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Abstract
A growing amount of epidemiological data from multiple countries indicate an increased prevalence of obesity, more impor-
tantly central obesity, among hospitalized subjects with COVID-19. This suggests that obesity is a major factor contributing 
to adverse outcome of the disease. As it is a metabolic disorder with dysregulated immune and endocrine function, it is logi-
cal that dysfunctional metabolism contributes to the mechanisms behind obesity being a risk factor for adverse outcome in 
COVID-19. Emerging data suggest that in obese subjects, (a) the molecular mechanisms of viral entry and spread mediated 
through ACE2 receptor, a multifunctional host cell protein which links to cellular homeostasis mechanisms, are affected. This 
includes perturbation of the physiological renin-angiotensin system pathway causing pro-inflammatory and pro-thrombotic 
challenges (b) existent metabolic overload and ER stress-induced UPR pathway make obese subjects vulnerable to severe 
COVID-19, (c) host cell response is altered involving reprogramming of metabolism and epigenetic mechanisms involving 
microRNAs in line with changes in obesity, and (d) adiposopathy with altered endocrine, adipokine, and cytokine profile 
contributes to altered immune cell metabolism, systemic inflammation, and vascular endothelial dysfunction, exacerbating 
COVID-19 pathology. In this review, we have examined the available literature on the underlying mechanisms contributing 
to obesity being a risk for adverse outcome in COVID-19.
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Introduction

There has been a substantial rise in the prevalence of obe-
sity and associated metabolic disorders worldwide during 
recent years. The World Health Organization has reported 
over a billion overweight adults worldwide, and over 300 
million of these individuals are clinically obese [1]. Being 
a complex metabolic disorder, obesity is linked to devel-
opment of several human diseases including cardiovascu-
lar diseases (CVD), Type 2 Diabetes (T2D), hypertension, 
stroke, hepatic steatosis, endometriosis, and certain type of 
cancers. It is becoming increasingly evident that obesity is 
also associated with infectious diseases though mechanisms 
underlying their possible association are not well under-
stood. While the association between obesity and the risk 
for contracting hospital-borne nosocomial and surgery-site 
infection is well known, adequate data in support of sus-
ceptibility to community-based infections are lacking. In 
many of the bacterial or viral infections, data on the link 
between obesity and susceptibility to infection and the out-
come of the disease is either limited or controversial [2]. An 
exception to this is perhaps the H1N1 influenza pandemic in 
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2009, when a series of epidemiological studies showed that 
obesity was independently associated with risk for severe 
disease [3]. Although several studies revealed that obesity 
was linked with poor outcome in H1N1 infection in terms 
of hospitalization, Intensive Care Unit (ICU) admission, and 
death, the relevant pathophysiological mechanisms are not 
well understood. Some of the obesity-related factors that can 
affect the course and outcome of the disease may include 
obesity-related immune dysregulation and impaired immune 
response, respiratory dysfunction, comorbidities such as 
diabetes, hypertension, and vascular endothelial dysfunc-
tion, and disrupted micro and macrovascular circulation. 
Unlike bacterial or other microbial infections, viral infection 
involves taking over of host cell machinery for their multi-
plication and evasion of host cell immune surveillance, thus, 
causing havoc to host cell function and leading to disease.

COVID-19 is a viral infectious disease of zoonotic origin, 
caused by severe acute respiratory syndrome-coronavirus-2 
(SARS-CoV2). Coronaviruses (CoVs) are enveloped, pos-
itive-sense, single-stranded RNA viruses. They belong to 
the family Coronaviridae within the order Nidoviridae and 
sub-order Coronavirinae. The family is further divided into 
the sub-family Orthocoronavirinae made up of four genera—
alpha, beta, gamma, and delta coronavirus. There are seven 
Human corona viruses (HCoVs) that cause illness in humans 
and the first of these were discovered in 1966 and 1967. Four 
of the HCoVs—HCoV-229E, HCoV-OC43, HCoV-NL63, 
and HKU1—cause mild seasonal respiratory infections. The 
other three, Severe acute respiratory syndrome coronavirus 
(SARS-CoV), the Middle East respiratory syndrome coro-
navirus (MERS-CoV), and SARS-CoV2, which are beta-
coronaviruses, can infect bronchial epithelial cells, pneu-
mocytes, and cells of the upper respiratory tract. They cause 
more serious infections which can progress into severe life-
threatening disease [4]. SARS-CoV was responsible for an 
outbreak in Guangdong in 2003 in which 800 out of around 
8,000 people died. MERS-CoV caused an outbreak, mainly 
in Middle Eastern countries in 2012 that affected more than 
2500 people killing close to 900 [5].

SARS-CoV2 was reported for the first time in Wuhan, 
China in December 2019 [6] and has since developed into a 
pandemic affecting over 200 nations, infecting over 200 mil-
lion people (289,293,171) of whom more than four million 
(5,440,643) have lost their life (downloaded on 2nd January, 
2022 from Johns Hopkins University Covid resource center). 
In contrast to SARS and MERS, SARS-CoV2 is character-
ized by high infectivity, latency, and asymptomatic trans-
mission [7]. A number of epidemiological studies, although  
heterogeneous in the nature of the material and the reporting 
of the data, suggest that obesity does adversely affect the 
severity and outcome of COVID-19. During the initial viral 
response phase of infection, most individuals are generally 
asymptomatic and develop only mild symptoms, whereas 

some progress to severe pulmonary phase of the disease 
developing pneumonia with associated symptoms. Some of 
these patients progress further to a phase of hyper-inflam-
mation and develop acute respiratory distress syndrome 
(ARDS), sepsis, and multi-organ failure. It is important to 
understand which of these phases in the progression of the 
disease is affected in obesity. Does obesity increase suscep-
tibility to infection and its persistence? Does obesity-asso-
ciated metabolic and immune dysregulation pose risk for 
progression of the disease and if so, what are the molecular 
mechanisms? Recent reviews have analyzed the epidemio-
logical data in the context of lessons learnt in previous viral 
epidemics [8], impact of metabolic and endocrine dysregula-
tion on the susceptibility to serious disease [9, 10], and the 
impact of SARS-CoV2 infection on organ function relevant 
in non-communicable diseases and its implications for the 
obesity epidemic [11]. In this review, we try to analyze the 
current literature on the role of obesity on COVID-19 patho-
genesis focusing on possible mechanisms contributing to the 
risk for adverse outcome of the infection.

Pathophysiology and clinical course 
of SARS‑CoV2

The SARS-CoV2 genome is about 30 kb long and consists 
of two flanking, open-reading frames (ORF) and untrans-
lated regions (UTRs) [12]. It encodes at least 27 proteins, 
including 4 structural proteins (spike (S) protein, envelope 
(E) protein, membrane (M) protein, and nucleocapsid (N) 
protein), 16 non-structural proteins (NSP1-11, NSP12-
16), and a few accessory proteins (ORF3a, ORF3b, ORF6, 
ORF7a, ORF7b, ORF8, ORF9b, and ORF14). The ORF1ab 
at the 5′ end, which encodes the polyprotein precursor for 
NSPs, constitutes more than two third of the SARS-CoV2 
genome. The SARS-CoV2 shares a significant amino acid 
sequence homology with SARS-CoV. The S-protein that is 
required for binding to the receptor on host cells is encoded 
by the S-gene. S-protein-RNA-based vaccines have been 
introduced against SAR-CoV2 [13]. M-protein is another 
important structural protein that primarily determines the 
shape of the virus envelope but is also able to bind to other 
structural proteins [12, 14]. The N-protein binds with the M 
protein that stabilizes the N-protein-RNA complex by pro-
moting the completion of viral assembly inside the virion. 
The envelope or E-protein which is crucial for production 
and maturation of the virus is the smallest protein in the 
SARS-CoV structure.

The SARS-CoV2 gains entry into the target cell through 
the receptor protein, angiotensin-converting enzyme-2 
(ACE2) which is present in the heart, lungs, kidneys, and 
gastrointestinal tract. This is initiated by S-protein attaching 
to ACE2 on the cell surface, its cleavage by the TMPRSS2 
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serine protease to expose the fusion peptide, and fusion with 
the host cell plasma membrane [12, 15, 16]. The virus initi-
ates the replication process inside the host cell by releasing 
the RNA into the cytoplasm. ORF1ab of the viral RNA is 
translated into the polyproteins, pp1a and pp1ab which pro-
duce a variety of non-structural proteins (NSPs) that form 
the viral replication/transcription complex (RTC) while the 
rest of the viral RNA is transcribed into a group of nested 
subgenomic mRNAs. Viral replication and transcription 
occur with the help of RTC within the double membrane 
vesicles (DMV) formed by NSP-mediated reorganization of 
rough endoplasmic reticulum membranes.

Clinical course of COVID‑19

COVID-19 presents with a variety of symptoms such 
as fever, cough, sore throat, fatigue, headache, myalgia, 
impaired sense of taste and smell, conjunctivitis, and diar-
rhea [17, 18]. Severe conditions are associated with pneu-
monia, fever, and cough and dyspnea. The signs and symp-
toms of illness associated with COVID-19 vary from person 
to person and with the severity of the disease. Incubation 
period is generally for 14 days after exposure though symp-
toms usually start to develop within 4–5 days [19–22].

COVID-19 infection can either be asymptomatic, a mild 
and self-limiting disease or lead to a critical and fatal ill-
ness. It is classified into three stages of increasing severity 
[23]. During the initial viral phase referred to as stage I, 
predominant symptoms are that of upper respiratory tract 
infection. Stage II refers to the pulmonary phase of infec-
tion characterized by pneumonia and associated symptoms 
and can be classified into subgroups of pneumonia patients 
without hypoxia (Stage II A) and those with hypoxia (Stage 
II B) requiring hospitalization and oxygen supplementa-
tion. Stage III refers to the hyper-inflammation phase when 
patients worsen rapidly and develop Acute Respiratory Dis-
tress Syndrome (ARDS) and sepsis, leading to multi-organ 
failure. It involves inflammation and fluid build-up in the 
lungs, which limits air-to-blood transfer of oxygen. Such 
patients generally need invasive mechanical ventilation 
(IMV) in the intensive care unit (ICU).

Not much information is available on the frequency of 
asymptomatic infection; it could be as high as 30–40% [24, 
25]. Subjects could be symptom-free at diagnosis but turn 
symptomatic later (pre-symptomatic). Though similar viral 
loads have been documented in the upper respiratory tract 
of both symptomatic and asymptomatic cases [26] and in 
the pre-symptomatic phase, the risk of transmission of virus 
by asymptomatic people has not been quantified. However, 
observational and modeling reports suggest that up to 12% of 
transmission occurs before an index case develops symptoms 
[27]. It is also observed that while about 80% cases develop 
only mild disease, about 14% cases have severe disease; 5% 

of cases become critical and seriously ill and 2 to 3% are fatal. 
Symptomatic infection predominates in adults with underly-
ing comorbidities [28]. Subjects with underlying comorbidities 
have been reported to be at increased risk of developing severe 
disease following Covid-19 infection. They include individuals 
with type 1 and type 2 diabetes, hypertension, cancer, chronic 
lung disease, tuberculosis, chronic renal disease, chronic liver 
disease and HIV infection. Also at a higher risk are pregnant 
women and individuals on immunosuppressant therapy [29].

Acute hypoxemic respiratory failure from ARDS is a major 
finding [25, 30, 31] and the requirement for IMV is high in 
critically ill patients. Common complications of COVID-
related ARDS include acute kidney injury, hepatic injury, car-
diac injury including cardiomyopathy, pericarditis, arrhythmia, 
and sudden cardiac death [28].

Diagnosis and prognosis of the disease have been mostly 
based on clinical evaluation of the symptoms and radiologi-
cal imaging and confirmed by laboratory-based RT-PCR tests. 
CT scan revealed bilateral lung involvement mostly during the 
intermediate and late stage of the disease and in severe condi-
tion revealed ‘white lung’ appearances showing the possible 
effect of the infection on lung functions [32].

