGE-A12 in oral squamous cell carcinoma Dis Markers 24 27 32

    CAS  PubMed  Google Scholar 

  71. DL Figueiredo RC Mamede R Proto-Siqueira L Neder WA Silva Jr MA Zago 2006 Expression of cancer testis antigens in head and neck squamous cell carcinomas Head Neck 28 614 619

    PubMed  Google Scholar 

  72. J Lin L Lin DG Thomas JK Greenson TJ Giordano GS Robinson RA Barve FA Weishaar JM Taylor MB Orringer 2004 Melanoma-associated antigens in esophageal adenocarcinoma: identification of novel MAGE-A10 splice variants Clin Cancer Res 10 5708 5716

    CAS  PubMed  Google Scholar 

  73. M Otte M Zafrakas L Riethdorf U Pichlmeier T Löning F Jänicke K Pantel 2001 MAGE-A gene expression pattern in primary breast cancer Cancer Res 61 6682 6687

    CAS  PubMed  Google Scholar 

  74. V Dormoy C Beraud V Lindner L Thomas C Coquard M Barthelmebs D Jacqmin H Lang T Massfelder 2011 LIM-class homeobox gene Lim1, a novel oncogene in human renal cell carcinoma Oncogene 30 1753 1763

    CAS  PubMed  Google Scholar 

  75. RD Steenbergen M Ongenaert S Snellenberg G Trooskens WF Meide Van Der D Pandey N Bloushtain-Qimron K Polyak CJ Meijer PJ Snijders 2013 Methylation-specific digital karyotyping of HPV16E6E7-expressing human keratinocytes identifies novel methylation events in cervical carcinogenesis J Pathol 231 53 62

    CAS  PubMed  Google Scholar 

  76. S Wang Z Fu Y Wang Y Sun L Cui C Wang Q Liu D Shao Y Wang N Wen 2020 Correlation of carbonic anhydrase 9 (CA9) with pathological T-stage and prognosis in patients with oral tongue squamous cell carcinoma Ann Transl Med https://doi.org/10.21037/atm-20-7144

    Article  PubMed  PubMed Central  Google Scholar 

  77. A Oberthuer B Hero R Spitz F Berthold M Fischer 2004 The tumor-associated antigen PRAME is universally expressed in high-stage neuroblastoma and associated with poor outcome Clin Cancer Res 10 4307 4313

    CAS  PubMed  Google Scholar 

  78. LJ Van't Veer H Dai MJ Vijver Van De YD He AA Hart M Mao HL Peterse K Kooy Van Der MJ Marton AT Witteveen 2002 Gene expression profiling predicts clinical outcome of breast cancer Nature 415 530 536

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Taif University Researchers Supporting Project Number (TURSP-2020/131), Taif University, Taif, Saudi Arabia. MIH acknowledges the Council of Scientific and Industrial Research for financial support [Project No. 27(0368)/20/EMR-II] for financial support. The authors sincerely thank the Department of Science and Technology, Government of India, for the FIST support (SR/FST/LSII/2020/782).

Funding

This work was supported by Taif University Researchers Supporting Project Number (TURSP-2020/131), Taif University, Taif, Saudi Arabia and the Indian Council of Medical Research (Grant No. ISRM/12(22)/2020).

Author information

Authors and Affiliations

Authors

Contributions

FA, AS and MIH contributed to the conception and design of this study. TM, AS, PA and DKY performed the experiments and analyzed the data. FA, SS, TM and MIH interpreted the results of the experiments. TM, AS, PA, DKY and AI wrote the manuscript. TM, AS, FA, PA and MIH edited and revised the manuscript. All authors approved the final version of the manuscript submitted for publication.

Corresponding authors

Correspondence to Dharmendra Kumar Yadav or Md Imtaiyaz Hassan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habib, I., Anjum, F., Mohammad, T. et al. Differential gene expression and network analysis in head and neck squamous cell carcinoma. Mol Cell Biochem 477, 1361–1370 (2022). https://doi.org/10.1007/s11010-022-04379-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-022-04379-3

Keywords

Navigation