Several of the observational studies have only partially 
described laboratory findings. The common findings among 
the hospitalized COVID-19 patients include lymphopenia, ele-
vated plasma amino transferase and LDH levels, higher levels 
of inflammatory markers such as serum ferritin, C-reactive 
protein (CRP), erythrocyte sedimentation rate (ESR), and 
abnormalities in coagulatory tests [33, 34]. High D-dimer 
levels and severe lymphopenia are associated with critical 
illness or mortality. In a retrospective cohort study of 799 
patients in Wuhan, serum concentrations of enzymes such as 
alanine aminotransferase, aspartate aminotransferase, creatine 
kinase, LDH, and the levels of creatinine, cardiac troponin-I, 
N-terminal pro-brain natriuretic peptide, and D-dimer were 
much higher in patients who died when compared to recovered 
patients [35]. A systematic review of 28 studies in blood/serum 
of COVID-19 patients revealed increased CRP, decreased 
albumin, increased ESR, decreased eosinophils, increased 
interleukin-6 (IL-6), lymphopenia, and increased LDH. Fur-
ther, meta-analysis of another seven studies on COVID-19 
patients revealed that raised CRP, lymphopenia, and increased 
LDH were significantly associated with severity of the disease 
[36]. Viral RNA has also been detected in stool samples [37]. 
Proteomic analysis of plasma samples of multiple hospitalized 
patient cohorts of COVID-19 showed that markers of neutro-
phil activation such as resistin, lipocalin-2, hepatocyte growth 
factor, interleukin-8, and granulocyte colony-stimulating factor 
increased with severity of the disease and using a machine-
learning prediction algorithm, it has been suggested that these 
markers are strong predictors of critical illness [38].
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Obesity, a potential Risk 
for COVID‑19‑epidemiological evidence

Obesity has emerged as an important risk factor for increased 
severity of COVID-19. Ever since the start of the pandemic, 
considerable epidemiological and clinical data have been 
generated on the link between obesity and COVID-19. Ear-
lier studies, which were mostly based on hospitalized cases, 
were composed of preliminary reports from different coun-
tries. Subsequent to the spread of the disease globally, data 
from several hospitals worldwide have been analyzed and 
published in the form of case studies, retrospective stud-
ies, and meta-analysis [39–56], which have been extensively 
reviewed [57–60].

The data summarized in Table 1 on multiple case studies 
carried out notably in China, Mexico, UK, Germany, Spain, 
Italy, Middle East and the USA show that obesity, indepen-
dently, or along with comorbidities such as T2D is strongly 
associated with higher disease severity [30, 31, 61, 62]. Sub-
jects with higher BMI (> 30) had a greater risk of developing 
severe disease as compared with subjects with low BMI. 
Obesity was significantly correlated with increased hospi-
talization rates, increased requirement of ICU and IMV and 
higher mortality in COVID-19 patients [63–74]. The Open 
Safely study reported a greater risk for COVID-19 related 
death in obese subjects (with a hazard ratio of 1.4 for a BMI 
between 35 and 39.9, and 1.92 for a BMI over 40) [75].

During the latter half of 2020 and early 2021, additional 
data have been generated in new case /cohort studies, ret-
rospective, and meta-analysis examining the role of factors 
such as age, gender, BMI, percentage of obesity more impor-
tantly focusing on adiposity, and body composition on the 
risk for severity of COVID-19 disease. In most of the earlier 
studies, the impact of obesity on COVID-19 outcome has 
been generally examined by considering BMI as an index 
of adiposity (greater or less than 30 kg/m2). A UK-based 
Biobank study showed a linear relation between BMI and 
risk of testing positive for COVID-19 [76]. However, a hos-
pital-based study in New York showed a J-shaped relation 
between BMI and the risk of intubation or death [65]. But 
these studies carried out mostly in hospital settings, did not 
give much information regarding the association between 
adiposity/BMI and the natural course of COVID-19 disease. 
Two studies comprising patients enrolled in the US Veterans 
Health administration (VHA) also demonstrated a J-shaped 
relationship between BMI and risk of adverse outcome in 
COVID-19 [77, 78]. A general population-based cohort 
study involving follow-up of 2,524,926 participants con-
ducted in Spain showed that, out of 57,443 individuals who 
tested positive, 10,562 were hospitalized and 2467 died due 
to COVID-19. BMI was positively associated with COVID-
19 infection and hospitalization and showed a J-shaped 

relationship with the risk of COVID-related death indicat-
ing that both under nutrition and over nutrition (BMI ≤ 18.5 
and high BMI) can contribute to COVID-19 -related severe 
disease [79].

While BMI is widely employed to define overweight and 
obesity, body composition particularly visceral adiposity 
(VAT), unlike subcutaneous adiposity, is considered to be 
a greater risk for obesity-related diseases [80]. Given the 
role of VAT in increasing risk of pathological conditions 
in obesity, meta-analysis of epidemiological studies show-
ing computed tomographic analysis of visceral adiposity 
in COVID-19 patients is particularly relevant. It revealed 
that COVID-19 patients requiring ICU or IVM-support had 
increased visceral fat area than those who did not [81, 82]. 
Watanabe et al. reported that increased subcutaneous fat area 
was not associated with higher risk for ICU admission [83]. 
Yang et al. also did not find SFA > 100 mm2, a risk factor for 
ICU admission [84]. But higher VFA/SFA ratio was associ-
ated with a greater risk for ICU admission [85]. Computed 
tomographic analysis of different fat depots in 165 COVID-
19 overweight patients showed an association of severe 
COVID-19 disease with visceral fat area (VFA) (p = 0.022) 
but not with subcutaneous fat (p = 0.64); SFA was not altered 
in patients with mild or severe COVID-19. Further, the ratio 
of SFA/VFA was significantly low in patients with severe 
disease.[86]. Not only VFA, but visceral fat thickness as a 
measure of visceral adiposity is also associated with severe 
illness in COVID-19 [87]. It was also reported that epicar-
dial adipose tissue volume, as measured by chest CT, was 
associated with severity of pneumonia and adverse clinical 
outcomes [88] as well as a predictor of myocardial injury in 
COVID-19 [89].

In addition to a relation between radiological assessed 
visceral adiposity and the development of severe COVID-
19, anthropometric indicators of abdominal obesity such as 
waist circumference and waist to hip ratio have also been 
correlated along BMI with severe outcome of COVID-19. A 
higher BMI (> 30), higher waist circumference, waist to hip 
ratio, and waist to height ratio each are positively correlated 
with increased incidence of covid mortality [90]. Severe 
cases also showed higher VAT accumulation [82]. Petersen 
et al. observed that, apart from BMI, VAT and upper abdom-
inal circumference also significantly increased risk of severe 
COVID [52]. A general population-based cohort study in the 
United Kingdom showed that hospitalization of COVID-19 
patients increased in a linear upward manner with BMI and 
waist to hip ratio indicating obesity, and central obesity in 
particular, are risk factors for adverse outcome in COVID-
19 [91].

Age and gender are important factors contributing to cen-
tral obesity and the risk for obesity-related diseases (WHO 
Report 2008). Results of epidemiological studies on the rela-
tion between gender and age on COVID-19 disease severity 
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did not appear to be consistent. While some reports indicate 
that case fatalities are higher in obese males and increased 
with age, other reports suggest that obese women are more 
prone than men [65, 92–94]. Recalde et al. reported that 
the risk of death after hospitalization associated with BMI 
was higher among females than men [95]. A population-
based cohort study in 4,33,995 subjects, (age group 18–79 
y) in Spain revealed a similar increase in risk of hospitali-
zation and serious disease due to severe obesity(> 40 BMI) 
in young adults (< 50y) and aged subjects (65-79y) [96]. 
Recalde et al. also reported that the incidence of adverse 
outcome of COVID-19 in obese individuals was higher 
among the 18–59-year age group compared to older age 
groups [95]. Further, the risk of hospitalization and disease 
severity was higher in < 60 age group as compared to > 60y 
[48, 49, 97, 98] with higher risk in males. On the other hand, 
in a retrospective study in 200 COVID patients, male gen-
der and increased age were independently associated with 
disease severity [51]. An analysis of patient data from the 
QResearch database of general practices in England revealed 
a positive association between increasing BMI and ICU 
requirement among COVID-19 patients over the entire BMI 
range and an increase in risk of hospital admission and death 
among subjects with a BMI > 23 kg/m2. The increase in risk 
of hospitalization and ICU requirement with a rise in BMI 
was greater among subjects without T2D than those with 
T2D. It was also seen that this increase in risk was higher 
in subjects with hypertension compared to normotensive 
subjects and also in subjects with CVD compared to those 
without CVD [99].

Ethnicity is also considered a determinant for obesity 
and obesity-related disease. In addition to a higher preva-
lence of obesity in South Asian, Black, and Arab popula-
tions, the obesity-associated cardiometabolic risk at a given 
BMI in these ethnic communities is also higher than that 
in the White population. It has been consistently shown 
that subjects of certain ethnicities are at a higher risk of 
both contracting COVID-19 as well as an adverse outcome 
of the disease. Even after considering for ethnicity, it was 
shown that obesity was associated with adverse outcome as 
suggested by an increase in hospital admission, ICU/IMV 
requirement, and mortality. Although this was seen across 
Chinese, South Asian, and Arab ethnicities, this associa-
tion was most prominent in populations with Black ethnicity 
[99–101].

The association of obesity and COVID-19 was also seen 
in children in two case studies in the US. In COVID-19-af-
fected children (2–18 years) with 22–37% obesity, disease 
severity, hospitalization, and incidence of pneumonia were 
higher in obese children [102, 103].

Why is obesity a risk for COVID‑19 ?—
pathways and molecular mechanisms

A number of studies reveal that obesity, more importantly 
central obesity reflecting expansion of visceral adipose tis-
sue, is critical in leading to adverse outcome in COVID-19 
infection. Expansion of VAT causes metabolic dysfunc-
tion, endoplasmic reticulum stress, infiltration of immune 
cells, polarization of macrophages to a pro-inflammatory 
phenotype, adipocyte cell death, and inflammation. This 
is also associated with altered expression of adipokines 
and cytokines causing systemic effects and dysfunction of 
endocrine and metabolic organs. Such a challenged state of 
adipose tissue particularly associated with multiple organs 
such as lungs, vasculature, heart, and kidney may predispose 
obese subjects to adverse outcomes of COVID-19 infec-
tion. It is becoming evident that underlying mechanisms 
contributing to adverse outcomes for COVID-19 in obesity 
may include a) pathways of viral entry and spread, b) dys-
regulated RAS pathway, c) endoplasmic reticulum stress 
and dysregulated UPR pathway, d) endocrine dysfunction, 
particularly altered adipokine responses, and e) metabolic 
reprogramming and altered immune metabolism.

Virus entry and extended shedding in obesity

There is increasing evidence to indicate that ACE2 is the 
principal host cell receptor that determines the tissue tropism 
of SARS-CoV2 [15, 16, 104–108]. ACE2 is a single-chain 
trans-membrane multifunctional protein with an extracel-
lular domain that recognizes the receptor-binding domain 
(RBD) of the S1 subunit of spike protein [109]. This is fol-
lowed by S2 subunit-mediated fusion of the virus particle to 
the host cell membrane and internalization of the virus. The 
level of ACE2, its relative affinity to viral protein ligands, 
as well as its organization in the lipid raft structures on the 
plasma membrane appear to be critical in determining bind-
ing, fusion, and internalization of the virus [110]. Another 
host cell surface factor critical in viral entry is TMPRSS2, 
a cell surface serine protease that cleaves the viral spike 
protein into S1 and S2 subunits and primes viral fusion with 
the host cell membrane.

The initial viral load appears to be one of the determi-
nants of severity of SARS-CoV2 infection and is higher in 
patients with severe disease than patients with milder forms 
[111–115]. Analysis of viral RNA in plasma, the respira-
tory tract, and urine of patients with a wide range of dis-
ease severity, including those recovered from COVID-19, 
showed that disease severity increased with increase in viral 
load and was predictive of mortality. Further, plasma viral 
load was also associated with indicators of disease sever-
ity such as lower absolute lymphocyte counts, and elevated 
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inflammatory markers CRP and IL-6 [116] which are ele-
vated in obese patients. However, in a hospital-based study, 
viral load was not seen to be associated with either length 
of oxygen support or overall survival [117] although clear-
ance rates reported in symptomatic patients were longer than 
those in asymptomatic subjects [118]. Like influenza A virus 
infection, SARS-CoV2 also targets lungs and adipose tis-
sue. Longer duration of shedding of influenza A virus has 
been found in symptomatic obese patients [119], and the 
viral RNA content in expired aerosol was shown to correlate 
with BMI of influenza patients [120]. Similarly, COVID-
19 patients with obesity could have a higher viral load and 
longer persistence.

The integral viral load is determined by, among other fac-
tors, the relative level of the host cell receptor ACE2. Both 
ACE2 and TMPRSS2 are expressed in epithelial cells in 
different human tissues including kidney, liver, heart, lungs, 
adipose tissue, and GI tissue [121–123]. ACE2 overexpress-
ing Hela cells showed greater SARS-CoV2 infection and 
replication [124]. ACE2 was upregulated both by a diet rich 
in sucrose or fructose as well as in experimental models of 
obesity induced by a high-fat diet [125–127]. More impor-
tantly, the ACE2 expression is increased in lung tissue in 
experimentally induced obese mice [128]. ACE2 expres-
sion was higher in bronchial epithelium of overweight/obese 
COPD patients compared to patients with BMI < 25 kg/m2 
[129]. Elevated expression of both ACE2 and TMPRSS2 has 
also been shown in obese human subjects [130]. Further, a 
possible regulation of ACE2 expression by excessive calorie 
intake was indicated by its decreased expression in subcuta-
neous adipose tissue of obese subjects who had lost weight 
following a low-calorie diet [128, 131]. In patients with dia-
betes [132], kidney disease [133] and non-alcoholic fatty 
liver [134], who are at greater risk of SARS-CoV2 infection, 
ACE2 expression is upregulated. It has been suggested that 
lipid deposits in large airways in lungs make these sites that 
potential viral reservoirs and its presence in the proximity of 
alveolar epithelial cells expressing high amounts of ACE2 
make obese patients more susceptible to SARS-CoV2 infec-
tion [135]. Elevated expression of ACE2 in lower respiratory 
tract in diet-induced obese male mice, unlike female mice, 
suggested that a sex-dependent modulation of expression of 
ACE2 which is significant as incidence of serious SARS-
CoV2 infection is higher in males [136]. Although ACE2 
is critical in SARS-COV2 infection, other cell surface mol-
ecules such as neuropilin [137, 138] and CD147[139] also 
may function as co-receptors.

Obesity involves hypertrophic and hyperplastic expansion 
of adipose tissue with enhanced storage of lipids. As pre-
adipocytes differentiate into mature adipocytes, significant 
increase in the expression of ACE2 gene occurs. Apart from 
mature adipocytes, other resident cells of adipose tissue 
also express ACE2 [140–142] and are known to be targets 

for multiple viruses [119, 143, 144] including  SARS-Cov 
[145]. Upregulation of ACE2 is apparently mediated through 
activation of the transcription factor PPARγ as indicated by 
stimulation of ACE2 expression by PPAR ligands such as 
thiazolidinedione [126]. Further, while both subcutaneous 
and visceral adipose tissue express ACE2, its expression 
was higher in visceral adipose tissue [86]. An association 
between the activity of transcription factors that regulate 
expression of genes involved in lipid metabolism such as 
SREBP1 and PPARγ and ACE2 gene expression in both 
in vitro as well as in animal models of obesity, suggested 
a relation between factors regulating lipid metabolism and 
adiposity, and ACE2 expression [128]. Chronic inflamma-
tion is a feature of obesity, and recent reports show that 
pro-inflammatory cytokines upregulate the expression of 
ACE2 [146, 147]. Adipose tissue, which is distributed exten-
sively in the body, both under the skin and around different 
organs—intra-thoracic fat in lungs, epicardial fat in heart, 
perirenal fat in kidney, and mesenteric fat in intestine—
expresses relatively higher levels of ACE2 than lungs [122, 
123]. ACE2 expression in adipose tissue makes it a target for 
SARS-CoV2 infection, and its elevated expression is associ-
ated with adverse outcomes of COVID-19 [123]. Elevated 
expression of ACE2 in adipose tissue in obese/overweight 
conditions [148] may also lead to greater viral entry and 
replication, and it may act as a reservoir enhancing viral 
shedding and spread [144]. Adipose tissue has been reported 
to be a reservoir for persistence of other viruses [149]; the 
importance of lipid droplets in virus production [150] is also 
pertinent in this regard. However, it is still debated whether 
it is a relative increase in expression of ACE2 gene or ACE2 
protein, or an increase in fat mass that results in higher levels 
of ACE2 in obesity. Although in vitro studies indicated that 
SARS-CoV2 infects adipocytes and that the virus can per-
sist for longer period of time [130], SARS-CoV2 virus has 
not been detected in vivo in the adipocyte. But it has been 
suggested that SARS-CoV2 virus can alter the fate of adi-
pocyte-like cells in lungs [122] and immunohistochemistry 
for SARS –CoV2 N-protein in autopsy samples showed spo-
radic positivity in cells in mesocolic and omental fat [151].

Viral replication and mTOR pathway

Another factor determining the integral viral load is the 
extent of replication and assembly of the virus inside the 
host cell. The virus uses the machinery of the host cell 
to replicate its gRNA, transcribe and translate the genes, 
transport the proteins, assemble and secrete the viral parti-
cles[12]. Nearly two third of the viral genome comprising 
5’ capped ORF1a and ORF1ab is translated to generate two 
polyproteins. These are proteolytically cleaved generating 
16 different NSPs, including RNA-dependent RNA poly-
merase (RdRp), which drives transcription of subgenomic 
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RNA and viral genome replication. Virus-induced double 
membrane vesicles, packed with replication –transcription 
complex with NSPs and genomic RNA, fuse with ER. Both 
the genomic and subgenomic viral mRNA acquire 5’cap 
structure in a process which is mediated by its NSPs particu-
larly NSP14 [12, 152]. Replication and subgenomic RNA 
synthesis is followed by translation of N –protein mRNA 
in cytosolic ribosomes whereas mRNAs of S-, E-, and 
M-proteins are inserted into ER and translated by the ribo-
somes present in ER. Protein synthesis by 5’cap-dependent 
translation of viral mRNA occurs by employing host cell 
machinery involving eukaryotic elongation factors (elFs)
[153]. 7-Methyl-GTP cap structure present at the 5’ termini 
mediates formation of translation-initiation complex which 
positions the ribosomes near the 5’terminus of the mRNA. It 
is facilitated by eukaryotic initiation factor 4G (elF4G) act-
ing as a scaffold protein for formation of a protein complex 
elF4F comprising of initiation factor 4A, an RNA helicase 
(elF4A) and elF4E,the cap-binding protein[154]. Initiation 
factor elF 4E is the rate limiting factor and its binding to 
elF4G is regulated by elF4E–binding protein (4E-BP) caus-
ing suppression of translation [155]. Phosphorylation of 
4E-BP in response to mitogenic stimuli, dissociates 4E-BP 
leading to formation of active elF4F complex and initiation 
of translation. Importance of this pathway in corona virus 
replication was evident from suppression of human corona 
virus 229E replication by inhibiting the activity of elF4F 
complex by blocking elF4E binding to elF4G [156].

The mammalian(mechanistic) target of rapamycin 
mTOR)-pathway, that modulates activity of elFs, appears 
to be critical in viral replication and it has been postulated 
that hyper-activation of this pathway in obesity may con-
tribute to adverse SARS-CoV2 infection[157]. mTOR is 
a nutrient and energy sensing kinase and it regulates cel-
lular processes like cell survival, proliferation, growth and 
metabolism in response to nutrient availability and cellular 
energy levels, by integrating distinct signaling pathways 
[158, 159]. It is a serine/threonine kinase present as mTOR 
complex1 (mTORC1) and mTOR complex 2 (mTORC2). 
mTOR can transmit signals to regulate the expression of 
major adipogenic transcription factors like PPAR-γ and C/
EBP-α family of transcription factors, and thereby stimu-
late adipogenesis [160]. mTORC1 is a downstream target 
of PI3K/Akt signaling pathway and is important for regula-
tion of a number of cellular processes including, ribosomal 
and mitochondrial biogenesis, transcription, and translation 
[159, 161, 162]. It is activated by increase in ATP, nutrients, 
growth factors and hormones while absence of growth fac-
tors and nutrient deficit cause its inhibition. Activation of 
mTORC1 leads to phosphorylation and activation of two 
key effectors-p70 S6 Kinase 1(S6K1) and elF4E binding 
protein. mTORC1 directly phosphorylates S6K1 on Thr389 
leading to its further phosphorylation and activation by 

phosphoinositide dependent kinase-1 (PDK1). S6K1 phos-
phorylates and activates elF4B, a positive effector of 5’cap-
binding elF4F complex enhancing the translation efficiency. 
mTORC1 phosphorylates elf4E-BP at multiple sites causing 
its dissociation from elF4E which can then bind to elF4G 
and allow translation to occur.

However, dysregulation of mTOR signaling seems to 
contribute to the disease process in obesity, aging, cancer, 
and T2D [163–167]. mTORC1 is highly active in multiple 
tissues during obese and high-fat-fed conditions[168–170]. 
Consistent with this, the activity of S6K1, downstream effec-
tor of mTOR, is elevated in human visceral adipose tissue in 
obesity [171]; S6K1 knockout mice are resistant to obesity 
[169]. Over-phosphorylation of 4E-BP has also been shown 
in obesity [172]. Inflammatory mediators such as TNFα, 
which are upregulated in obesity, activate mTORC1 by acti-
vating IκB kinase-β (IKKβ), [173]. Further, insulin resist-
ance in obesity is closely linked to mTOR stimuli [174].

It therefore appears that overactivated mTOR pathway in 
the obese condition sets a favorable milieu for the SARS-
CoV2 viral replication. Transcriptome and proteome study 
of SARS-CoV2-infected cells showed that inhibition of 
AkT, upstream of mTOR reduced virus production [175]. 
Viral infection-associated dysregulation in renin-angiotensin 
pathway can further activate mTOR/S6K pathway contribut-
ing further to pulmonary vasculopathy[176]. SARS-CoV2 
infection was shown to increase activity of mTORC1 in kid-
ney epithelial cell line and lung-air interface mucociliary 
cultures and inhibition of mTORC1 by FDA approved drugs 
appeared to reduce viral replication. Activation of mTORC1 
has also been shown in lung tissue from COVID-19 patients 
[177]. However, the enzyme catalyzing the formation of 
5’-Cap structure is yet to be characterized in SARS-CoV2.

Obesity, endoplasmic reticulum stress, 
and COVID‑19

An important factor that can contribute to SARS-CoV2 rep-
lication and disease in obesity is ER stress. Dysregulation 
of protein folding homeostasis that occurs in response to 
environmental and cell-intrinsic challenges results in build-
up of unfolded proteins in ER lumen causing ER stress. 
This activates the Unfolded Protein Response (UPR) sign-
aling mediated by three ER resident trans-membrane sen-
sors: PKR-like ER protein kinase (PERK), inositol-requir-
ing protein-1( IRE1) and activating transcription factor-6 
(ATF6). These are regulated by an ER-chaperone, glucose-
regulatory protein (GRP78), which dissociates from these 
receptors during ER stress leading to their activation. UPR 
is an adaptive mechanism which initially aims at rebalanc-
ing protein folding homeostasis by shutdown of the cellular 
protein synthesis, enhances ER-chaperone expression and 
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mediates misfolded protein degradation through ER-asso-
ciated degradation (ERAD) pathway. But, if the cells fail to 
recover when the load of misfolded proteins exceeds, such as 
during viral infection, UPR triggers apoptotic signaling by 
activating (a) C/EBP homologous protein ( CHOP) (b) c-Jun 
N-terminal kinase( JNK) pathway and (c) ER-associated cas-
pases, eventually resulting in activation of caspase-3. ER 
stress-related inflammation and apoptosis in various cells 
are associated with the pathogenesis/progression of several 
diseases [178–181].

Infection by several viruses including SARS-CoV caused 
ER stress [182–184]. Corona virus appears to induce ER 
stress in host cell by (a) excessive synthesis of viral proteins, 
their post translational modification (PTM) and folding, (b) 
restructuring of the ER membrane while forming double 
membrane vesicles for replication, and (c) the exhaustion of 
the ER membrane due to continued formation of the virion 
[182]. Though one of the mechanisms to overcome ER stress 
is shutdown of global protein synthesis [183], the viruses 
have evolved mechanisms to counteract this and ensure viral 
protein translation. For instance, viral NSP1, apart from its 
role in suppressing host cell immune response by IFN inhibi-
tion, inhibits host cell translation by blocking mRNA bind-
ing to 40S subunit of ribosomes, and promotes mRNA deg-
radation [185, 186] but the presence of 5’leader sequence in 
viral mRNA prevents its degradation, allowing viral protein 
translation [187, 188]. This appears to be a general phenom-
enon in coronaviruses. SARS-CoV2 NSP 16 disrupts host 
mRNA splicing by binding to mRNA recognition domains 
of snRNAs and NSP 8 and NSP 9 disrupt protein trafficking 
by binding to signal recognition particle in HEK293T cells 
infected with SARS-CoV2. Further, NSP1 is also known 
to bind in the mRNA entry channel of ribosome causing 
translational inhibition of host cell proteins [189]. Recent 
proteome data in SARS-CoV2-infected cells also showed 
suppression of host cell protein production and dysregula-
tion of ER proteostasis pathways, and increase in serum lev-
els of GRP78 and CHOP in COVID-19 patients indicating 
ER stress and suppression of IFN production[108, 189–191].

Several types of viruses like Zika virus[192], Coxsacki 
virus [193], Dengue virus [194], Japanese encephalitis virus 
[195] take advantage of the chaperone property of GRP78 to 
bind to viral proteins for their entry and replication within 
the host cells. Though GRP78 is primarily an ER protein 
aiding protein folding and vesicular transport to Golgi, it 
has also been shown on the cell surface, probably due to its 
mis-sorting or due to saturation of its binding to the KDEL 
receptor for its reverse transport to ER [196]. It may act 
as a co-receptor for the viral entry. Structural analysis and 
molecular docking suggested binding of S-protein of SARS-
CoV2 to GRP78 [197]. The nascent S-protein, M-protein, 
and E-protein of SARS-CoV and SARS-CoV2, undergo 
post translational modification,particularly glycosylation 

and folding in the ER. Accumulation of these nascent viral 
proteins causes ER stress. In vitro and in vivo studies have 
suggested that different types of cells including endothelial 
cells, alveolar epithelial cells, cardiomyocytes are under ER 
stress in subjects with comorbid conditions such as diabetes 
and obesity. Circulating GRP78 levels, due to shedding from 
cell surface increased in subjects with diabetes and obesity 
and correlated with CRP levels [198]. Both metabolic stress 
and chronic inflammation occurring in obesity appear to 
influence the level and distribution of GRP78. Treatment 
with pharmacological chaperones that alleviate ER stress 
suppressed NF-kB activity and inflammation in obese mice 
suggesting that ER stress contributes to the chronic inflam-
mation occurring in obesity [199]. It, therefore, appears that 
ER stress associated with metabolic stress and inflammation 
in obesity, by virtue of increase in GRP 78, might contribute 
to increased viral entry. However, direct evidence support-
ing a role for GRP78 in SARS-CoV2 infection is lacking, 
although serum levels of GRP78 were found to be higher 
in patients with COVID-19 compared to those with pneu-
monia, and healthy controls [191]. Signaling pathways of 
UPR and inflammation are linked by mechanisms like the 
generation of ROS, calcium efflux from ER, activation of 
NF-κB by PERK, NF-κB and MAPK activation by IRE1, 
and induction of the acute-phase response. Further, Ang-II 
that accumulates (as discussed later) during SARS-CoV2 
infection, acts on ER through AT1R to increase ER stress 
and downstream inflammatory signaling through NF-κB; it 
also induces TGFβ-mediated apoptosis and fibrosis [200]. 
The systemic inflammation of adipocytes in obesity is pri-
marily mediated through ER dysfunction. UPR signaling 
is also implicated in vascular inflammation and possibly 
endothelial cell dysfunction [201, 202] and such ER stress-
mediated pre-activation make obese subjects vulnerable to 
severe COVID-19. Further, loss of ACE2-mediated protec-
tion of ER stress through suppression of apoptosis on viral 
infection exacerbates ER stress [203, 204].

Dysregulation of Renin‑angiotensin system 
and COVID‑19‑related respiratory dysfunction

As indicated before, the most common complication of 
COVID-19 is altered respiratory function associated with 
infection of the lung progressing to SARS. Obesity may 
increase the risk of developing respiratory dysfunction by 
different mechanisms including pulmonary restriction and 
imbalance between ventilation and perfusion. Accumulated 
fat within the thorax and abdominal cavity may mechani-
cally affect both chest wall and lung compliance. Restric-
tion of diaphragmatic mobility and chest wall movement 
reduces functional residual capacity [205, 206]. One of the 
major molecular pathways that regulate pulmonary func-
tion is the renin-angiotensin system (RAS) which is critical 
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for maintenance of blood pressure, electrolyte and fluid bal-
ance and affects the functions of several organs including 
heart, lungs, kidney, liver, blood vessels and adipose tis-
sue [207, 208]. The classical RAS pathway consists of the 
enzyme renin which proteolytically cleaves angiotensino-
gen to Ang1; it is then converted to Ang-II by angiotensin-
converting enzyme (ACE1) [209]. Ang-II, through its cell 
surface receptor (AT1R) regulates vasoconstriction, inflam-
mation and oxidative stress. It is further cleaved by ACE2 to 
Ang(1–7), which binds to Mas receptor and exerts vasodila-
tion, vasoprotection, anti-proliferative and anti-inflammatory 
effects. Balance between ACE/Ang-II/AT1 receptor and 
ACE2/Ang(1–7)/Mas receptor axis contributes to cellular 
homeostasis and vascular function. ACE2 also serves to reg-
ulate the kallikrein/kinin system that generates, by sequen-
tial proteolysis, ligands for bradykinin-II and bradykinin-I 
receptors which play a role in blood pressure regulation, 
inflammation and coagulation. Further, by inactivating BI 
receptor ligands, ACE2 protects against pulmonary edema, 
whereas decrease in ACE2 increases pulmonary vascular 
permeability, edema, hypertension, inflammation, ARDS 
and cardiac failure [210–214].

As ACE2 is a multifunctional molecule actively involved 
in pathways critical to cellular homeostasis, hijacking this 
host molecule by SARS-CoV2 can adversely affect host 
cell function. Evidence in support of hyper-activated RAS 
pathway as one of the potential mechanisms contributing to 
adverse outcome of COVID-19 in obese subjects is accu-
mulating. RAS pathway is active in lungs, vascular tissue, 
heart, adipose tissue, liver and kidney [215, 216] and the 
presence of significant amount of ACE2 in lungs, vascu-
lature and adipose tissue of obese subjects allows entry of 
SARS-CoV2 virus [217, 218]. Significantly elevated levels 
of angiotensinogen in obese subjects feed more amounts of 
Ang-II into the RASpathway [219–221] and it will accu-
mulate if sufficient ACE2 is not available as happens in 
SARS-CoV and SARS-CoV2 infection [206 214]. Serum 
levels of Ang-II are raised in COVID-19 patients [222] 
and relate positively with viral load and lung injury [111, 
223, 224], indicating dysfunction/reduced action of ACE2. 
Accumulation of Ang-II causes pulmonary dysfunction 
as suggested by earlier studies in experimentally induced 
acute lung injury where Ang-II has been shown to cause 
pulmonary edema and inflammation [225] Further, it has 
pro-coagulant effects as infusion of Ang-II caused plate-
let activation [226]. Binding of SARS-CoV2 to cell surface 
ACE2 through the viral spike protein, followed by cell entry 
is associated with decrease in ACE2 [104, 227, 228]. This 
may be due to cleavage of its ectodomain by ADAM17, the 
cell surface metalloprotease that also activates TNFα by its 
proteolytic cleavage [229]. Presence of cleavage sites in the 
ectodomain and endodomain suggests a possible cleavage of 
ACE2 by TMPRSS2 as well [230]. Plasma ACE2, a result 

of proteolytic shedding of cellular ACE2, was higher in 
COVID-19 patients than in healthy controls [231]. Further, 
in SARS-CoV2-infected cells in culture, there was a sig-
nificant reduction in the expression of both TMPRSS2 and 
ACE2 [232] and the levels of total ACE2 [190]. Though it is 
not clear how cell surface ACE2 is downregulated in SARS-
CoV2 infection, cleavage of ACE2 by proteases as indicated 
by elevated levels of plasma form of ACE2 and a shutdown 
of host gene expression, by downregulation of translation 
and degradation of host mRNAs [233] are two possible 
mechanisms. Further, a feed-forward effect of AT1R acti-
vation by accumulating ANG-II could transcriptionally 
downregulate ACE2 expression [234]. SARS-CoV1 infec-
tion has also been associated with a decrease in ACE2 [227, 
233, 235]. Modulation of RASpathway, particularly ACE2 
expression by metabolic regulators including hormones such 
as insulin [236] and glucagon-like peptide-1 receptor agonist 
[237] suggest a role for host’s metabolic state in regulating 
viral entry and response to infection.

The dysregulation of the RAS pathway and its implica-
tions in the development of severe disease in obese subjects 
infected with SARS-CoV2 is illustrated in Fig. 1. A decrease 
in ACE2 can affect the equilibrium between pro-inflamma-
tory Ang-II and anti-inflammatory Ang(1–7). Accumulation 
of Ang-II triggers receptor-mediated JAK-STAT pathway 
while decrease in Ang(1–7) shuts down Mas receptor sign-
aling causing upregulation of pro-inflammatory factors and 
downregulation of anti-inflammatory factors. Decrease in 
ACE2 and consequent accumulation of ANG-II on SARS-
COV2 infection in obese subjects can have effects beyond 
RAS pathway contributing further to pulmonary vasculop-
athy. For instance, accumulation of ANG-II can heighten 
activation of mTOR/S6K pathway and further impact insu-
lin responsiveness and cause endothelial dysfunction [160, 
238, 239]. Activation of mTORC1, as discussed before, can 
increase SARS-CoV2 replication. Ang-II, acting through 
G-protein coupled ATR1 increases ROS production by 
stimulating Nox family NADPH-oxidase and cause lung 
endothelial dysfunction. It also disturbs mitochondrial 
function and modifies cell metabolism [200]. Further, ER 
stress-induced inflammation and apoptosis of alveolar epi-
thelial cells is regulated by Ang-II/Ang(1–7) system [203]. 
Decrease in ACE2/Ang(1–7) on SARS–Cov2 infection of 
the lung epithelium can lead to loss of the protective effect of 
Ang(1–7) against ER stress-induced inflammation and apop-
tosis as shown earlier in experimentally induced ER stress 
in lung epithelium and microvascular endothelial cell [204].

Metabolic reprogramming in host cell on SARS‑CoV2 
infection

Viruses appear to have developed suitable strategies to 
reprogramme host cell metabolism to their advantage for 
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replication and survival; specific host cell metabolic path-
ways of carbohydrate, lipids, amino acids and nucleotides 
are differentially affected by viral infection. Viral infections 
such as influenza virus have been reported to induce a shift 
into glycolytic metabolism of glucose and inhibition of gly-
colysis reduced severity of infection suggesting that virus-
induced shift into glycolytic phenotype was critical for its 
survival [240–242]. Reprogramming of host cell metabolism 
as an adaptive mechanism to potentiate host immunity is also 
likely. SARS-CoV2 infection also appears to cause diverse 
effects in host cell metabolism, though detailed informa-
tion is not available yet. In vitro studies in monocytes sup-
plemented with glucose or monocytes isolated from obese/
diabetic patients showed that increase in glucose resulted in 
increase in viral load indicating that glucose load favored 
SARS-COV2 infection. SARS-CoV2 infection leads to stim-
ulation of glycolysis along with an increase in the glycolytic 
capacity in monocytes, and inhibition of glycolysis resulted 
in reduced viral replication and cytokine production suggest-
ing that glycolysis is required to sustain COV2 infection in 
monocytes [243]. Alteration in whole body metabolism was 
indicated by plasma metabolomics and lipidomic analysis 
of COVID-19 patients of varying disease severity; decrease 
in TCA cycle intermediates such as malic acid indicated 
altered energy metabolism. There was a gradual decrease 
in carbamoyl phosphate, an intermediate of the urea cycle, 
with increase in fatality, indicating hepatic dysfunction. Both 
GMP and carbamoyl phosphate were significantly lower in 
fatal cases than mild ones [244]. Metabolomic analysis of 

plasma samples of COVID-19 patients revealed alteration in 
pathways of metabolism of amino acids, lipids, and energy 
metabolism. A meta-analysis of six such studies revealed a 
decrease in TCA cycle and propionate pathway as well as 
perturbation of porphyrin metabolism pathway [245].

COVID‑19 and glucose metabolism

Obesity and diabetes mellitus are characterized by insulin 
resistance and defective glycemic control, which are asso-
ciated with worse prognosis in COVID-19 patients [246]. 
Earlier data showed that influenza virus infection caused 
skeletal muscle insulin resistance in otherwise healthy 
subjects without hyperglycemia [247], while patients with 
obesity and diabetes had a higher risk of loss of glycemic 
control [248]. SARS-CoV2 also appears to affect glucose 
metabolism. Non-diabetic COVID-19 patients developed 
hyperglycemia, and patients with severe COVID-19 tended 
to have higher plasma glucose levels [249]. Further, based 
on an observational retrospective cohort study in Spain it 
was concluded that admission-hyperglycemia is a predictor 
of mortality in patients hospitalized with COVID-19 irre-
spective of diabetic status [250]. In support of the clinical 
data indicating impaired glucose homeostasis, in vivo and 
ex vivo experimental data showed that SARS-CoV2 infects 
cells of both exocrine and endocrine pancreas through 
ACE2; it caused reduction in number of β-cells and impaired 
glucose-stimulated insulin secretion confirming β-cell tro-
pism [251]. As elaborated in earlier studies on pulmonary 

Fig. 1   Dysregulation of RAAS pathway in Covid-19 subjects with 
obesity. A. Angiotensinogen is converted by Renin to Ang I which is 
converted by ACE 1 to Ang-II that acts through AT1R to exert vaso-
constrictive and inflammatory effects. Ang-II is alternately cleaved to 
Ang 1–7 which can act through the Mas-R and exert a vasoprotec-
tive, anti-inflammatory and anti-thrombotic effect. Balance between 
the Ang-II-AT1R and Ang 1–7 – Mas-R axes maintains normal cel-
lular homeostasis. B. Increased ATN in obesity increases amount of 

Ang-II in the RAAS. ACE2-mediated entry of SARS-CoV2 leads to 
decreased ACE2 availability and imbalance between Ang-II-AT1R 
and Ang 1–7 – Mas-R axes resulting in increased Ang-II and a shift 
toward Ang–II-AT1R-mediated effects, leading to increased inflam-
mation, thrombosis and cellular dysfunction. Thick arrows-increased, 
Thin arrows-decreased. Red-Effect of SARS-CoV2 . Gold-
Effect of Obesity
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vascular dysfunction in metabolic syndrome [252], obesity 
and SARS-CoV2 infection-associated hyperglycemia may 
increase pulmonary vascular permeability and inflammation 
further worsening inflammation in SARS-CoV2 infection. 
Reduction in levels of TCA cycle intermediates and several 
acyl carnitines such as palmitoyl carnitine, stearoyl carnitine 
[253] probably indicated a reduced mitochondrial activity 
in COVID-19 patients. Transcriptome analysis of different 
cell types infected with SARS-CoV2 virus in vitro and naso-
pharyngeal swabs showed downregulation of genes involved 
in TCA cycle and mitochondrial oxidative phosphorylation 
[254]. Reduction in the activity of pathways of oxidative 
energy metabolism might be a metabolic adaptation to 
lower oxygen levels consequent on reduced lung function 
in severe disease conditions. Further, in bronchial epithelial 
cells and PBMCs, expression of genes coding for glycolytic 
enzymes was upregulated in SARS-CoV2 infection. Signifi-
cantly, upregulation of lactate metabolizing enzymes resem-
bling ‘Warburg effect’ in cancer cells, was also reported. 
Upregulation of expression of genes in the conversion of 
serine (SDS and SDSL) and alanine (GPT2) to pyruvate 
was also observed. Dysregulation of glucose metabolism and 
increased severity of disease associated with hyperglycemia 
suggest that loss of hyperglycemic control may be a risk fac-
tor; observational studies have linked hypoglycemic drugs 
such as metformin to reduced mortality [255–257].

Downregulation of the genes involved in pentose phos-
phate pathway, folate metabolism and de novo synthesis of 
glutathione indicated dysregulation of oxidant metabolism 
[254]. Further, a significant increase in plasma biliverdin, 
the oxidized form of bilirubin was reported in COVID-19 
patients indicating enhanced oxidant stress [253]. Infection 
triggers mitochondrial ROS production resulting in stabili-
zation of hypoxia-inducible factor-1α (HIF-1α) and remod-
eling of glucose metabolism to glycolysis in monocytes; it 
also resulted in blunted T-cell response and reduced lung 
epithelial cell survival [243]. Inducing a pro-oxidant state in 
the host cell facilitates viral proliferation and pathogenesis 
[258].

COVID‑19 and lipid metabolism

Plasma lipidome analysis showed alteration in several lipids 
in COVID-19 patients. Decrease in levels of glycerophos-
pholipids including phosphatidic acid, phosphatidyl inosi-
tols and phosphatidyl choline with increase in the levels of 
corresponding lysophospholipids probably due to increased 
phospholipase action, was reported [259]. Alteration in 
phospholipidome in COVID-19 might affect HDL formation 
as indicated by decrease in circulating HDL with increase 
in disease severity [253]. Dysregulation of this pathway 
is also reported in obesity, independent of viral infection 
[260]. Another key metabolite that showed decrease at the 

time of admission and increased as the patient recovered 
is sphingosine-1-phosphate (SIP) [253, 261], a product of 
sphingosine kinase, formed in macrophages and involved in 
resolution of inflammation. SIP is an important lipid media-
tor modulating a number of cellular processes that act as 
a ligand for G-protein coupled receptor-mediated signaling 
pathways. Serum level of SIP negatively correlated with 
CRP, LDH, ferritin, D-dimer, which are important indices of 
COVID-19 severity [261]. Decrease in SIP in Covid patients 
was also associated with its transport proteins, serum albu-
min and apolipoprotein M, as well as erythrocyte counts. A 
decrease in serum SIP may reflect a decrease in its levels 
in vascular endothelial cells and erythrocytes, but it is not 
known how this key signaling molecule is affected in other 
cell types. Unlike SIP, certain other sphingolipids such as 
sphingomyelin and ganglioside (GM3) increased in severe 
disease [253]. It is pertinent that these complex lipids that 
have a role in assembly of lipid rafts critical to viral entry, 
are increased in plasma in obesity and diabetes independent 
of viral infection [262].

Transcriptome analysis of different human cell lines and 
bronchial epithelial cells infected with SARS-CoV2 as well 
as nasopharyngeal swabs from patients, revealed several 
differentially expressed genes related to lipid metabolism, 
particularly lipid storage, HDL formation and fatty acid oxi-
dation. While transcripts of genes concerned with fatty acid 
degradation and elongation and fatty acid synthesis were 
downregulated, genes involved in hydrolysis of triacyl-glyc-
erol were upregulated probably leading to increase in free 
fatty acids. Apart from downregulation of SREBP1, a nega-
tive regulator of lipogenesis, there was increase in transcripts 
of leptin signaling in infected cells [128]. Further, transcripts 
of genes with a role in sphingolipid and glycerophospho-
lipid metabolism, and phospholipases that hydrolyze mem-
brane phospholipids were upregulated in cells infected with 
SARS-CoV2 [254]. However, transcripts of genes involved 
in synthesis of cholesterol were downregulated. Changes in 
metabolism of several such lipids associated with plasma 
membrane and lipid raft structures appear to be critical for 
viral entry, replication and morphogenesis.

Interestingly, many of these changes in reporter metabo-
lites of differentially expressed transcripts, plasma lipi-
dome, altered mitochondrial oxidation capacity indicated 
by changes in intermediates of fatty acid oxidation and 
TCA cycle, and aberrations in HDL metabolism, reveal that 
several of the metabolic pathways dysregulated in COVID-
19 were in line with metabolic pathway alterations seen in 
obesity. Such a metabolic phenotype representing parallels 
between changes in metabolism in COVID-19 and meta-
bolic disorders such as obesity and diabetes may make obese 
patients vulnerable to adverse outcome of SARS-CoV2 
infection [263].
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MiRNAs, obesity, and host cell response in COVID‑19

Transcriptome analysis, discussed before, showed differen-
tial expression of a number of genes that regulate host cell 
metabolism and immune response in COVID-19. However, 
not much information on the mechanisms underlying altered 
expression of genes contributing to dysregulation of different 
cellular processes is available. One of the possible factors 
contributing to regulation of gene expression is the effect 
of miRNAs, small non-coding RNAs consisting of 20–22 
nucleotide length, which bind to 3’UTR of target mRNA and 
repress translation or promote its degradation [264–266]. 
A single miRNA may regulate multiple genes while more 
than one miRNA may co-operatively regulate a single gene 
[267, 268]. miRNA expression is related with regulation of 
cellular metabolism, immune response, endocrine function, 
cell proliferation, and survival and stress response, and its 
dysregulation is implicated in pathological states such as 
obesity and diabetes [269–271]. It is equally important that 
miRNA packaged within exosomes secreted by cells can 
exert autocrine, paracrine, and endocrine effects facilitating 
cross-talk between different organs [272–274]. A number of 
miRNAs related to metabolism of glucose and lipids, par-
ticularly the regulation of adipogenesis, pancreatic β-cell 
content, and insulin function in physiological and diseased 
states have been documented. Several miRNAs that target 
genes and pathways involved in adipogenesis including a 
number of miRNAs that inhibit adipogenesis have been iden-
tified (reviewed in [270]). The microRNAs-miR-33a, miR-
378, miR-370, miR-27, miR-143, miR-122, miR-335, and 
miR-125a-5p have been shown to modulate genes involved 
in triacyl-glycerol, fatty acid, and cholesterol metabolism 
[275]. Mir-let-7, a well-conserved family consists of eleven 
members of miRNAs modulate genes which have critical 
role in glucose homeostasis and insulin sensitivity. miR-33, 
by targeting IRS-2 and AMPK, modulate glucose metabo-
lism as well. miR-103/107 and miR-29 also regulate insulin 
response and glucose metabolism [276].

Several of these miRNAs involved in regulating metabo-
lism and immune response are altered in obesity and are 
associated with obesity-related diseases [271]. A relation 
between the expression of these miRNAs in adipose tissue, 
liver, and pancreas in obesity, and development of metabolic 
disease has been suggested [277, 278]. MiR-27a and miR-
130a modulate adipogenesis by targeting PPARγ; this is con-
sistent with decreased expression of miR-130 in abdominal 
adipose tissue of obese females. Clonal expansion of adipo-
cytes is accompanied by overexpression of miR-17-92 clus-
ter. Expression of miR-17-5p and miR-132 was reported to 
differ significantly between obese and normal omental adi-
pose tissue and their expression correlated with BMI [279]. 
Similarly, miR-1 was upregulated in obese white adipose 
tissue. Association between obesity and alteration in miRNA 

expression was also indicated by changes in miRNA expres-
sion during weight loss intervention [280]. Several members 
of miR-let-7 family, which target insulin receptor and IRS-2 
and regulate glucose homeostasis and insulin response [281] 
and negatively regulate adipogenesis [282], are upregulated 
in obesity-associated metabolic diseases [270]. MiR-26a, 
whose expression is decreased in overweight subject, also 
modulates insulin signaling and glucose and lipid metabo-
lism [283]. Sirtuin 1 (SIRT1), which is an important protein 
deacetylase with a major role in metabolic homeostasis, 
is negatively regulated by miR-146b; its overexpression 
induces adipocyte differentiation through downregulation 
of SIRT1 [284]. Obesity-induced inflammation in adipose 
tissue is aggravated by a pro-inflammatory effect caused by 
NF-κB and miR-155 in adipocytes [285, 286].

Alterations in miRNA in tissues, particularly adipose tis-
sue and liver, and in several metabolic disorders are reflected 
in the circulating miRNAs which are present, apparently in a 
nuclease-resistant microenvironment, mostly in exosomes or 
partly as argonaute protein complex bound to plasma protein 
such as HDL [287, 288]. For instance, association between 
changes in the levels of miR-23a, miR-27a, miR-130, miR-
195, miR197, miR-320a, and miR-509-5p and metabolic 
syndrome has been reported [276, 289]. MiR-126, a prob-
able biomarker of endothelial dysfunction, is reduced in 
T2D [290, 291]. Levels of circulating miR-17-5p and miR-
132 decreased in obese subjects [279] whose omental fat 
also showed reduced expression of these miRNAs. Further, 
elevated levels of circulating miR-140-5p, miR-142-3p and 
miR-222 and decrease in miR-532-5p, miR-125b, miR-
130b, miR-221, miR-15a, miR-423-5p and miR-502c-3p 
were reported in morbidly obese subjects. Reversal of the 
expression pattern of circulating miRs as a result of surgery-
induced weight loss was indicated by decrease in the levels 
of miR-140-5p, miR-122, miR193a-5p, and miR-16-1 and 
an increase of miR-221and miR-199a-3p, further suggest-
ing an association between the changes in these circulat-
ing miRNAs and adipose tissue-related pathophysiology in 
obesity [292]. The adipose tissue-derived exosomes con-
taining the miRNAs present in circulation can be taken up 
into different types of cells of other tissues and modulate 
the function of the recipient cell by modulating key target 
genes by exosomal miRNA [293]. Both cell-based and ani-
mal studies have shown that miRNA-containing exosomes 
from adipose tissue macrophages are taken up by insulin 
target cells and modulate glucose homeostasis and insulin 
response [294]. Deep sequencing of exo miRNA demon-
strated the presence of about 500 miRNAs and identified 
20 differentially expressed miRNAs in adipose tissue mac-
rophages from obese animals [294]. MiR-155, which was 
overexpressed in obese condition, was shown to decrease 
PPARγ expression and impair insulin signaling [294]. Adi-
pose tissue-derived exosomes, containing miRNAs, have 
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emerged as an important signaling system mediating sys-
temic cross-talk contributing to obesity-related inflammation 
and metabolic dysfunction.

Host miRNA and SARS‑CoV2 replication

MiRNAs of host cell or viral origin could influence viral life 
cycle positively or negatively. They may directly target viral 
RNA by binding to its coding region to suppress translation 
or bind to its 5’NTR to stabilize and promote replication of 
viral RNA [295]. Suppression of translation and replication 
of influenza virus by binding of host miRNAs such as miR-
323, miR-485, miR-491, and miR-654 have been reported 
[296]. On the other hand, miR-122 promotes HCV replica-
tion by binding to viral RNA [297]. Viral miRNA can modu-
late the expression of host cell factors which may be essential 
for progression of its life cycle, or serve as receptors for viral 
entry, or assist the virus in escaping the host immune system 
by influencing interferon production or signaling. Transmis-
sible gastroenteritis virus evades interferon effect by down-
regulating miR-30a-5p [298]. Role of exosomal miRNA 
in mediating cell–cell interaction and influencing host cell 
defense was evident from the disruption of lung epithelial 
cell integrity and mitochondrial function by exosomes con-
taining miRNA 23a-27a-24 cluster secreted by alveolar mac-
rophage infected with HIV protein [299]. The importance of 
host cell miRNA in suppression of SARS-CoV replication 
and immune evasion has also been demonstrated [300]. In 
this context, investigations into the possible involvement of 
miRNAs in SARS-CoV2 disease are also underway. Both 
ACE2 mRNA and protein expression in cardiomyocytes 
were downregulated by miR-200c [301]. Expression of 
TMPRSS2 is modulated by miR-98-5p [302]. Different stud-
ies employing computational tools, predicted 128 host miR-
NAs that recognize miRNA-recognizing elements (MREs) 
on SARs-CoV2 genome [303]. Of these, three miRNAs (hsa 
–miR-17-5p, miR-20b-5p, and miR-323a-5p) are known to 
exhibit antiviral effect experimentally. Most of these host 
miRNAs target ORF1ab and S genes of the genome. Dif-
ferential expression analysis of miRNA-sequencing data 
from lung epithelial cells infected with SARS-CoV2, iden-
tified 45 host miRNAs of which 17 were upregulated and 28 
downregulated. These included six miRNAs {hsa-let7a-3p, 
miR-135b-5p,miR-16–2-3p,miR-1275 (downregulated), and 
miR-155-3p and 139-5p (upregulated)} that were predicted 
to target SARS-CoV2 [303]. Khan et al., employing com-
putational tools, distinguished host miRNAs-targeting viral 
genome with presumed antiviral function and viral miRNA 
targeting host genes to evade host defense mechanisms 
[304]. Gene ontology and pathway enrichment analysis of 
the host miRNAs showed that these may target different 
signaling pathways that may affect SARS-COV2 entry, or 
host pathways that the virus may hijack for viral replication 

or immune surveillance and survival pathways. They fur-
ther predicted 170 miRNAs encoded by SARS –CoV2, 
which may target host cell pathways such as TGFβ sign-
aling, TNFα signaling, and mTOR signaling, which might 
help the virus to evade host’s immune surveillance. This 
was evidenced by identification of 35 target genes, which 
were downregulated in cells infected with SARS-CoV2, 
involved in different pathways related to immune signal-
ing and organ-specific functions. Transcriptome analysis of 
three different human cell lines infected with SARS-CoV2 
showed induction of inflammation-linked miRNAs such as 
miR-155, which is correlated with several viral diseases and 
involved in pulmonary damage in ARDS [305]. Moreover, 
in SARS-CoV2-infected transgenic mice expressing human 
ACE2, anti-miR-155 downregulated expression of miR-
155 and reduced levels of pro-inflammatory cytokines, and 
improved survival of experimental animals [306]. Li et al. 
analyzed differential expression of miRs in blood of ten 
COVID-19 patients and four healthy controls and identified 
top ten upregulated miRNAs of which miR-16–2-3p was 
the most upregulated, and top ten downregulated miRNAs 
of which miR-627-5p was the most downregulated [307]. 
Reduced levels of miR-146a-5p in serum of 29 COVID 
patients who did not respond to tocilizumab suggested that 
miR-146a-5p could be a useful predictor of the severity of 
the disease [308].

Alterations in miRNAs common to obesity 
and COVID‑19

Analysis of the reported data, despite being  limited, on 
changes in miRNAs and the pathways related to their tar-
get genes in SARS-CoV2 infection and the miRNAs dys-
regulated in obesity reveals independent parallel changes in 
several common miRNAs, as illustrated by a few examples 
discussed below (Table 2). SARS-COV2 infection models 
showed lower levels of type I and III interferons with a mod-
erate interferon-stimulated gene response indicating reduced 
innate antiviral response, despite upregulation of hsa-miR-
155a-5p[303, 309], which modulate IFN action[286], in 
infected cells and in circulation of COVID-19 patients. 
Likewise, hsa-miR-155a-5p is also upregulated in obese 
subjects [294, 310]. However, hsa-miR-17-5p, an antiviral 
miRNA [311], which targets ORF 1ab, decreased in PBMC 
of COVID-19 patients; hsa-miR-17-5p was also decreased 
in both circulation and omental adipose tissue in obesity 
[279]. Further, the hsa-miR-155 binding site on SARS-CoV2 
genome probably would permit its binding and stabilization 
of viral RNA [304]. Hsa-miR-146a has a role in the regula-
tion of inflammation and innate immune response and is per-
haps the first miRNA induced in response to viral infection. 
It is a dominant regulator of TLR signaling, regulates IL-6 
gene expression, and may limit the excessive inflammatory 
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response to virus. It is downregulated in obesity and relates 
inversely with increase in IL-6 production by macrophages 
in obesity [312–314]. miR-146a also decreased in SARS-
CoV2-infected cells and serum of COVID-19 patients; 
patients with lower levels of miR-146a responded poorly 
to anti-inflammatory treatment [315, 316]. Lower levels 
of miR-146a may make obese patients more susceptible to 
adverse outcome on COVID infection. SARS-CoV2-induced 
host miRNAs may downregulate signaling of different TLRs 
involved in host antiviral response and dysregulate other 
signaling pathways leading to host immune suppression. A 
similar suppressive state in morbidly obese subjects may 
make them more vulnerable. Several central components 
within the NF-κB pathway are targeted by miR-146/miR-
155-axis, miR-17–92 cluster, and miR-181, thus, regulating 
inflammation [317, 318]. Dysregulation of several of these 
miRNAs, as indicated above, can, thus, deregulate NF-κB 
pathway of inflammation.

Hsa-miR-200c-3p, which targets ACE2, is downregulated 
in obesity [270, 319]. Hsa-miR-200c-3p is also suppressed 
in respiratory cells infected with avian influenza virus [320]. 
Hsa-miR-98-5p, which targets TMPRSS2, is downregulated 
in obesity [309]. Dysregulation of metabolic pathways, par-
ticularly metabolism of carbohydrates and lipids and energy 
metabolism, occurs in obesity. Parallel changes in these 
pathways independent of obesity also occur in COVID-19. 
Several miRNAs-targeting genes related to these pathways 
are induced on infection and pathway enrichment analysis 
of these target genes showed enrichment of several path-
ways related to metabolic regulation such as cellular ketone 
metabolism, insulin and glucagon signaling, fatty acid 
metabolism, and PPAR signaling critical in carbohydrate 
and lipid metabolism [304]. It is also predicted that SARS-
CoV2 encoded miRNAs can target, among others, insulin 
signaling and HIF1 signaling, both critical pathways in dis-
ease process and cell survival. Upregulation of miR-103/107 
pair in obesity causes insulin resistance and dysregulation of 
glucose homeostasis in metabolic tissues [270, 321]. MiR-
107 is upregulated in SARS-CoV2-infected cells as well 
[303]. Hsa-miR-125-5p, which regulates TGFβ signaling, 
is overexpressed in obesity and T2D. It regulates insulin 
response [322, 323]. Its expression was higher in SARS-
CoV2-infected Calu3 cells [315]. MicroRNAs from the let-7 
family (let-7a, let-7-f) modulate glucose metabolism and 
insulin sensitivity by their effects on PI3K and mTOR in the 
insulin signaling pathway. Both let-7a-3p and let-7f-3p were 
downregulated in obesity [276] and SARS-CoV2-infected 
endothelial cells [303]. Several COVID-19 patients devel-
oped endothelial dysfunction and thromboembolic events 
with signs of intussusceptive angiogenesis. MicroRNA-126 
is involved in angiogenesis in both physiological and path-
ological conditions and targets SPRED1, an inhibitor of 
VEGF-induced angiogenesis. It protects EC from damage 

induced by free fatty acids and relieves from oxidant stress. 
miR126-5p is downregulated in obesity and under hyper-
glycemia [324, 325]. It is also decreased in Calu3 cells 
infected with SARS-CoV2 and serum of COVID-19 patients 
compared to sex- and age-matched healthy controls [303, 
308]. But upregulation of miR126-5p in monocytes cor-
relates with HIV disease progression probably indicating 
virus-dependent nature of response. Mir-21-5p decreased in 
SARS-CoV2-infected Calu3 cells and serum of COVID-19 
patients [303, 308]. There was also an association between 
lower levels ofmiR21-5p in serum and duration of IMV and 
requirement of extracorporeal membrane oxygenation [326], 
but it followed an opposite pattern in obesity showing an 
increase [327, 328], further indicating that parallel changes 
observed may be selective in nature.

It is not clear whether the parallel changes reflecting 
alterations in the expression of several common miRNAs 
between obesity and COVID-19 cause similar effects, par-
ticularly because (a) miRNA expression and action are tissue 
specific, although exosome-mediated transport and delivery 
to distal tissues have been demonstrated. MiRNA delivery 
through macrophage derived exosomes to lung cells have 
been demonstrated [293, 294]. (b) Each target gene is subject 
to modulation by different miRNAs, and the same miRNA 
can regulate multiple target genes and each miRNA exists in 
multiple isoforms. Much more robust data would be required 
to understand the implications of these parallel changes in 
miRNA expression and to consider the possibility of changes 
in levels of such miRNAs as potential risk predictors.

Adiposopathy and exacerbation of COVID‑19 
pathology

Adipose tissue, apart from being a metabolic organ, also 
functions as a key endocrine organ which secretes several 
hormones and cytokines with significant physiological 
effects on metabolic organs, vasculature, and immune sys-
tem [329, 330]. Excess caloric intake and positive energy 
balance result in expansion of adipose tissue from hyper-
plasia as well as hypertrophy, accompanied by immune 
cells infiltration and activation of macrophages which 
secrete cytokines like TNFα, IL-6, and IL-1β into circu-
lation contributing to an enhanced inflammatory state in 
obesity [331, 332]. Changes in the profile of the hormones, 
particularly leptin and adiponectin, secreted by adipose tis-
sue also occur in obesity contributing to altered immune 
cell metabolism, systemic inflammation, dysregulation of 
vascular endothelial function, insulin sensitivity, and meta-
bolic organ function. The adiposopathy in obesity that is 
characterized by an enhanced inflammatory state along with 
altered adipokine-induced systemic effects, appears to con-
verge with the inflammation and dysregulated cellular and 
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systemic homeostasis induced by SARS-CoV2 leading to 
severe COVID-19 disease.

Impact of adipokine imbalance

Circulating leptin level is related to the fat mass as the adi-
pocytes remain the principal source of leptin, though cer-
tain cell types in lungs including macrophages, bronchial 
epithelial cells, and pneumocytes (type II) also secrete this 
hormone [333]. Leptin acting through its receptor within 
the hypothalamus provides a satiety signal that suppresses 
food intake and promote energy expenditure. It also partici-
pates in both innate and adaptive immune response and is 
an important mediator of pulmonary immunity [334]. Leptin 
modulates immune cell metabolism, and its effect is medi-
ated through cell surface receptor which activates down-
stream signaling pathways particularly JAK-STAT, PI3K, 
and MAPK pathways [335–337]. Janus kinase-mediated 
activation of STAT in response to leptin triggers expres-
sion of genes in immune cells where it modulates cell num-
ber and function. It induces proliferation and activation of 
monocytes and the expression of several pro-inflammatory 
cytokines. An inflammatory-immune phenotype is promoted 
by leptin in immune cells by activating mTOR-S6K pathway 
[338]. Leptin mediates upregulation of glucose metabolism 
to meet energy requirements of the activated T-cells dur-
ing infection [339]. Requirements of energy and precursor 
metabolites, for rapid growth of T-cells on activation, are 
met by employing glycolysis rather than oxidative phospho-
rylation. Obesity is generally associated with pre-diabetes 
and insulin resistance which cause impaired glucose uptake 
and glycolysis by these cells. Hyperleptinemia and leptin 
resistance in obesity are linked to insulin resistance and 
impaired insulin receptor signaling through PI3K/AkT/
mTOR pathway. This results in failure to supply enough 
energy to T-Cells to elicit an adequate immune response 
against viral infection.

It appears that chronic hyperleptinemia impairs pulmo-
nary immunity and defense and may predispose patients 
to adverse outcome from SARS-CoV2 infection [340]. 
Increased levels of leptin in bronchoalveolar lavage (BAL) 
in patients with diabetes and ARDS are associated with 
increased mortality [341]. Hyperleptinemia-associated 
leptin resistance adversely affects the immune response. In 
experimentally induced obese animals infected with influ-
enza virus (H1N1), a rise in mortality and spread of virus, 
and increased levels of inflammatory cytokines in lungs, 
were associated with higher plasma leptin levels. Reversal 
of these effects and increase in survival rate on treatment 
with anti-leptin antibody suggested that hyperleptinemia was 
associated with the adverse effects of diet-induced obesity 
following virus infection [342]. Further, leptin upregulates 
the expression of the pro-inflammatory cytokine TNFα in 

macrophages through phospholipase D1/mTOR/JNK activa-
tion [343]. Defective leptin signaling is also implicated in 
the poor antiviral response to other viral infections such as 
HIV and Epstein Barr virus [344, 345]. Recently, Wang et al. 
showed that a subset of monocytes secreting IL-6, TNFα, 
and IL10 is increased in COVID-19 patients and that this 
is mediated by leptin, apparently through NF-κB/STAT3 
activation. Further, in this cohort group, among several 
cytokines, leptin was the most significant upregulated com-
ponent that correlated with monocyte activation and severity 
of COVID-19 [346]. Higher plasma baseline levels of leptin 
occurring during expansion of adipose tissue in overweight 
conditions may cause immune defects and inadequate anti-
viral response and result in a predisposition to respiratory 
infection and its increased severity [334, 347].

A weakened innate immune response is a feature of obe-
sity. This was indicated by suppression of IFN-1 responsive 
gene expression in response to TLR stimulation in PBMCs 
from obese subjects compared to individuals without obe-
sity [348]. This has been attributed to induction of suppres-
sor of cytokine signaling-3 (SOCS3) which, by inhibiting 
JAK/ STAT signaling, impairs IFN response [349]. Further, 
decreased TLR3 activation also leads to decreased IFN-1 
production [350]. Increased expression of SOCS3 occur-
ring in viral infection can also result in inhibition of leptin 
signaling and immune suppression by Treg cells [351]. A 
reduction in type-1 IFN response has been recognized as a 
key determinant of severe COVID-19 along with significant 
downregulation of IFN itself [352, 353]. The impaired IFN 
response existent in obesity further diminishes the antiviral 
response of IFN in SARS-CoV2 infection.

Plasma levels of adiponectin are decreased in obesity 
[354]. This is significant in the context of the reported ben-
eficial effects of adiponectin on vascular endothelium and 
its anti-inflammatory effect [355–357]. It triggers release 
of nitric oxide by endothelial cells [358] and improves 
endothelial redox status by suppressing NADPH-oxidase-
derived superoxide formation [359]. In addition, adiponec-
tin downregulates cell adhesion molecules (CAMs) and 
reduces monocyte adhesion to endothelium [360] while its 
deficiency enhances leukocyte adhesion [361]. Its insulin-
sensitizing, anti-apoptotic, and anti-inflammatory effect 
is, in part, mediated through activation of AMPK, which 
is a key enzyme in energy homeostasis [362]. Adiponectin 
deficiency in mice tends to induce pulmonary inflammation 
and predispose to developing acute lung injury (ALI) [363, 
364]. Its expression is decreased by inflammatory cytokines 
TNFα and IL-6, which are induced as fat accumulates in 
adipose tissue [365]. Decrease in adiponectin occurring in 
obesity and in insulin-resistant conditions [366] may, thus, 
exaggerate inflammatory response and dysregulation of 
vascular endothelial homeostasis [356]. Further, adiponec-
tin levels are lower in males who are at increased risk for 
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COVID-19 than females [367]; similarly, its levels are low 
in certain ethnic groups [368, 369], who are at increased risk 
for COVID-19. It has been postulated that decrease in adi-
ponectin in obesity may contribute to respiratory failure in 
COVID-19 [10]. In a recent study, decrease in plasma levels 
of adiponectin was observed in 12 COVID-19 patients with 
respiratory failure compared to non-COVID patients with 
respiratory failure [370]. It appears that leptin and adiponec-
tin have opposite effects on vascular endothelium, metabo-
lism, immune response, and inflammation, and an inverse 
pattern of expression with leptin showing an increase and 
adiponectin decreasing in obesity [364]; the ratio of these 
two adipokines in circulation might be important in the 
pathophysiology of COVID-19.

Vascular endothelium and thrombotic risk

It is also evident that dysfunctional adipose tissue contrib-
utes to thrombotic risk, which can contribute to adverse 
outcome in COVID-19 patients with obesity. Apart from 
pneumonia-related respiratory dysfunction affecting lungs, 
a clinical feature of COVID-19 in several cases is pulmo-
nary thromboembolism and thrombotic microangiopathy 
involving endothelial system. Laboratory investigations and 
imaging studies suggested hyper-inflammation and throm-
botic phenomena as important characteristics of severe cases 
of COVID-19 and SARS-CoV2 may predispose patients 
to thrombotic disease[371]. Diffuse vascular endothelial 
inflammation, associated with apoptosis, which is reported 
to make vascular endothelial cells pro-coagulant [372], sug-
gested that vascular endothelium is a target for SARS-CoV2 
[373] and could cause impaired microcirculation. Risk for 
thrombosis is high in obesity and is associated with a shift 
to pro-thrombotic state with dysfunctional endothelium 
[374], activated platelets, and decreased fibrinolytic activ-
ity [375–377]. Decrease in fibrinolysis appears to be due 
to obesity-associated insulin resistance; by modulating the 
transcription factor Egr-1, insulin is suggested to regulate 
levels of tissue factor and plasminogen activation inhibitor 
(PAI-1) [378]. Increased fat mass-associated elevation of 
circulating PAI-1 can inhibit plasmin-mediated fibrinolysis. 
Overall coagulation potential and decreased fibrinolysis (as 
reflected in overall homeostatic potential) have been dem-
onstrated to increase with increase in BMI [379]. Platelet 
activation in obesity was indicated by higher excretion of 
11-dehydroTBX2, a metabolite of thromboxane and a marker 
of platelet activation, by obese subjects and its reduction to 
normal levels on weight loss [380]. Further, insulin-induced 
anti-aggregation of platelets in non-obese subjects was neu-
tralized in obese insulin-resistant subjects indicating that the 
abnormal metabolic state accompanying insulin resistance, 
and obesity alters platelet activity [381]. Elevated levels 
of von Willebrand Factor, TF, factor VII, Factor VIII, and 

fibrinogen in circulation indicated a hypercoagulable state in 
obesity [377, 382]. Moreover, C-reactive protein, of which 
plasma levels are increased in obesity [383] and severe 
COVID-19 [384], also exerts a pro-thrombotic effect [385]. 
It induces TF and PAI-1 and enhances monocyte-endothelial 
cell interaction by inducing expression of endothelial cell 
adhesion molecules [386].

Dysregulation of several molecular pathways in obesity 
can impact endothelial function. For instance, alteration in 
eNOS activity, increase in pro-inflammatory cytokines and 
circulating free fatty acids (FFA), and decrease in protective 
adipokines in obesity contribute to endothelial dysregula-
tion. FFAs induce endothelial dysfunction by several mecha-
nisms including disruption of calcium signaling-mediated 
NO production, oxidant stress and inflammatory signaling, 
RAS activation-dependent elevation of endothelin leading 
to vasoconstriction, and activation of apoptotic pathways 
[387, 388]. A relation between FFA-induced endothelial 
dysfunction and RAS was indicated by prevention of FFA 
effect by inhibition of RAS [389]. FFAs appear to exert this 
effect by activation of leukocytes through Ang-II produc-
tion in mononuclear and polynuclear cells and consequent 
enhanced adhesion of leukocytes to endothelium [390]. 
Increase in endothelial permeability in obesity permits pas-
sage of the virus across the endothelium to infect pericytes 
or pneumocytes expressing the ACE2 receptor. Plasma 
levels of VEGF that increase endothelial permeability are 
increased in obese subjects [391]. Further, increase in FFA 
can increase endothelial permeability through Nlrp3 inflam-
masome activation coupled with a decrease in tight junc-
tion proteins ZO-1/ZO-2[392, 393]. Plasma metabolomic 
analysis showed significant increase in FFA correlating with 
markers of inflammation such as IL-6 and CRP and severity 
of COVID-19 [394]. FFA-induced immune and endothelial 
dysfunction, and hyper-inflammation may also make obese 
subjects vulnerable to adverse outcome in COVID-19.

Recent reports have implicated auto-antibodies in patho-
genesis of complications of COVID-19. This was indicated 
by detection of increased levels of antibodies against inter-
feron-1 (both IFNω and IFNα) in patients admitted with 
serious COVID-19 [395]. It also appears that the auto-anti-
bodies can contribute to an increased pro-thrombotic state. 
This was suggested by a higher titer of anti-phospholipid 
antibodies (aPLs) in serum of patients with severe COVID-
19 and an increased ability for IgG antibodies purified from 
these serum samples to induce venous thromboembolism 
in an experimental mouse model [396]. The levels of these 
aPLs were associated with higher platelet count, severe 
respiratory disease, and low glomerular filtration rate. The 
antibodies detected were against Cardiolipin, β2 Glycopro-
tein I, and phosphatidyl serine/prothrombin. A recent meta-
analysis also indicated a rise in aPL prevalence in critically 
ill COVID-19 patients compared to non-critically ill patients 
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but could not demonstrate any association between the pres-
ence of aPLs and requirement of IMV, mortality, D-dimer 
levels, or development of venous thromboembolism [397]. 
Obesity has been shown to be associated with increased pro-
duction of auto-antibodies against intracellular proteins in 
different organs. Moreover, it has also been demonstrated 
that obese adipose tissue contributes to secretion of these 
auto-antibodies [398]. Parallels between the coagulopathy 
seen in conditions like Anti-phospholipid antibody syn-
drome and that seen in serious COVID-19, and the increase 
in circulating auto-antibodies seen in obesity suggest that 
an altered auto-immune response could be another possible 
link between obesity and adverse outcome in COVID-19.

Neutrophil activation

The role of peripheral blood leukocytes, particularly neu-
trophils, in the development of obesity and related diseases 
is becoming increasingly evident [399–401]. Increase in 
neutrophil level and its activation indicated by increased 
expression of elastase and myeloperoxidase, were reported 
in obese male subjects[402]. High plasma levels of adi-
ponectin were associated with reduced production of the 
chemokine CXCL8 by neutrophils and the neutrophil acti-
vation in obese subjects appeared to be a consequence of 
decrease in adiponectin [403]. An increase in neutrophils in 
BAL [404], elevated levels of unique markers of neutrophil 
activation, and their correlation with disease severity [38] 
indicated that neutrophil activation is critical for pathogen-
esis of COVID-19 complications.

One of the mechanisms by which neutrophils exert 
their effect is through formation of Neutrophilic Extra-
cellular Traps (NETs) in a process called NETosis [405]. 
This involves release of de-condensed nuclear chromatin, 
associated with histones and neutrophilic antimicrobial 
granular proteins, in the form of a reticular scaffold which 
traps invading pathogens within the DNA fibers. This limits 
spread of infective agent and recruits antimicrobial factors 
to the infection site. However, NET action is non-specific 
and can result in injury to surrounding tissue and worsen the 
inflammatory response.

The inflammatory state in obesity is also characterized 
by increase in NETosis [405]. A higher amount of NET for-
mation was observed in plasma of a group of subjects with 
morbid obesity compared to controls [406]. In experimental 
mouse models of obesity, there was increased NET forma-
tion in the adipose tissue [407].

Viral infections such as influenza A [408], Respira-
tory Syncytial virus [409], and Chikungunya [410] induce 
NETosis. Mice on a high-fat diet, infected with influenza, 
showed higher NETosis than mock-infected controls [411]. 
In patients hospitalized with COVID-19, there was an 
increase in markers of NETosis, such as MPO-DNA, in 

patients requiring mechanical ventilation. Further, sera 
from COVID-19 patients triggered more NET formation in 
neutrophils, in vitro, than that from controls [412]. Increase 
in aPLs in COVID-19 patients was associated with neutro-
phil hyperactivity and release of NETs, and purified IgG 
fractions from serum of these patients promoted NETosis 
in neutrophils isolated from healthy subjects [396]. NETs 
have been reported to increase in BAL fluid of patients with 
ARDS [413] as well as those with respiratory failure fol-
lowing acute exacerbation of COPD [414]. Histochemical 
analysis of autopsy samples of lungs of COVID-19 patients 
showed the presence of neutrophilic plugs [151]. NETosis 
has also been implicated in various conditions characterized 
by arterial and venous thrombosis [415–417]. It, therefore, 
appears that increased NETosis due to acute inflammation in 
COVID-19 might further aggravate the pre-existing NETosis 
in the chronically inflamed obese state, thus, priming it for 
a more severe outcome.

It appears that dysregulation of the metabolic and endo-
crine functions of adipose tissue, compounded by inflamma-
tion, leads to local and systemic effects that affect function-
ing of multiple organs, making obese patients vulnerable to 
a more adverse outcome in SARS-CoV2 infection (Fig. 2). 
Increase of adipose tissue mass and elevated levels of ACE2 
can make it a reservoir for the virus. Besides affecting 
virus shedding, the pre-existing pro-inflammatory state is 
aggravated by enhanced acute production of inflammatory 
cytokines. Higher levels of angiotensinogen and downreg-
ulation of ACE2 following infection result in loss of pro-
tective effect of ACE2. The resulting dysregulation of the 
RAAS pathway and ANG-II accumulation further worsen 
the inflammatory state. Obesity-associated insulin resistance 
and hyperglycemia are aggravated by SARS-CoV2-induced 
hyperglycemia consequent to virus-targeting pancreas, 
leading to further metabolic dysfunction. Dysregulation 
of endocrine function, particularly a rise in pro-inflamma-
tory leptin and reduction in protective adiponectin, causes 
systemic effects that affect vascular endothelial function, 
induce oxidant imbalance, dysregulate immune metabolism, 
and impair immune response, making obese subjects more 
prone to severe COVID-19. Alterations in the components 
of the complement pathway which are mostly of adipose 
tissue origin and, associated with both adiposity and insulin 
resistance, can make obese subjects susceptible to micro-
thrombosis in COVID-19. Obesity-associated metabolic and 
endocrine imbalance can also contribute to dysregulated 
platelet function and altered fibrinolytic system leading to 
increased risk for thrombotic events in COVID-19 patients. 
Several of these changes in adipose tissue function that occur 
in obesity and have implications for adverse outcome for 
COVID patients with obesity, could be reversed on calorie 
restriction-induced weight loss or by surgical intervention 
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suggesting the possibility of adopting weight reduction strat-
egies to reduce risk for severe COVID-19 disease.

Conclusion

A series of epidemiological studies revealed obesity, par-
ticularly central obesity, to be an independent risk factor 
contributing to higher morbidity and mortality among 
SARS-CoV2-infected patients. Data from clinical sam-
ples of infected patients and studies of cells infected with 
SARS-CoV2 virus suggest that the underlying mechanisms 
contributing to adverse outcomes of COVID-19 in subjects 
with obesity include (a) molecular mechanisms enhancing 
viral entry and spread and (b) dysregulation of host cell 

homeostasis adversely affecting functions of key organs 
which remain critically challenged in obese subjects.

Increased expression of host cell proteins, particularly 
ACE2, and overactivated mTOR can lead to increased viral 
entry and spread. Aggravated ER stress, dysregulated RAS 
pathway, and reprogrammed host cell metabolism may con-
tribute to an adverse outcome.

Disproportionate expansion of adipose tissue, more 
importantly that of VAT, results in dysfunctional, meta-
bolically challenged and pro-inflammatory adipose tissue 
leading to distorted cross-talk and loss of homeostasis. The 
resulting imbalance between pro- and anti-inflammatory 
cytokines and adipokines causes local and systemic inflam-
mation and an altered immune response due to dysregulated 
immune cell metabolism. Altered redox balance, decrease 
in protective adipokines such as adiponectin, and increase 

Fig. 2   Challenged adipose tissue and exacerbation of COVID-19. A. 
Leptin, through its receptor-associated JAK/ STAT-dependent and 
independent pathways in central and peripheral tissues, regulates 
energy homeostasis, glucose and lipid metabolism, and immune func-
tion. It stimulates polarization of CD4 T-cells to a pro-inflammatory 
Th1 rather than anti-inflammatory Th2 type, activation of mono-
cytes and macrophages, NK cell activation, the production of pro-
inflammatory cytokines, and neutrophil chemotaxis. Adiponectin acts 
through its two receptors, mediated via AMPK or PPARα, to promote 
fatty acid oxidation and inhibit lipogenesis, suppress mTOR and IKK-
NF-kB-PTEN signaling, and improve insulin signaling. Adipose tis-
sue produces pro-inflammatory cytokines of which levels depend on 
the relative levels of pro-inflammatory leptin and anti-inflammatory 
adiponectin. Adipose tissue also contributes to the RAAS pathway. B. 
Obesity is characterized by metabolic dysfunction, increase in inflam-
mation, ER stress, immune impairment, RAAS dysregulation, and an 
increased thrombogenic state. Altered adipokine and cytokine pro-
duction can result in systemic effects adversely affecting organ func-
tion. Increased leptin action causes increased immune cell-mediated 
inflammation with increased vascular permeability, neutrophil acti-
vation with neutrophilic extracellular traps, increased pro-inflam-

matory, and decreased anti-inflammatory cytokines and increased 
polarization of macrophages to a pro-inflammatory M1 type from 
an anti-inflammatory M2 type. It also results in depressed innate 
and adaptive immune response with reduced interferon response and 
decreased dendritic cell activity. Dysregulated adipokine production 
and Insulin resistance affect immune cell metabolism and dimin-
ishes immune response. Increase in pro-inflammatory cytokines, 
decrease in adiponectin, and increased ER stress lead to endothelial 
dysfunction. Decreased adiponectin also leads to platelet activation. 
Increased tissue factor and PAI-1 from adipose tissue lead to activa-
tion of coagulation cascade and decreased fibrinolysis, respectively. 
Anti-fibrinolytic effect, hypercoagulable state, and activated platelet 
with endothelial dysfunction lead to a highly thrombotic state. This 
challenged system is further compromised by SARS-CoV2 entry that 
exacerbates inflammation and ER stress. It dysregulates RAAS, lead-
ing to loss of protective effect of ACE2 and accumulation of Ang-II, 
causing further ER stress and inflammation leading to more endothe-
lial dysfunction. Impaired immune response, increased inflammation, 
and activated thrombotic state can increase severity of COVID-19 in 
obesity. Red effect of SARS-CoV2 . Gold effect of Obesity
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in free fatty acids induce vascular endothelial damage. This 
adiposopathy increases the risk for adverse outcome of 
COVID-19 in patients with obesity. Adipose tissue as a res-
ervoir would increase the latency of the virus which might 
become susceptible to mutation. Appropriate in vivo model-
based studies would be required to obtain further insights.

Host-cell response involves differential expression of 
several genes including those relating to various metabolic 
and signaling pathways, and a number of miRNAs that 
target genes regulating cellular processes that contribute 
to progression and severity of the disease. However, not 
much information on the targeting of SARS-CoV2 genes 
by host miRNAs, or sequestering of host miRNAs by viral 
mRNAs causing loss of regulation of host genes is avail-
able. Whether cell/tissue tropism of SARS-CoV2 depends 
on miRNAs, apart from ACE2, as has been suggested for 
liver tropism of HCV by miR-122 [418] is also relevant.

Several molecular and signaling pathways dysregulated in 
SARS-CoV2 infection align with parallel changes in these 
molecular pathways in obesity, to exacerbate the pathologi-
cal process and cause severe disease outcome. Some of these 
molecular pathways are so critical that targeting them could 
have immense therapeutic potential. Since mTOR pathway 
is critical in viral replication and elevated in obesity, it is a 
potential therapeutic target. FDA approved mTOR inhibitors 
which showed suppression of viral replication in cell-based 
studies could be clinically tested for their therapeutic poten-
tial. ANG-II/RAS pathway is another important therapeuti-
cally potent molecular system that contributes significantly 
to severe disease in COVID-19 patients with obesity. Based 
on experimental studies on angiotensin receptor blockers 
(ARB) and ACE inhibitors, concern has been expressed 
regarding a possible compensatory upregulation of ACE2 
that could increase viral load and lung injury. Further, it is 
also debated whether use of such inhibitors should be con-
tinued in CVD patients infected with SARS-CoV2 [419]. As 
elevated levels of serum ANG-II are correlated with viral 
load, assessment of serum ANG-II may be done before 
considering the use of ARB or ACE inhibitors. Yet another 
molecular pathway involved in acute inflammation and 
associated complication is the interleukin and JAK/STAT 
pathway. IL-6 is one of the key upregulated interleukins in 
SARS-CoV2 infection aligning with its elevated levels in 
pre-existing chronic inflammation in obesity. Antibodies 
against IL-6 receptor (Sarilumab and Tocilizumab) and IL-6 
(Siltuximab) are two types of IL-6 inhibitors approved by 
FDA and the NIH panel on COVID-19 treatment guidelines 
has recommended Tocilizumab along with corticosteroids in 
certain hospitalized cases with severe disease.

Several of the derangements in metabolism, inflamma-
tion and immune cell metabolism and associated molec-
ular pathways, with implications for severe COVID-19, 
in obesity could be reversed by weight reduction either 

by diet and life style-based caloric restriction or surgical 
intervention. Such obesity reduction approaches could be 
effective in reducing risk for adverse outcome in COVID-
19 infections and could even reduce risk for post COVID-
19 diseases.
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